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Abstract
The neutron density is one of the most important dynamical parameters in a

reactor. It is directly related to the control and stability of the reactor power. Any
change in applied reactivity and some of dynamical parameters in the reactor causes a
change in the neutron density. Lyapunov exponent method is a powerful tool for
investigating the range of stability and the transient behavior of the reactor power. In
contrast to the other linear stability methods, this method can be used for large
perturbations and is not needed to construct Lyapunov function. In this work, the
range of stability using Lyapunov exponent method is evaluated for neutron point
kinetics equations with six-groups delayed neutrons. Here, effects of four set of
applications, namely, step, ramp, sinusoidal, and temperature feedback reactivities on
power reactor were investigated with Lyapunov exponent method. The results of
qualitative analysis were compared with traditional methods and were in good
agreement with other works.
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Introduction
The dynamic behavior of the reactor can be described

via a set of ordinary differential equations known as the
neutron point reactor kinetics (NPK) equations [1, 2].
NPK equations describe the variation of in neutron
population due to the change of reactivity [2]. The
neutron density and the delayed neutron precursor
concentration are the most important parameters to be
studied, for the purpose of safety and the transient

behavior of the reactor power [3]. These parameters are
directly affected by reactivity [4,5].

There are several methods for stability analysis of a
nuclear reactor. In literature [6-8], these methods are
divided into linear and nonlinear; Routh Hurwitz
criterion [9], Nyquist stability [8], Bode diagram [10]
are some of linear stability analysis methods. The linear
stability analysis methods are valid for nonlinear
systems with small perturbations [8]. Nonlinear
methods: such as Lyapunov second method and
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Lyapunov exponent method [4, 11-13] are the most
important methods for nonlinear stability analysis.
Lyapunov second method is based on the construct of
Lyapunov function for which there are several methods
such as Aizerman, Szego, Rosen, variable gradient
methods, etc, but there is no systematic method for the
construction of this function [8, 11, 13]. Some of the
researchers- Fu, Chen, Ergen, etc have used this method
[4, 12, 13]. While, for Lyapunov exponents method
there is no such problem, so another important method
for analyzing and diagnosing instability of nuclear
reactors is the spectrum of Lyapunov exponents method,
that is based on eigenvalues and eigenvectors of the
Jacobian matrix [14-16]. Estimating Lyapunov
exponents, which is one of the most important problems
of the control theory, has been investigated in the
following papers: [17] for discrete time varying linear
systems, [18] for continuous time linear systems and
[19] for discrete stochastic linear systems. Lyapunov
exponents describe necessary and sufficient conditions
for asymptotic stability in the linear systems [19]. So,
Lyapunov exponent method in the nonchaotic systems
can be used for the analysis of stability.

The purpose of the present study is to introduce the
mean Lyapunov exponent approach on stability analysis
of NPK equations in nuclear reactors with multi-group
delayed neutron in the presence of step, ramp,
sinusoidal, and temperature feedback reactivities.

This paper is organized as follows. In Sec. 2, a brief
description of NPK equations is presented. In Sec. 3,
analysis tools are reviewed and finally, the authors are
discussed and interpreted the results.

Materials and Methods
In this section we introduce neutron point kinetic

equations and Lyapunov exponent method for analysis
reactor dynamics.

II-1. Neutron point kinetic equations
NPK equations by considering the temperature

feedback reactivities are the stiff non-linear ordinary
differential equations [20]. The general form of the
equations with m-group delayed neutron precursors is
[21-23]:
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Where  t is the net reactivity which is the sum of
external reactivity (  ext t ) and feedback reactivity

 f t [24].  n t is the neutron density,  ic t is the

concentration of precursor delayed neutrons, i is the

relative fraction of i th group delayed neutron,  is
the total effective fraction of delayed neutrons, l is the
prompt neutron generation time, i is the i th group

constant decay, and  q t is the external neutron
source. The effects of arising from the temperature
feedback reactivities can be written as [1, 25, 26]:

(2)

   0 0t T t T      
Here,  is the temperature coefficient of reactivity,

0 is initial reactivity,  T t is the temperature of the

reactor, and 0T is the initial temperature of the reactor.

