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ABSTRACT: Australian rainfall is related with numerous key climate predictors namely El-Nino
Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Southern Annular Mode (SAM). Some
studies have tried to discover the effects of these climate predictors on rainfall variability of different
parts of Australia, particularly Western Australia, Queensland and Victoria. Nonetheless, clear asso-
ciation between separate or combined large-scale climate predictors and South Australian spring
rainfall is yet to be established. Past studies showed that maximum rainfall predictability was only
20% considering isolated/individual effects of ENSO and SAM predictors in this region. The present
study further explored these hypotheses by investigating two additional important aspects: investi-
gating the relationship between lagged individual climate predictors with spring rainfall and linked
(multiple combinations of ENSO and SAM) influences of significant lagged-climate indicators on
spring rainfall forecasting using multiple regression (MR) modeling. Three stations were chosen as
case studies for this region. MR models with combined-lagged climate predictors (SOI-SAM based
models) showed better forecast ability in both model calibration and validation periods for all the
stations. Results demonstrated that rainfall predictability significantly increased using combined
climate predictor's influence compared to their individual effect. It was discovered that rainfall pre-
dictability increased up-to 63% using combined climate predictors compared to their single influ-
ences. The maximum attained rainfall predictability for the SOI-SAM based models was 47% for
calibration period that significantly enhanced with combined predictors influence to 97% during
validation period. Therefore, MR analyses delineated the capabilities and influences of remote cli-
mate drivers in forecasting South Australian spring rainfall.
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INTRODUCTION
Rainfall variability is an important phenomenon and

at times severely impacts our agricultural production,
infrastructure as well as on the water resources man-
agement. It is the most studied hydro-climate variables
because of its significance for sustainable water re-
sources management, agricultural activities and eco-
logical management. Global climate change is predicted
to increase this variability which will only exacerbate
these problems. Improved knowledge of expected rain-
falls and subsequent flooding can significantly reduce
the impacts of such floods. The ability to forecast rain-
fall several months or seasons in advance has been a
goal of water resource managers for many decades. Such
forecasting not only would assist in water resource man-
agement decision making, but would also been invalu-

able for disaster management, emergency and evacua-
tion planning. Forecasting rainfall is very essential in
developing a water resource management strategy to
check the balance of future water supply and demand
to ensure proper water supplies to the people. A reli-
able rainfall forecast can be beneficial for the manage-
ment of land and water resources systems (Anwar et
al., 2008; Cuddy et al., 2005; Chiew et al., 2003; Abawi
et al., 2001), particularly in Australia where the hydro-
climatic variability is very high (Peel et al., 2001). For
example, seasonal rainfall forecast might be support-
ive for water managers those who are making opera-
tional decisions on water allocation for competing end
users, and forecasting the future events like rainfall
would help for primary producers or farmers in man-
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aged and to take risk-based decisions for farm and crop
management.

Many researchers have tried to establish the rela-
tionships between large-scale climate drivers and rain-
fall in different parts around the world (Niu, 2012; Grimm,
2011; Shukla et al., 2011; Chattopadhyay et al., 2010;
Kim et al., 2008; Cheng et al., 2004; Yufu et al., 2002).
Australian rainfall is highly variable both in space and
time. The variability of Australian rainfall has been linked
to several dominant large-scale climate predictors. It is
well established that the occurrence of Australian rain-
fall is mostly influenced by several key climatic drivers
based on Sea Surface Temperature (SST) and pressure
differences anomalies originate from the Pacific, Indian
and Antarctic or Southern Oceans. These large scale
climate predictors including the ENSO, IOD and SAM
were chosen as the best rainfall drivers over Australia
based on the past studies such as Chowdhury and
Beecham, 2013; Hasan & Dunn, 2012; Cai et al., 2011;
Kirono et al., 2010; Chowdhury & Beecham, 2010;
Risbey et al., 2009 and Meneghini et al., 2007. ENSO
which is explained by the two different types of indica-
tors: the Southern Oscillation Index (SOI) is character-
ized by Sea Level Pressure (SLP) anomalies between
Tahiti and Darwin in the tropical western Pacific and
the Sea Surface Temperature (SST) anomalies in the
equatorial Pacific Ocean. The variation measured in
average SST anomaly in the tropical eastern Pacific
Ocean region from 50N-50S and 1500W-900W which is
called Nino3, the region from 50N-50S and 1700W-
1200W that indicates Nino3.4 and from 50N-50S and
1600E-1500W indicates Nino4 (Risbey et al., 2009;
Suppiah, 2004; Wolter & Timlin, 1998; Drosdowsky,
1993; Nicholls, 1989; McBride and Nicholls, 1983), the
Indian Ocean Dipole (IOD) defined as a coupled ocean-
atmosphere phenomenon in the equatorial Indian Ocean
also known as the SST gradient between Indonesia
and the central Indian Ocean (Saji & Yamagata, 2003;
Saji et al., 1999), and the Southern Annular Mode (SAM)
explains the dominant mode of rainfall variability in at-
mospheric circulation of the Southern Hemisphere land
masses (Hendon et al., 2007; Cai & Cowan, 2006; Th-
ompson & Solomon, 2002; Visbeck & Hall, 2004).

