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Abstract
The aim of this paper is to propose some diagnostic methods in linear ridge

measurement error models with stochastic linear restrictions using the corrected
likelihood. Based on the bias-corrected estimation of model parameters, diagnostic
measures are developed to identify outlying and influential observations. In addition, we
derive the corrected score test statistic for outliers detection based on mean shift outlier
models. The analogues of Cook's distance and likelihood distance are proposed to
determine influential observations based on case deletion model. A parametric bootstrap
procedure is used to obtain empirical distributions of the test statistics and a simulation
study has been given to show the performance of the score test statistic. Finally, the
proposed diagnostic procedures are illustrated on a numerical example to show the
theoretical results.
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Introduction
One of the basic assumptions in regression analysis is

that all the observations are correctly observed.
However, in many applications the observations are
recorded with measurement errors. The presence of
measurement errors in the observations violates the
essential properties of estimators. An important issue in
the area of measurement errors is to find the consistent
estimators of the parameters. Several approaches have
been developed for the measurement error problems
(see, e.g., Cheng and Van Ness [1], Fuller [2] for more
details). In order to correct the effects of measurement

error on parameters estimation, Nakamura [3]
considered an approach based on the correction of score
function. This approach makes it possible to do
inference as well as estimation of parameters without
additional assumption.

Another standard assumption in the linear regression
analysis is that all the explanatory variables are linearly
independent. When this assumption is violated and the
columns of the regression matrix are nearly dependent,
the problem of collinearity enters into the data and the
existence of collinearity in the linear regression model
can lead to the method of least squares generally
produces poor estimates of parameters. In order to
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resolve this problem, several approaches have been
suggested, among them, the ridge regression estimator
was proposed by Hoerl and Kennard [4] to overcome
the problem of collinearity for the estimation of
regression parameters (see Belsley et al. [5], Mason and
Gunst [6] and Belsley [7] for more details).

Another popular technique to overcome the
collinearity problem is to consider parameter estimation
in addition to the sample information such as some
exact or stochastic linear restrictions on the unknown
parameters (Rao et al. [8]). When such prior information
can be expressed in the form of exact linear restrictions
binding the regression coefficients, the restricted least
squares estimator is used. The restricted least squares
estimator is unbiased, consistent, satisfies the given
linear restrictions on regression coefficients and has
smaller variability around mean than the ordinary least
square estimator when there is no measurement error in
the data (see, e.g. Toutenburg [9], Rao et al. [8]). When
prior information comes to stochastic linear restrictions,
Durbin [10], Theil and Goldberger [11] and Theil [12]
proposed the ordinary mixed estimator by combing the
sample model with stochastic linear restrictions (see,
e.g., Toutenburg [9]; Rao et al. [8], for more details).
Sarkar [13] introduced a new restricted estimator by
combining the restricted least square estimator with
ordinary ridge estimator. Kaciranlar et al. [14]
compared the estimator introduced by Sarkar [13] and
the modified ridge regression estimator based on prior
information proposed by Swindel [15]. Yalian and Yang
[16] derived the stochastic restricted ridge estimator. He
and Wu [17] proposed a new estimator to combat the
collinearity in the linear model when there were
stochastic linear restrictions on the regression
coefficients. Wu and Liu [18] considered several
estimators for estimating the stochastic restricted ridge
regression estimators. Alkhamisi and MacNeill [19]
derived the necessary and sufficient conditions for
superiority of the restricted ridge estimator over the
restricted least squares estimator by trace of the mean
square error criterion. In this paper an attempt is made
to find ridge estimators in measurement error models
with stochastic linear restrictions using the appropriate
corrected log-likelihood of Nakamura [3].

Outliers and influential data are observations that
appear inconsistent with the other observations of a data
set and can have more influence on the different aspects
of the statistical analysis. Therefore, it is important to
consider influential points in data analysis. In order to
detect these kinds of observations, various methods,
including case deletion model (CDM) and mean shift
outlier model (MSOM), have been proposed in the
literature (Cook and Weisberg, [20]). Wang [21]

discussed the linear regression model with the random
constraints and showed that the CDM is equivalent to
the MSOM based on general least square estimate. In
measurement error models, Kelly [22] and Wellman and
Gunst [23] studied diagnostics methods. Zhong et al.
[24] considered CDM and MSOM, using the corrected
log-likelihood of Nakamura [3]. Zare and Rasekh [25]
obtained diagnostic methods, including MSOM, for
linear mixed measurement error models based on the
corrected score function of Nakamura [3]. Babadi et al.
[26] studied a variance shift model for a linear
measurement error model using the corrected likelihood
of Nakamura [3].

Walker and Birch [27] studied the influence of
observations in ridge regression by case deletion, and
the dependence of several influence measures derived
from case deletion on the ridge parameter was studied.
Rasekh and Mohtashami [28] extended results from
Rasekh and Fieller [29] and derived influence function
of ridge estimate in measurement error models using
case deletion. Rasekh [30] assessed the local influence
of observations on the ridge estimate in the
measurement error models.