After the reactivity 0 is inserted into the reactor, the
power responds quickly and the adiabatic model can be
used for the calculation of reactor temperature as
follows [8]:

   c

dT t
k n t

dt
 (3)

Where, ck is the reciprocal of the thermal capacity
of the reactor core.

II-2. Analysis Tools
In this study we were focused attention on dynamical

systems described by a set of ordinary differential
equations particularly NPK equations with six group
delayed neutron.

Lyapunov exponents and entropy measures on the
other hand can be considered "dynamic" measures of
attractors complexity which are called "time average"
[27]. The Lyapunov exponent  ̧ is useful for
distinguishing various orbits. Lyapunov exponents
quantifies sensitivity of the system to initial conditions
and gives a measure of predictability. The Lyapunov
exponent is a measure of the rate at which the
trajectories separate one from another [28, 29] A
negative exponent implies that the orbits approach to a
common fixed point. A zero exponent means that the
orbits maintain their relative positions; they are on a
stable attractor. Finally, a positive exponent implies that
the orbits are on a chaotic attractor, so the presence of a
positive Lyapunov exponent indicates chaos. Even
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though an m dimensional system has m Lyapunov
exponents, in most applications it is sufficient to
compute only the Lyapunov exponents.

The Lyapunov exponents are defined as follows:
Consider two nearest neighboring points (usually the

nearest) in phase space at time 0 and t , with distances

of the points in the i th direction  0id and

 id t , respectively. The Lyapunov exponent is then

defined through the average growth rate i of the
initial distance,

 
 2

1lim log
0

i
i t

i

d t
t d




  (4)

The Lyapunov exponents for a region of N-
dimentional state space near a fixed point are the
characteristic values i that of fixed point.

If State Space 0i i    , then the
trajectories approach the fixed point exponentially.

If State Space, 0i i    , then the
trajectories repelled from the fixed point exponentially
[30].

Commonly, Lyapunov exponents ( i ) can be
extracted by observed signals in the following different
method:

● Based on the opinion of following the time-
evolution of nearby points in the state space.

● Based on the estimation of local Jacobi matrices.
The first method is usually called Wolf algorithm

[31] and it only provides an estimation of the largest
Lyapunov exponent. The second method is capable of
estimating all the Lyapunov exponents. Using one of
these methods, the Lyapunov exponent is calculated
rather than a given control parameter. So, there is a little
increase in the value of the control parameter and the
Lyapunov exponent is calculated for the new control
parameter. By continuing this method the Lyapunov
exponent spectrum of the point reactor kinetics is

Figure 1. Calculating Lyapunov Exponents algorithm.
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plotted versus the control parameter. In this study, for
calculating Lyapunov exponent spectrum was applied
Wolf algorithm. This  algorithm is shown in Fig.1.
According to the Fig.1, we have solved the NPK
equations for a arbitrary value of the control parameter
( i ) for two initial condition

      0 , 0 0 (1,1) , 1,
i i i

n m n rand R      

which are very close to each other. Next we have
calculateed time series depends on the neutron density
that is  

i
n t and  

i
m t . Finally by using the

following relation, we have calculated Lyapunov
exponent.

(5)
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Results
Here, we study the dynamical behavior of systems

Eqs.1 and 3 by calculating their Lyapunov exponents.
The set of all Lyapunov exponents of discrete time
varying linear systems is called the spectrum of this
system ( 1 2, , , n   ) [17]. According to the
theorem of Oseledec, the almost certain stability of the
trivial solution of a system can be determined by the
largest Lyapunov max   ; i.e., when 0  the trivial
solution is almost certainly stable and when 0  the
trivial one unstable [18]. All of the coordinates in this
phase space are given as follows:  n t ,  1c t ,  2c t ,

 3c t ,  4c t ,  5c t and  6c t . If we want to count
of the effect of temperature feedback another coordinate,

 T t is added too. Therefore stability analysis should be
followed with the eight Lyapunov exponents
 1 2 8, , ,   . It is impossible to obtain these
quantities analytically. Therefore numerical and
estimation methods are required for their approximation
[18]. Here, numerical calculations have been done with

45ODE method. Initial conditions are [3, 20, 21, 32]:

0
0 01 , i

i
i

nn c
l



  (6)

The data in this study are taken from references [3,
20, 32]. In the following each reactivity will be discussed
in a subsection.