A number of researches in different parts of Aus-
tralia tried to find out the relationship between the cli-
mate drivers and Australian rainfalls. Some of them cov-
ering the whole of Australia are Kirono et al., 2010;
Risbey et al., 2009; Meneghini et al., 2007; Cai et al.,
2001; Power et al., 1999; Drosdowsky, 1993; McBride &
Nicholls, 1983, while the others are more concentrated
on a specific region like South West Western Australia
(England et al., 2006; Ummenhofer et al., 2008), South
Australia (Nicholls, 2010; Evans et al., 2009), South East
Australia and East Australia (Murphy and Timbal, 2008;

Verdon et al., 2004). South Australia is one of the re-
gions that so far did not show any good correlation of
its rainfall and climate indices. According to Risbey et
al. (2009) the South Australian rainfall predictability was
limited to 20% considering individual effects of ENSO
and SAM climate predictors. The more recent re-
searches were conducted specifically on South Aus-
tralian rainfall predictions including works of
Chowdhury & Beecham (2013); Cai et al. (2011), which
analyzed the impact of climate indices considering con-
current & separate role of single/isolate climate driver
at a time. Furthermore the climate drivers were limited
to ENSO and IOD only. However, a strong relationship
between simultaneous/concurrent climate driver and
rainfall does not principally prove that there also exists
lagged relationship (Schepen et al., 2012), which is most
important for future rainfall predictions.

Very limited studies have focused on the lagged
climate predictors and rainfall relationship other than
South Australia such as, Hasan & Dunn, 2012; Abbot
& Marohasy, 2012; Schepen et al., 2012; Kirono et al.,
2010; Drosdowsky & Chambers, 2001. Hasan & Dunn
(2012) investigated the separate correlation of climate
indices with one month lag on Australian rainfall and
showed that rainfall is significantly influenced by ENSO.
Kirono et al (2010) is one of the few available publica-
tions who considered the maximum of two-month aver-
aged lag relationship of climate indices and Australian
rainfall. Abbot & Marohasy (2012) also used past val-
ues of climate indices for forecasting of rainfall in
Queensland; however the climate indices they used
was limited to generated from the Pacific Ocean and
Indian Ocean lagged by 2 months. To the best of our
knowledge, no study has been considered more than
2-months lagged-time effects of the climate indices to
find the rainfall predictability. Also, previous research
has not considered finding a multiple combination of
these key climate indicators at a time in order to fore-
cast future rainfall. These two important facts may be
the reasons why the studies conducted on South Aus-
tralia did not show good correlation among rainfall and
climate indices. In many cases the relationships of cli-
mate predictors and rainfalls are much more complex
and single predictors alone are unable to predict rain-
fall accurately. Such combined relationship with lagged-
time effects of climate predictors has not previously
been attempted in South Australia.

       According to Keim & Verdon-Kidd (2009) south
Australian rainfall variability is not determined by a
single climate driver itself. Due to the geographical lo-
cation of South Australia, single effects of ENSO and
IOD are not much strong; the SAM climate driver might
have much influence on rainfall variability in this re-
gion. Also, previous researches did not consider
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lagged-time effects as well as multiple combinations
(ENSO-SAM combined sets) of these key climate indi-
cators at a time in assessing the rainfall predictabilities.
These two important facts might be the reasons why
the studies conducted on South Australia did not show
good correlation. Therefore, this study would be the
extension of the works conducted by Chowdhury &
Beecham (2013); Cai et al., (2011) and Risbey et al. (2009).
The outputs of the model were intended to be deter-
ministic forecast means that can explore with quantita-
tive measures which opposed to probabilistic forecast
which can give results only above or below median
value.

