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ABSTRACT: The present study utilizes an analytical method to formulate the three lowest 

modal frequencies of axially-loaded notched beam through both crack location and load 

level in a specific format that can be used in existing frequency-based crack-identification 

methods. The proposed formula provides a basis to shift into two states, one with axial 

loading and the other without any loading whatsoever. When any two natural frequencies in 

simply-supported beam with an open crack, subjected to axial load, are measured, crack 

position and extent can be determined, using a characteristic equation, which is a function 

of crack location, sectional flexibility, and eigenvalue (natural frequency). Theoretical 

results show high accuracy for service axial loads. In this range, errors for crack location 

and extent are less than 12% and 10%, respectively. 

 

Keywords: Axial Load, Characteristic Equation, Damage Detection, Eigen Frequency, 

Notched Beam. 

 

 

INTRODUCTION 

 

Deteriorating infrastructure, caused by 

aging, accidental events, overloading, etc., 

has caused the development of damage 

detection techniques for structural 

components during the last three decades. 

Structure health monitoring and damage 

detection at the possibly earliest stage is of 

utmost importance in civil, mechanical, and 

aerospace engineering communities, since 

damage accumulation may lead into a 

catastrophic structure failure. 

Several analytical, numerical, and 

experimental methods have been proposed to 

investigate dynamic behavior of cracked 

structures (e.g. see Saavedra and Cuitino, 

2001; Sinha and Friswell, 2002; Zheng and 

Kessissoglou, 2004; Kisa and Gurel, 2007; 

Orhan, 2007; Mazanoglu et al., 2009; Attar, 

2012; Cademi and Calio, 2013; Gomes and 

Almeida, 2014). As a result of its 

experimentation simplicity, eigen Frequency 

changes have been widely investigated (e.g. 

see Zheng and Ji, 2012; Mazanoglu and 

Sabuncu, 2012; Bakhtiari-Nejad et al., 

2014).  
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Much of the work in this field deals with 

modeling a crack in beam, subject to various 

boundary conditions. For the case of 

multiple cracks, Caddemi and Calio (2009) 

presented exact closed-form solution 

expressions for the vibration modes of the 

Euler-Bernouli beam at the presence of 

multiple concentrated cracks. In their study, 

cracks are assumed to remain open during 

vibration and are modeled as a sequence of 

Dirac's delta generalized functions in the 

flexural stiffness. Zhiang and Ji (2012) 

provided an approximate method to 

determine the stiffness and the fundamental 

frequency of a cracked beam. Their method 

greatly simplified the calculation of cracked 

beam with complicated crack configurations. 

Jassim et al. (2013) conducted a research to 

analyze the vibration for occurrence of any 

damage in a cantilever beam. Their results 

showed that the change of natural frequency 

is a feasible and viable tool for damage 

detection. Labib et al. (2014) studied the 

problem of calculating the natural 

frequencies of beams with multiple cracks 

and frames with cracked beam, using 

Wattrick-Williams algorithm.  

In these studies, effects of axial force 

were not taken into consideration, even 

though such impacts can be significant on 

frequency response of structural elements, 

such as building columns. Binici (2005) 

studied vibration of beams with multiple 

cracks, subjected to axial force. In his study, 

Cracks are assumed to introduce new local 

flexibility changes and are modeled as 

rotational springs. Meeting one set of 

boundary conditions as well as continuity 

and jump ones leads to mode shape 

functions and a second-order determinant 

that needs to be solved for its roots. The 

present paper adopts this method to solve the 

direct problem. Mei et al. (2006) proposed a 

concise and systemic approach to both free 

and forced vibration of complex-axially 

loaded Timoshenko beams with 

discontinuities such as cracks and sectional 

changes, based on wave vibration analysis. 

Viola et al. (2007) utilized a procedure in 

which dynamic stiffness matrix was 

combined, and thus introduced a line-spring 

element, letting them model the crack beam. 

Cicirello and Palmeri (2014) studied pre-

damaged Euler-Bernouli beams with any 

number of cracks, subject to axial forces in 

combination with transverse loads. Dirac 

delta functions are utilized as switching 

variables to present cracks’ opening and 

closing. Moradi and Jamshidi Moghadam 

(2014) investigated cracked post-buckled 

beams. Their results showed geometric 

imperfection and the impact of applied load 

on not only modal parameters but also the 

crack size and position. 

Lele and Maiti (2002) derived the 

characteristic equation of simply-supported 

Timoshenko beam and used it for inverse 

problem by the variations of natural 

frequencies. Khiem (2006) developed the 

general frequency equation of damage 

beams for elastic end supports. Khiem and 

Toan (2014) proposed a novel method to 

detect an unknown number of multiple 

cracks from the measured natural 

frequencies. Their research also developed 

the so-called crack scanning method. The 

present study, however, offers a new 

approximate frequency-based method to 

identify the damages of simply-supported 

cracked beam, which is under the influence 

of axial load. It primarily focuses on the 

method, proposed by Binici (2005) to 

analyze the vibration of cracked beam at the 

presence of axial load in case of a direct 

problem, deriving new polynomial formulas 

that separate axial load effects on frequency 

domain. Approximate formulas generally 

depend on load level and crack location, not 

to mention the Eigen mode under 

consideration. The output of this procedure 

is a coefficient that translates the frequency 

of axially-loaded damaged beam to one with 
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no axial force. As far as the authors know, 

there has not been any solution from the 

scholars to detect the damages of the beam, 

under axial load. This paper presents a 

frequency-based method to solve the 

existing inverse problem.  