III-1. Step Reactivity
We study the dynamical behavior of NPK equations
with six-groups delayed neutrons for step reactivity
with steps  , 0.5 , 0.5 and  . Lyapunov
exponent method, is applied to the solving and the
stability analysis of NPK equations in the thermal
reactor with the following parameters [3, 20]:

1
1 0.0127 s  , 1

2 0.0317 s  , 1
3 0.115 s  ,

1
4 0.311s  ,

1
5 1.4 s  ,

1
6 3.87 s  ,

0.0005l s , 1 0.000285  , 2 0.0015975  ,

3 0.00141  , 4 0.0030525  , 5 0.00096  ,

6 0.000196  and 0.0075  .
Numerical calculations have been performed with

45ODE method and relative errors are compared
with the exact values of the neutron density (See
Table 1) [3, 33]. For positive and negative step
reactivities, it can be observed from Figure 2a and 2b,
that the neutron density gradually increased and

Table 1. The neutron density and relative error of the thermal reactor with step reactivity [3].
ExactRK (ODE 45)

h=01
GAEM
h=01

AEM
h=01

TSM
h=01

t0 (s)ρ0 ($)

0.5206043
0.4333335
0.2361107
0.6989252
0.6070536
0.3960777
1.533113
2.511494
14.21503
2.515766
10.36253
32.18354

61.4 10
61.85 10 

79.74 10 
61.43 10
61.6 10 
61.01 10 

76.52 10
61.11 10 
61.26 10 

61.19 10
0.0

71.24 10 

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

77.53 10 
0.0
0.0

73.11 10 

71.92 10
0.0
0.0

71.43 10
0.0
0.0
0.0
0.0

77.53 10 
0.0
0.0

73.11 10 

42.2 10
0.0
0.0

63.15 10
0.0
0.0
0.0

73.98 10
0.0
0.0
0.0
0.0

0.1
1

10
0.1
1

10
0.1
1

10
0.1
1

10

-1
-1
-1

-0.5
-0.5
-0.5
+0.5
+0.5
+0.5
+1
+1
+1
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decreased respectively. According to Table 2, in long
term  t , all of the Lyapunov exponents for

negative steps (  and 0.5 ) are negative. It
means that NPK equations are stable in the three
dimensional space. So, the neutron density was
decreased during time and reactor goes into shutdown.
The step reactivity with steps  and 0.5 have a
positive Lyapunov exponent, (See Table 2). In this

situation, the fixed points of NPK equations with
these steps are unstable so, the neutron density will be
increased exponentially and reactor with these
reactivities cannot remain in critical state [8].

Figure 3, shows the results of Lyapunov exponent
method with respect to step reactivity in short term
( 10t s ). Thus the transient behavior of reactor is
stable for 0 0.003156  in short term ( 10t s ).

Figure 2. The neutron density as a function of time for three cases of the
positive step reactivity (a), and three cases of the negative step reactivity (b).

Table 2. Lyapunov exponent with respect to time for step reactivity.

-30.2281
-22.8087
-8.4932
-4.3845

-3.8161
-3.7964
-3.6107
-2.4761

-1.3115
-1.2830
-1.0939
-0.7320

-0.2475
-0.2283
-0.1601
-0.1395

-0.0980
-0.0896
-0.0283
-0.0119

-0.0258
-0.0222
-0.0134
-0.0131

-0.0124
-0.0116
0.1725
2.0443

-1
-0.5
0.5
1

Table 3. Lyapunov exponent with respect to time for ramp rate reactivity.