MATERIALS & METHODS
The historical monthly rainfall data in millimetres

from January 1957 to December 2013 were obtained from
the Australian Bureau of Meteorology website
(www.bom.gov.au/climate/data/). The climate indices
data were obtained from Climate Explorer website (http:/
/climexp.knmi.nl/). Three rainfall stations were chosen
as a case study from South Australia. The stations are
Tarcoola (TC), Mount Eba (ME) and Millers Creek (MC)
and the locations are shown in fig. 1. The stations were
chosen based on their recorded length of data and the
stations also had very few (less than 0.50%) missing
value. To facilitate the analysis, the missing values were
replaced by series means. Fig. 2 shows the intensity of
ENSO and SAM during the study period. In general
the positive phases of SOI (La Nina) brings more rain-
fall to the major parts of Australia, while the negative
phases of SOI are more associated with drought events.
Multiple Regression (MR) modelling was used to
achieve the goal of this study. MR analysis is a linear
statistical modeling technique that allows finding out

Fig. 1. Map showing the study area with selected locations (Source: www.bom.gov.au)

the best relationship between a dependent variable
(predicant) and several other independent variables
(predictor) through the least square method. The gen-
eral equation of a multiple regression model can be ex-
pressed as follows (Montgomery et al., 2001).

Where, Y is the dependent variable (spring rainfall
in this study), X

1
and X

2
 are 1st and 2nd independent

variables respectively (lagged ENSO and SAM indica-
tors), b

1
 and b

2
 are the model coefficients of first and

second  independent variable respectively, b
0
 is con-

stant, and c is  the error. The verification of
multicollinearity among the predictors is an important
stage in MR modeling. Multicollinearity occurs when
the predictors are highly correlated which will result in
dramatic change in parameter estimates in response to
small changes in the data or the model. Tolerance (T)
and Variance inflation factor (VIF) are the indicators
used to identify the multicollinearity among the
predictors.

Where, R2 is the coefficient of multiple determinations,
SST equal to the total sum of squares, SSR equals the
regression sum of squares and SSE is the error sum of
squares.  Lin (2008) identified that the value of toler-
ance less than 0.20-0.10, meaning that the VIF values
greater than 5-10 indicates a multicollinearity problem
among the predictors. In conducting the MR modelling
it is very important to investigate for the independency
of the residuals, meaning that no autocorrelation exists

Y = b0 +b1X1 + b2X2 + c (1)

(2)



4

Investigating the influence of climate drivers

Fig. 2. The intensity of climate indices during the study period; ENSO indicator (SOI, Nino3, Nino3.4 and
Nino4) and SAM (Southern Annular Mode) index

among the residuals and the model has fit the data well
enough. If any autocorrelation exists among the residu-
als then the models fails to capture all the relationship
between the inputs and the output. So, investigating
the residual pattern is another vital performance of
evaluating the goodness-of-fit of the prediction mod-
els. Durbin-Watson test statistics (D-W) is widely used
criterion to evaluate for serial correlations between re-
siduals or errors. This test statistics have a values range
from 0 to 4. Field (2009) specified that the D-W values
less than 1 or greater than 3 are definitely the matter of
concern of autocorrelation among the residuals. The
SPSS statistical software was used to accomplish the
single and multiple regression correlation analysis. The
correlations which were statistically significant at 1%
and 5% level were considered in this study. The data
were divided into two sets, years from 1957-2009 were