 

MATERIALS AND METHODS 

 

Direct Method 

Simply-supported beam with a single 

crack has been taken into consideration 

(Figure 1). Binici (2005) presented the 

determinant of a 2×2 matrix to be solved for 

eigenvalue, which results in natural 

frequencies of the cracked beam, subject to 

axial load. Crack is assumed to remain open. 

Crack breathing mechanism that needs time 

domain analysis, has not been considered in 

this study either.  

Buckling load of damaged beam is 

determined by setting circular natural 

frequency (ω) to zero in order to solve the 

characteristic equation for P. Different levels 

of axial loads (P) are applied to beam due to 

the buckling load of each damage scenario. 

Results are extracted for the first three 

modes, more affected by axial load in 

comparison to the higher modes. Figures 2-7 

represent variation of natural frequencies of 

damaged beam for different axial load levels 

and specified crack severity (ξ = a/h = 0.4). 

Material and geometry properties of the case 

study are elasticity modulus E = 2.07×10
11

 

N/m
2
, shear modulus G = 79×10

9
 N/m

2
, 

Poisson ratio υ = 0.3, mass per unit volume ρ 

= 7860 Kg/m
3
, length L = 400 mm, and 

square cross section B = H = 12.7 mm. 

 

 
Fig. 1. Beam with a single crack subjected to axial force 

 

  

Fig. 2. First frequency of cracked beam, subject to 

compressive load 
Fig. 3. First frequency of cracked beam, subject to tensile 

load 
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It can be observed that as the crack 

location approaches the center of the beam, 

the reduction in natural frequency of the 

beam, due to the presence of crack, 

increases. Non-dimensional formulas for 

fundamental frequency are derived below. 

 

For compressive load (P): 

f
1dc

=f
1d

[λ1c(β)√1- (
P

Pcr(d)
)

2

]                             (1) 

λ1c(β)=aβ
3
+bβ

2
+cβ+d        (2) 

a=-1.552 (
P

Pcr(d)
)

2

+0.648 (
P

Pcr(d)
) -0.142            (3) 

b=0.944 (
P

Pcr(d)
)

2

-0.376 (
P

Pcr(d)
) -0.085              (4) 

c=0.176 (
P

Pcr(d)
)

2

-0.088 (
P

Pcr(d)
) -0.016               (5) 

d=0.184 (
P

Pcr(d)
)

2

-0.43 (
P

Pcr(d)
) +0.99                 (6) 

 

For tensile load (T): 

f
1dt

=f
1d

[λ1t(β)√1- (
T

Pcr(d)
)

2

]                          (7) 

λ1t(β)=aβ
3
+bβ

2
+cβ+d                                     (8) 

a=0.108 (
T

Pcr(d)
)

2

+0.238 (
T

Pcr(d)
) +0.004            (9) 

b=0.072 (
T

Pcr(d)
)

2

-0.156 (
T

Pcr(d)
) -0.003            (10) 

c=0.004 (
T

Pcr(d)
)

2

-0.011 (
T

Pcr(d)
) -0.001             (11) 

d=-0.276 (
T

Pcr(d)
)

2

+0.225 (
T

Pcr(d)
) +1.04          (12) 

 

It is evident that even the small axial 

loads, which are actually realistic for service 

conditions of some structural elements, can 

result in shifts up to 15% in the first mode 

Eigen-frequencies. 

The proposed formula for second mode at 

the presence of axial load is given as below: 
 

For compressive load (P): 
f
2dc

=f
2d

×λ2c                                                    (13) 

λ2c=-0.129 (
P

Pcr(d)
) +1.002                              (14) 

 

𝐹𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑙𝑜𝑎𝑑 (𝑇): 
f
2dt

=f
2d

×λ2t                                                     (15) 

λ2t=0.111 (
T

Pcr(d)
) +1.001                                (16) 

 

Figures 6 and 7 represent frequency 

variation for third mode at the presence of 

axial loads. 

 

  
Fig. 4. Second frequency of cracked beam, subject to 

compressive loads 
Fig. 5. Second frequency of cracked beam, subject to 

Tensile loads 
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Fig. 6. Third frequency of cracked beam, subject to 

compressive load 

Fig. 7. Third frequency of cracked beam, subject to 

tensile load 

 

As it can be seen, formulas for second 

and third modes are functions of axial load 

levels that simplify the damage-detection 

procedure for beam-like structures. 