-159.0096
-158.9926
61.7751
158.3794

-3.8656
-3.7964
97.2085

186.8532

-1.31920
-1.2830
97.0994
186.1184

-0.3051
-0.2283
95.5988

184.2730

-0.1137
-0.0896

109.6477
193.9540

-0.0311
-0.0222
9.1515

43.6724

-0.0128
-0.0116

155.2998
239.3204

-0.01
-0.1
0.1
0.01

7654321 0 $

7654321 1$r s
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III-2. Ramp Reactivity
The analyses are presented for the thermal reactor

with the following parameters [3, 20]:
1

1 0.0127 s  , 1
2 0.0317 s  , 1

3 0.115 s  ,
1

4 0.311s  , 1
5 1.4 s  , 1

6 3.87 s  ,

0.00002l s , 1 0.000266  , 2 0.001491  ,

3 0.001316  , 4 0.002849  , 5 0.000896  ,

6 0.000182  and 0.007  .
Regarding the results listed in Table 3, the reactor for

all of the negative values of ramp rate reactivities
 0r  is stable in long term, and unstable for all of the

positive values of ramp rate reactivities  0r  . Thus,

for 0r  , neutron density reduces gradually, and in
long term, reactor goes into shutdown (see Fig. 4b). For

0r  , the neutron density rises rapidly and in the same
vein, the period of reactor decreases. Therefore, reactor
control will be problematic (see Figure 4a). Numerical
results listed in Table 4 imply that.

Numerical calculations are performed and compared
with TSM, GAEM and Pade methods. Regarding Table
4 the results are in good agreement [20,21]. Ramp rate
reactivity influenced on the neutron density behavior is
investigated in short term  0 10t s  . According to
Figure 5, Lyapunov exponent with respect to control
parameter,  r , will be increased. For 0.000798r  ,
all of the Lyapunov exponents are positive so, system is

Figure 3. Variation of the Lyapunov exponents with respect
to the step reactivity.

Figure 4. The neutron density as a function of time for three cases of the positive
ramp rate reactivity (a), and three cases of the negative ramp rate reactivity (b).
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unstable (see Figure 5). In long term, the boundary of
stability tend to become zero  0r .

III-3. Sinusoidal Reactivity
In this subsection, sinusoidal reactivity,

2sin ta 

   
 

, has been investigated, where  and a

are respectively periods and amplitude of sinusoidal
reactivity. It is applied to the thermal reactor with the
following parameters [32]:

1
1 0.0124 s  , 1

2 0.0305 s  , 1
3 0.111s  ,

1
4 0.301s  , 1

5 1.14 s  , 1
6 3.01s  ,

0.00003l s , 1 0.000214  , 2 0.001423  ,

3 0.001247  , 4 0.002568  , 5 0.000748  ,

6 0.000273  and 0.006473  .
The variation of Lyapunov exponents with respect to

time have been shown in Table 5. In long term the
reactor is unstable for all of the values of amplitude
 a and period   of reactivity. It means that the
density of neutron will be increased exponentially (see
Figures 6a and 6b).

Table 4. The neutron density of the thermal reactor with positive and negative ramp rate reactivity [3].
Ramp reactivity with  10.1 $r s 

 45 0.0001ODE h 0.001Pade h  0.1GAEM h  0.0001TSM h  t s
1.3382
2.2285
5.5821

42.7867
54.5117 10

1.3382
2.2284
5.5820
42.786

54.5116 10

1.3382
2.2284
5.5820
42.786

54.5116 10

1.3382
2.2284
5.5822
42.789

54.5143 10

2
4
6
8

10

Ramp reactivity with  10.1 $r s 

 45 0.0001ODE h  0.001Pade h  0.1GAEM h  0.0001TSM h  t s
0.792016
0.613021
0.474059
0.369168
0.290653

0.792007
0.613018
0.474058
0.369169
0.290654

0.792007
0.613020
0.474065
0.369172
0.290653

0.792001
0.613018
0.474058
0.369169
0.290654

2
4
6
8

10

Table 5. Lyapunov exponent with respect to time for different values amplitude ,(a), and period ,(  s ), of the
sinusoidal reactivity.