used for calibration of the models. Later four years from
2010-2013 were selected as the out-of-sample test set
to evaluate the generalization ability of the developed
forecasting models and all the model evaluation pa-
rameters were computed separately for both model cali-
bration and validation period. The performances of MR
models were evaluated by adopting several error indi-
ces and other important statistical performance test
parameters which are widely used for the evaluation of
prediction model. To evaluate data agreement or dis-
agreement, some statistical methods are widely used.
These includes: (i) Root mean square error (RMSE), (ii)
Mean absolute error (MAE), (iii) Mean Absolute Per-
centage Error (MAPE%), (iv) Relative Error (RE), (v)
Pearson correlation coefficients (R), (vi) Willmott index
of agreement (d), (vii) Variance inflation factor (VIF),
(viii) Durbin-Watson statistics (D-W), and (ix) F-test
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and t-test. RMSE and MAE indices are very important
which is called the "best" overall measures of model
performance among other test because they precisely
indicate the average difference in the same units of
observations and modeled data (Fox, 1981). Although
the RMSE and MAE values of 0 indicate a perfect fit
which is almost impossible in reality, so lower the RMSE
the better the model performance (Singh et al., 2004).
The mean absolute Percent error (MAPE) is widely used
to validate the forecast models. The closer the MAPE
values to 0.0, the better the forecasting results (Saigal
& Mehrotra, 2012). MAPE gives very meaningful re-
sults only if all observations (Oi) values are positive
(Ramanathan, 1995). RE measures the relative size of
the error in the modeled values with respect to observed
values. RE value is zero for an ideal case that indicates
the developed model is perfect, which is not possible
in practical case. However, lesser RE value showed the
better performance by the developed model. To assess
the goodness of the model to fit the observation data,
the Pearson multiple correlation coefficients (R) are
used. Those traditional measures are not always ideal
for assessing the data agreement or disagreement. For
example, R merely indicates the linear co-variation be-
tween two datasets rather than the actual difference;
RMSE and MAE are dimensional measures of disagree-
ment, thus are not independent of data scale and unit.
To overcome the shortcomings accompanying with R,
MAE, and RMSE; Willmott (1981, 1982) developed the
index of agreement (d), which was used for further as-
sessment and validating the developed forecasting
models. The optimum value of d is 1, which means that
all the modeled values fit the observations (Willmott
1981, 1982). Moreover, Willmott's measure is more ap-
propriate for the investigation of model validation,
where observed and model-predicted values need to
be compared. The index of agreement (d) expressed as:

Where, Pi is model predicted value of the ith observa-
tion and Oi is observed value of ith observation.

RESULTS & DISCUSSION
For evaluating the rainfall predictability, single/in-

dividual correlations between south Australian spring 
rainfall(S-O-N) at any year 'n' with lagged monthly val- 
ues of ENSO and SAM climate predictors (Nino3, 
Nino4, Nino3.4 and SOI were chosen as ENSO 
predictors) from Decn-1-Augn ('n' being the year for 
which spring rainfall is predicted) were investigated. 
The correlations of rainfall with single predictor within 
the limits of statistical significance level and 
multicollinearity among the predictors were chosen for 
further MR analysis. It was observed that the maximum 
three months (i.e. June, July and August) lagged SOI, 
Nino34 and Nino4 climate predictors has significant 
correlation with spring rainfall, whereas maximum five 
months of significant lagged relation was found with 
SAM predictor. Results also demonstrated that the 
highest and significant correlations were achieved 
between spring rainfall and single climate indices with 
maximum of three month lagged for ENSO and five 
months lagged for SAM predictors. Moreover there is 
no further significant relationship more than lag five for 
South Australia. Correlations of different lagged-time 
effects of individual climate predictors and SA spring 
rainfall are presented in Table 1.

Statistical performances showed good consistency 
with the previous findings (Chowdhury & Beecham, 
2013; Cai et al., 2011; Nicholls, 2010; Menegnini et al., 
2007). It is seen that Millers Creek is showing better 
correlations of SOI and SAM than other two stations. 
In Mount Eba both Nino34 as well as Nino4 predictors 
are showing better correlations with spring rainfall com-
pared to Tarcoola and Millers Creek. Spring rainfall is 
significantly influenced by SOI, particularly in July and 
August, but its influence is reduced in June. Moreover, 
the spring rainfall is also found significantly correlated 
by SAM driver in April in this region. The other phases

(3)

Table 1. Correlations of different lagged time effects of single climate predictors with spring rainfall

Station Lagged climate indices
SAMApr SOIJ ul SOIAu g Nino3.4J un Nino3.4Ju l Nino3.4Au g Nino4Ju n Nino4Jul Nino4A ug