Frequency changes for the third mode, at the 

presence of tensile load, can be formulated 

as: 
 

For compressive load (P): 
f
3dc

=f
3d

×λ3c                                                     (17) 

λ3c=-0.055 (
P

Pcr(d)
) +1.002                                (18) 

 

For tensile load (T): 
f
3dt

=f
3d

×λ3t                                               (19) 

λ3t=0.051 (
T

Pcr(d)
) +1.000                                (20) 

 

As it can be seen, formulas for second 

and third modes are functions of axial load 

levels that simplify the damage-detection 

procedure for beam-like structures. For the 

third frequency, L/6 is the location, resulting 

in the maximum decrease, compared to that 

of the undamaged beam with axial force.  

 

Inverse Method 

Applied method in this section represents 

a characteristic equation, using transfer 

matrix that can predict crack location as well 

as severity of a simply-supported beam 

when two natural frequencies of the 

damaged beam are available (Lin, 2004). 

Since axial loads can significantly affect 

Eigen-frequencies, existing characteristic 

equation would have obvious deviation, 

resulting in great errors in inverse problem 

solution. The proposed formulas in the 

previous section translate the Eigen-

frequencies of axially-loaded cracked beam 

to the case without any axial loading where 

an initial crack position has been assumed. 

Summary of revised algorithm, proposed by 

the authors, is presented in Figure 8. 

 

RESULTS AND DISCUSSION 

 

In order to investigate the practicality of the 

revised algorithm, two scenarios have been 

considered. Relatively high levels of axial 

loads for both compression and tension are 

applied to the case study, described in direct 

problem (Direct Method). The crack 

identification equation is a nonlinear one, 

capable of being solved by means of 

standard Newton-Raphson numerical 

iterations. The authors in turn programmed a 

code to solve nonlinear equation, using 

MATLAB 2011. It is noteworthy that for 

different frequency pairs, the obtained crack 

parameters are not unique.  
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Fig. 8. Revised algorithm for damage detection of axially loaded beam with a crack 

 

Cracked Beam, Influenced by 

Compressive Load 

Compressive axial force P = 12775 N is 

applied to the model. Three lowest natural 

frequencies of cracked beam are reported in 

Table 1 with crack position and depth being 

β = 0.3 and ξ  = 0.4 respectively. 

Table 2 represents crack position and 

depth for each pair of Eigen-frequencies. As 

it can be seen, revised algorithm proves to be 

able to find out crack parameters.  
 

Cracked Beam, Influenced by Tensile 

Load 

Tensile axial force P = 19162 N is 

applied to the beam model with the same 

crack scenario, addressed in section 

“Cracked Beam, Influenced by Compressive 

Load”. Table 3 represents natural 

frequencies of three lowest modes. 

In Table 4 crack location and extent have 

been identified from any two of these three 

Eigen-frequencies. 

It can be observed that the crack 

identification results, proposed in this article, 

are relatively acceptable for service axial 

loads (0.5Pcr ≥ P). Higher axial load levels 

lead to an increase in the errors, belonging to 

calculated parameters. Results showed that 

crack position is strongly affected by axial 

load level. 
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Table 1. Frequencies of cracked beam subjected to compressive load 

No. of Mode Frequency (Hz) 

1
st
 Mode 132.5 

2
nd

 Mode 682.53 

3
rd

 Mode 1616.3 

 
Table 2. Crack parameters obtained from proposed method (compressive load) 

Eigen Frequencies of Cracked 

Beam 

Crack Position (β = 0.3) Crack Depth (ξ = 0.4) 

Revised Method Error (%) Revised Method Error (%) 

ω1 and ω2 0.310 3.33 0.365 -8.75 

ω1 and ω3 0.333 11.00 0.399 -0.25 

ω2 and ω3 0.338 12.67 0.438 9.50 

 
Table 3. Frequencies of cracked beam, subject to tensile load 

No. of Mode Frequency (Hz) 

1st mode 238.6 

2nd mode 789.38 

3rd mode 1722.4 

 
Table 4. Crack parameters obtained from proposed method (tensile load) 

Eigen Frequencies of Cracked 

Beam 

Crack Position (β = 0.3) Crack Depth (ξ = 0.4) 

Revised Method Error (%) Revised Method Error (%) 

ω1 and ω2 0.321 6.93 0.438 9.50 

ω1 and ω3 0.328 9.33 0.379 -5.25 

ω2 and ω3 0.344 14.67 0.368 -8.00 

 

COCLUSIONS 

 

The present study proposed a method to 

solve the inverse problem of a simply-

supported beam with a crack, which subject 

to axial load. It revealed approximate 

formulas, which introduce frequency-

translating coefficients in two states with 

and without axially loading. Crack 

identification is a frequency-based process 

that employs the proposed formulas to solve 

inverse problem. Results showed that 

obtained crack position and sectional 

flexibility for service axial loads are in good 

accord with the existing data. Other types of 

boundary conditions can also be considered 

through the similar procedure.  
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