7654321 s
-216.1836
-216.1598
-216.0854
-216.0374

-2.8960
-2.8960
-2.8959
-2.8959

-1.0228
-1.0229
-1.0228
-1.0228

-0.1935
-0.1938
-0.1938
-0.1938

-0.0647
-0.0646
-0.0647
-0.0648

-0.0142
-0.0142
-0.0142
-0.0143

0.0005
0.0008
0.0010
0.0011

1
30
70

100

7654321 $a
-216.1830
-216.1886
-216.2451
-217.3801

-2.8961
-2.8947
-2.8832
-2.7800

-1.0230
-1.0215
-1.0097
-0.9281

-0.1936
-0.1925
-0.1835
-0.1517

-0.0648
-0.0637
-0.0547
-0.0223

-0.0142
-0.0141
-0.0136
-0.0129

0.0003
0.0017
0.0169
0.9158

0.1
0.2
0.5
1

Figure 5. Variation of the Lyapunov exponents with
respect to the ramp rate reactivity.
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In short term, the reactor can be stable or unstable.
For example, the neutron density in 10 s with 1s 
and 0.00073a  will be decreased (see Table 6). In
this range of time reactor is stable. Lyapunov exponents
with respect to control parameters are shown in Figures
7 and 8. Figure 7, shows that in the range of
1 100s s  the reactor is stable. According to
Figure 8, in the range of a    for

0.0034522a  reactor is stable.

III-4.Temperature Feedback Reactivity
To complete the analysis, we now consider the NPK

equations in presence of temperature feedback reactivity
with the following parameters [3,20,21]:

1
1 0.0124 s  , 1

2 0.0305 s  , 1
3 0.111s  ,

1
4 0.301s  , 1

5 1.13s  , 1
6 3.0 s  ,

0.00005l s , 1 0.00021  , 2 0.00141  ,

3 0.00127  , 4 0.00255  , 5 0.00074  ,

6 0.00027  , 0.00645  , 10.00005K 

and 1 1 10.05ck MW s K   .
Table 7 shows that all of the Lyapunov exponents are

negative for various control parameters. Therefore,
system is stable in long term  t .

Figures 9a, 9b and 9c illustrate the change in the
neutron density as a function of time for different values
of initial reactivity, temperature coefficient of reactivity
and the reciprocal of the thermal capacity of reactor,
respectively. In these Figs, the neutron density is
increased until tend to the maximum point and

Figure 6. The neutron density as a function of time for three cases of the period of
sinusoidal reactivity (a), and three cases of the amplitude of sinusoidal reactivity (b).

Table 6. The neutron density of the thermal reactors with sinusoidal reactivity [31].

Sinusoidal reactivity with 0.00073a  و   1 s 

 45 0.001ODE h Hansen 0.01DM h  t s
1.12394
1.16889
1.07448
0.95383
0.90735
0.98468

1.12396
1.16880
1.07442
0.95380
0.90737
0.98464

1.12351
1.16816
1.07429
0.95527
0.90454
0.98172

1
2
3
4
5

10
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decreased until going into zero, due to the effects of
temperature feedback reactivity. So, reactor goes into
stability.

Table 8, illustrate the response of the neutron density
to increase initial reactivity. Numerical calculations with
ODE45 are performed and compared with TSM, GAEM
and NAM methods. The results are in good agreement
[20, 21]. In this work the transient behavior of reactor
for range of time  0 350t s  and initial reactivity

 00 2   are considered. According to Fig. 10, all
of the Lyapunov exponents with respect to initial
reactivity are in the negative range. Therefore, in short
term reactor is stable. By changing some dynamical
parameters in the reactor such as ck and  , reactor
power can be changed, so here we considered the effect

of changing these two parameters using Lyapunov
exponent method. Figure 11, imply that the variation of
Lyapunov exponents with respect to  parameter. They
are negative in the range of 0.00001 0.001  and
 0 350t s  , therefore reactor goes into stability (see
Table 7). Figure 12, shows that the variation of
Lyapunov exponents with respect to ck parameter are
negative in the range of 0.001 0.1ck  and

 0 350t s  . The results of Table 7, are in good
agreement with the results of Figures 10, 11 and 12.