Tarcoola 0.28* --- 0.33* -0.30* -0.31* --- -0.32* -0.37** -0.31*

Mount

Eba

0.29* 0.30* --- -0.33* -0.36** -0.32* -0.36** -0.42* * -0.39* *

Millers

Creek

0.33* 0.35* --- -0.35* -0.35* -0.32* -0.32* -0.37** -0.41* *

*: correlations are statistically significant at the 1% level, **: correlations are statistically significant at the 5% level
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of ENSO that is Nino34 and Nino4 having much influ-
ence compared to other climate predictors. Subse-
quently, the combined lagged-predictor model sets were
organized based on the single and separate significant
lagged relationship of ENSO and SAM climate predic-
tors obtained from Table 1. ENSO-SAM based com-
bined predictor input sets were then used for further
assessment in multiple regression modelling. The MR
model input sets with the combinations of combined
significant lagged climate predictors are shown in Table
2. The developed combined predictors model sets in-
cludes maximum of nine months lagged ENSO-SAM
combined sets which was further used for MR model-
ing, the multiple climate indices sets also ensure that
there is no agreement among the predictor variables on
which the indices can better represent this ocean-at-
mospheric phenomenon. MR modeling was then per-
formed in order to investigate the predictability of spring
rainfall using significant combined-lagged relationships

Table 2. MR model input sets with the combinations of combined significant lagged climate predictors

Station SOIx–SAMy model sets Nino3.4x–SAMy model sets Nino4x–SAMy model sets

Tarcoola Aug-Apr Jun-Apr, Jul-Apr Jun-Apr, Jul-Apr, Aug-Apr

Mount Eba Jul-Apr Jun-Apr, Jul-Apr, Aug-Apr Jun-Apr, Jul-Apr, Aug-Apr

Millers
Creek

Jul-Apr Jun-Apr, Jul-Apr, Aug-Apr Jun-Apr, Jul-Apr, Aug-Apr

*x and y are the lagged months of the different climate predictors

of SOI-SAM, Nino34-SAM and Nino4-SAM predictors
as shown in Table 2.

F-test and t-test statistics has conducted to evalu-
ate the significance level of MR models and regression
coefficients. Among the developed predicted models
the ones that follow all the limits of statistical signifi-
cance level were selected, models having lower error
were chosen as the best model for rainfall forecasting.
Table 3 shows the summary of the best multiple regres-
sion models developed among the three stations men-
tioning the values of the multiple regression coeffi-
cients, VIF and Durbin-Watson statistics (D-W) of the
best models. VIF indicators for the selected models are
one and thus there is no multicollinearity problems ex-
ist among the predictors. Moreover, D-W test statis-
tics fall around a value of two which elucidate that the
residuals of the predicted models have no
autocorrelation and they are independent that confirmed
the goodness-of-fit of the models.

Table 3. Summary of the best developed MR models (statistically significant at least 5% levels are shown)

Station Models C oefficient VIF DW
Const. SO IJ un SOI Jul SO IA ug SA MApr

Tarcoola SO IA ug-SAMA pr 16.19 --- --- 4.64 1.95 1.00 1.82
Mount Eba SOIJ ul- SA MApr 11.68 --- 3.36 --- 1.50 1.00 1.84

Millers Creek SOIJ ul- SA MApr 10.59 --- 3.97 --- 1.74 1.00 1.89

Table 4. Performance of the developed MR models during calibration and validation period

Station Models Results for calibration period
(1957-2009)

Results for model validation period
(2010-2013)

R RMSE MAE RE MAPE
(%)

R RMSE MAE RE MAPE
(%)

Tarcoola SOIAu g-
SAMAp r

0.44 10.06 7.91 0.47 0.90 0.94 11.99 7.91 0.78 1.57

Mount
Eba

SOIJul-
SAMAp r

0.40 8.24 6.43 0.55 1.05 0.83 12.07 10.17 0.60 1.20

Millers
Creek

SOIJul-
SAMAp r

0.47 8.00 6.16 0.58 1.11 0.97 8.33 6.21 0.57 1.14
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The performances evaluation statistics such as
RMSE, MAE, MAPE (%), RE, R and d of the best MR
models for the three regions are shown in table 4. SOI-
SAM based models demonstrated statistically signifi-
cant with better predicting ability for south Australian
spring rainfall, with R= 0.44 for Tarcoola, 0.40 for Mount
Eba and 0.47 for Millers Creek. After calibrating the
models an out-of-sample tests were carried out on the
years from 2010-2013 to evaluate the future rainfall pre-
dicting ability of the developed models. MR model in
validation stage is showing better generalization ability
for all stations; however the ability of MR models to
forecast out-of-sample sets improves significantly for
Tarcoola with R= 0.97. The RMSE, MAE and RE values
of the testing sets for MR models are compatible in
compared to the calibration stage. The MAPE value
varies 0.90 to1.11% in calibration, and 1.14 to 1.57% in
validation stage, which are very low and compatible
compared to the calibration stage indicating that the
models are capable of forecasting spring rainfall with
better accuracy.

It can be seen from the table 4 that after combining
the climate predictors, it significantly increased the
rainfall predictability up to 97% for Millers Creek with
SOI

Jul
-SAM

Apr
 combination of predictors. The best one

among the three predicted models considering the cor-
relation coefficient, statistical performance parameters
and lower error is shown by the following equation 4:

Fig. 3 shows the best developed MR model's time
series outputs for the three stations. Using lagged cli-
mate indices as potential predictors, multiple regres-
sions were able to model the observed rainfall in a way
that the models follow the pattern of rainfalls several
years in advance with very good accuracy. Willmott
(1981, 1982) developed an additional criteria, an index
of agreement (d), which were used further assessment
of the model performance especially for validating the
developed forecasting models. While Pearson correla-
tion shows how well the models are following the trend
of the actual observations, Willmott index of agreement

"d" shows how well the models are fitting the observed
data series; the value of "d" is close to 1 indicates the
better fitted model with higher model accuracy.

Table 5 shows the 'd' values for the three stations.
Mount Eba is having higher d value in validation sets
than other regions however the error values are bit
higher than other two stations. All the 'd' values in the
validation/test sets are nearly 0.50 confirming that the
SOI-SAM based combined climate predictor models
are capable of forecasting south Australian spring rain-
fall with better accuracy.

To further evaluate the ability of MR models, the
peaks and trough values of the MR predicted spring
rainfall and actual spring rainfall were cross plotted in
fig. 4, where upper values with square boxes are rep-
resents peaks and lower values are troughs. Table 6
shows the correlation coefficient values for the model
peaks and troughs. It can be seen from the table 6
that MR models are able to capture the peaks with a
correlation of 0.59 for Tarcoola, 0.36 for Mount Eba
and 0.51 for Millers Creek. Other than Mount Eba with
a weak correlation of 0.21, Tarcoola and Millers Creek
models were able to forecast the troughs with a corre-
lation of R = 0.36 and 0.33 respectively. In general, the
models were able to forecast the peaks much better
than the trough values with correlations of R = 0.36 to
0.59.

The simulation results, various performance evalu-
ation parameters as well as statistical significances dem-
onstrated that the developed SOI-SAM based com-
bined climate predictors' models are capable of fore-
casting South Australian spring rainfall. The developed
MR model in general, showing an underestimation of
the actual observed data series. To further asses this
matter mean and standard deviation of the models were
evaluated which is shown in the Table 7. It is evident
from table 7 that the models have a mean very close to
the mean of the series however the standard deviation
of the models are lower indicating an underestimation
of the observations. Moreover, the models in valida-
tion period are showing a bit overestimation of the
actual observation that means the developed SOI-

Table 5. Index of agreement (d) values for the MR models in calibration and validation stage

Station Models d (calibration
period)

d (validation
period)

Tarcoola SOIAu g-SAMApr 0.55 0.51

Mount Eba SOIJul- SAMApr 0.50 0.55

Millers Creek SOIJul- SAMApr 0.58 0.49

(4)
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Fig. 4. Performance evaluation of the developed MR models in regards to the peaks and troughs

Fig. 3. Comparison of MR model's output for rainfall forecasting for the three stations (1957-2009: clibration
and 2010-2013: validation period)



9

Int. J. Environ. Res., 10(1):1-12, Winter 2016

Table 7. Mean and Standard deviation of the models and observations

Station Mean Standard Deviation
Observation Model Observation Model

Tarcoola 16.93 16.93 11.31 4.97

Mount Eba 11.75 11.75 9.09 3.67

Millers Creek 10.67 10.67 9.16 4.30

Table 6. Correlation coefficients of the MR models for the peaks and troughs

Station Models Peak Trough

Tarcoola SOIAu g-SAMApr 0.59 0.36

Mount Eba SOIJul- SAMApr 0.36 0.21

Millers Creek SOIJul- SAMApr 0.51 0.33

SAM based model with combined climate drivers is
capable of predicting spring rainfall; however other cli-
mate influence may also be involved and which would
be taken into account for more accurate predictions in
future studies.