Discussion
Predicting the dynamic behavior of a nuclear reactor

Figure 7. Variation of the Lyapunov exponents with
respect to the period of sinusoidal reactivity.

Figure 8. Variation of the Lyapunov exponents with respect
to the amplitude of sinusoidal reactivity.

Table 7. Lyapunov exponent with respect to time for different values control parameters, with temperature feedback reactivity.

87654321
-257.8245
-258.3478
-258.9940
-270.0838

-2.9400
-2.9402
-2.9403
-2.9427

-1.0683
-1.0685
-1.0686
-1.0710

-0.2415
-0.2416
-0.2417
-0.2441

-0.0947
-0.0948
-0.0949
-0.0958

-0.0246
-0.0246
-0.0247
-0.0252

-0.0116
-0.0118
-0.0118
-0.0119

-0.0007
-0.0007
-0.0007
-0.0007

0.00001
0.00005
0.00010
0.00100

87654321ck
-257.6987
-257.8243
-258.3438
-258.9941

-2.9400
-2.9400
-2.9402
-2.9403

-1.0683
-1.0683
-1.0685
-1.0686

-0.2414
-0.2415
-0.2416
-0.2417

-0.0947
-0.0947
-0.0948
-0.0949

-0.0246
-0.0246
-0.0246
-0.0247

-0.0114
-0.0116
-0.0118
-0.0118

-0.0011
-0.0009
-0.0007
-0.0007

0.001
0.010
0.050
0.100

87654321 0 $
-194.2564
-258.3748
-322.6741
-387.0629

-2.9217
-2.9402
-2.9517
-2.9594

-1.0497
-1.0685
-1.0802
-1.0882

-0.2238
-0.2416
-0.2530
-0.2609

-0.0867
-0.0948
-0.0990
-0.1015

-0.0211
-0.0246
-0.0263
-0.0272

-0.0111
-0.0118
-0.0120
-0.0121

-0.0007
-0.0007
-0.0008
-0.0008

0.5
1

1.5
2
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due to changes in the parameters of dynamical systems
is very important. Lyapunov exponent method is a
powerful tool that can help to determine the range of
linear and nonlinear systems stability for the changes
control parameters of the system. In this work the
influence of step, ramp, sinusoidal and temperature
feedback reactivities on stability and the neutron of

density with Lyapunov exponent method were
investigated, also the analysis of Lyapunov exponent
respect to time for reactivities above in long-term scale
(t → ∞) was studied. In order to validate the method, the
neutron density changes due to changes in the
parameters of dynamical systems with ODE45 method
was carried out and the results of compared with Pade,

Figure 9. The neutron density as a function of time for three cases of the temperature coefficient of reactivity (a), three cases of
the reciprocal of the thermal capacity of the reactor core (b), and three cases of the initial reactivity (c).

Table 8. The peak of the neutron density with temperature feedback reactivity [20].
Time of the peakThe peak of the neutron density

45ODENAMGAEMTSM45ODENAMGAEMTSM 0 $

28.293
0.954
0.317
0.168
0.099

28.293
0.953
0.317
0.168
0.098

28.293
0.953
0.317
0.168
0.098

8.293
0.953
0.317
0.168
0.098

45.75243
807.8676
8020.795
43020.82
167738.9

45.75240
807.8666
8020.916
43025.93
167856.6

45.75212
807.8672
8020.919
43024.69
167800.4

45.75429
807.8765
8020.848
43021.00
167739.3

0.5
1

1.2
1.5
2
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TSM, GAEM, NAM, DM, and Hansen methods TSM,

TSM, GAEM, NAM, DM, and Hansen methods
[3,20,32]. The results are in good agreement with each
other, so the ODE45 method can be used instead of the
above methods. The quantitative results from ODE45
method, confirm the qualitative results obtained from
Lyapunov exponent method.
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