CONCLUSION
The emphasis of this study has been concentrated

on investigating the influences of remote climate driv-
ers such as the effects of El Nino Southern Oscillation
(ENSO) and Southern Annular Mode (SAM) as poten-
tial predictors, more precisely study focused on inves-
tigating the influences of single and combined lagged
ENSO and SAM climate predictors on South Austra-
lian spring rainfall prediction. In addition, a compara-
tive study was made for finding rainfall predictability
between individual as well as combined lagged climate
models. Three regions (Tarcoola, Mount Eba and Mill-
ers Creek) from South Australia were chosen as a case
study. The correlations of rainfall with single predictor
within the limits of statistical significance level and
multicollinearity among the predictors were chosen for
further MR analysis. It was observed that the maximum
three months (i.e. June, July and August) lagged SOI,
Nino3.4 and Nino4 climate predictors has significant
correlation with spring rainfall, whereas maximum five
months of significant lagged relation was found with
SAM predictor. Results also demonstrated that the
highest and significant correlations were achieved be-
tween South Australian spring rainfall and single cli-
mate indices with maximum of three month lagged for
ENSO and five months lagged for SAM predictors.
Millers Creek is showing better correlations of SOI and
SAM than other two stations. In Mount Eba both

Nino3.4 as well as Nino4 predictors is showing better
correlations with spring rainfall compared to Tarcoola
and Millers Creek. Spring rainfall is significantly influ-
enced by SOI, particularly in July and August, but its
influence is reduced in June. Moreover, the spring rain-
fall is also found significantly correlated by SAM driver
in April in this region. The other phases of ENSO that is
Nino3.4 and Nino4 having much influence compared to
other climate predictors.

Furthermore, the combinations of significant
lagged predictor variables were examined in MR mod-
eling to investigate the predictability of spring rain-
fall. The errors of the testing/validation sets for mul-
tiple regression models are generally lower compared
to the calibration sets. The RMSE, MAE and RE val-
ues of the testing sets for the MR models are compat-
ible in compared to the calibration stage. The MAPE
value varies 0.90 to1.11% in calibration stage, and 1.14
to 1.57% in validation stage, which are very low and
compatible compared to the calibration stage indicat-
ing that the models are capable of forecasting spring
rainfall with better accuracy. Mount Eba is having
higher index of agreement value (d) in validation sets
than other regions however the error values are bit
higher than other two stations. All the 'd' values in the
validation/test sets are nearly 0.50 confirming that the
SOI-SAM based combined climate predictor models
are capable of predicting south Australian spring rain-
fall. Results demonstrated that rainfall predictability
significantly increased using combined climate pre-
dictors compared to predictability with individual ef-
fects of predictors. The attained combined model
predictabilities are 44% for Tarcoola, 40% for Mount
Eba and 47% for Millers Creek during calibration pe-
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riod. The predictabilities were significantly enhanced
during model validation; the results are 94% for
Tarcoola, 83% for Mount Eba and 97% for Millers
Creek. Therefore, MR model discovered that combined
lagged climate predictors significantly increased the
rainfall forecasting ability up to 97% with SOI

Jul
-

SAM
Apr

 combination in forecast out-of-sample test
sets for Millers Creek. However, these predictabilities
were limited to 33%, 30% and 34% respectively con-
sidering the influences of single/individual climate
predictors. In general, the influences of SOI-SAM
based combined lagged-climate predictors' models
showed good generalization ability for all the three
stations. Therefore, SOI-SAM based combined cli-
mate predictor's influences demonstrated statistically
significant relationships with better forecasting abil-
ity for south Australian spring rainfall. The statistical
analyses outlined the capabilities of combined-lagged
climate predictors in compared with their single/indi-
vidual influences for forecasting spring rainfall using
multiple regressions modeling. Moreover, further in-
vestigation of this method is necessary with other
rainfall stations in this region to suggest generalize
model for rainfall forecasting which will be covered in
future studies.
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