The plan of this paper is as follows. In preliminary
section the measurement error model, the needed
notations and some preliminaries are presented. The
main results of the paper, including the stochastic
restricted ridge estimation based on the corrected log-
likelihood of Nakamura [3] and it’s properties, the
diagnostic models and the corrected score test for
detecting outliers are proposed in the main results
section. Furthermore, case deletion diagnostics for
detecting influential points and a parametric bootstrap
procedure for generating the empirical distribution of
the given statistics are developed. Finally, a simulation
study and an illustrative example of the realdata are
performed.

Prelimaniers
Consider the linear measurement error model:

(1) ,
,

 
 

y Z
X Z

 


where 1 2( , ,..., )ny y y y is an 1n  vector of

response variables,  is a 1p  vector of unknown
parameters, Z is an n p matrix of unobservable
values of explanatory variables which can be observed
through the matrix X with the measurement error

 1 2, ,..., ,n     where i , 1,...,i n are 1p
uncorrelated random vectors with ( )iE   0 and
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( ) iVar   . We assume that the common variance
 of measurement errors associated with the
explanatory variables is known. Also  is an 1n 
vector of unobservable random errors with ( )E  0
and 2( )  nVar  I . We assume that  and  are
mutually independent and we denote the ith rows of
matrices Z and X with iz and ix , respectively. For
model (1), the log-likelihood and the appropriate
corrected log-likelihood are given by

 

 

2 2
2

* 2 2
2

1( , , , ) log(2 ) ( ) ( ) ,
2 2

1( , , , ) log(2 ) ( ) ( ) .
2 2

nl

nl n

 


 


    

      

  

    

Z y y Z y Z

X y y X y X 

Let *E denotes the conditional mean with respect to
X given y . The corrected log-likelihood

* 2( , , , )l  X y should satisfy

* * 2( , , , ) ( , , , )E l l    
   

 
 

X y Z y

and
* * 2 2

2 2( , , , ) ( , , , )E l l 
 
      

 X y Z y .

The corrected score estimates of model (1) will be
obtained with differentiating from * 2( , , , )l  X y
with respect to the  and 2 and are given by

1ˆ ( )   n X X X y and 2 1 ˆ ˆ ˆ ˆˆ ( ) ( ) n
n

        y X y X   

(see, Nakamura [3]).

Results
Measurement error models with stochastic linear
restrictions

We assume that the vector of parameters  is subject
to the following stochastic linear restrictions:

(2) , r R e

where r is a 1q  observable random vector, R is
a q p matrix of known constants of rank q for
q p , e is a 1q  error vector with ( )E  0e and

2( ) Var e W , W is a positive definite matrix of known
elements. Furthermore, we assume that random vector
e is independent of  and  . The log-likelihood and
the appropriate corrected log-likelihood for model (1)
with stochastic linear restrictions (2) are given by

2 2

1
2

1( , , , , ) log(2 ) log
2 2
1                             ( ) ( ) ( ) ( ) ,

2

Nl  




  

        



   

Z y r W

y Z y Z r R W r R

* 2 2

1
2

1( , , , , ) log(2 ) log
2 2

1                       ( ) ( ) ( ) ( )
2

Nl

n

 




  

          

X y r W

y X y X r R W r R



     

respectiveely, where, N n q  , and these have
the following properties:

* 2
* ( , , , , ) ( , , , , )l lE     

   

 
 

X y r Z y r

* 2 2
*

2 2
( , , , , ) ( , , , , )l lE  

 
  

   

 X y r Z y r .

The corrected score estimates of  and 2 for
model (1) with stochastic linear restrictions (2) will be
obtained with differentiating from * 2( , , , , )l  X y r
with respect to the  and 2 . We call these

estimators, denoted by ˆ
r and 2ˆ r , respectively, as the

mixed estimators. Then we have

1 1 1ˆ ( ) ( )        r n X X R W R X y R W r
2 1

1 1

1 ˆ ˆ ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( )

1 ˆ ˆ     = .

 

 

          

         

r r r r r r r

r r

n
N

N

y X y X r R W r R

y y X y R W r r W r

     

 



Ridge estimation under the stochastic linear
restrictions

To reduce the effect of collinearity, we propose the
ridge estimator of  under the stochastic linear
restrictions. We consider the augmented model

(3)  u U  
in which

1 1,    ,  

     
          
         0

m m p m

pk

 




y X
u r U R e

I



for m = n+q+ p , and  is a random vector with
( )E  0 and

2 2 2( ) ( ) , ,     n pVar BlockDiag   I W I .

Here, the parameter 0k denotes the ridge parameter,



Vol. 26 No. 4 Autumn 2015 F. Ghapani, et al. J. Sci. I. R. Iran

358

 is an error vector with ( )  0E  and
2( )  pVar  I . For model (3), the appropriate

corrected log- likelihood is given by

* 2 2

1
2

1( , , , , , ) log(2 ) log
2 2

1                        ( ) ( ) ( ) ( ) .
2

ml k

n k

 




  

            



       

X y r W

y X y X r R W r R

The corrected score estimates of  and 2 will be
obtained with differentiating from the corrected log-
likelihood of model (3) with respect to the  and 2 .
We call these estimators as mixed ridge estimators and
are denoted by ˆ ( )r k and 2ˆ ( )r k , respectively.
Then we obtain

(4)
1 1 1

2 1 1

ˆ ( ) ( ) ( ),   0,
1 ˆ ˆˆ ( ) ( ) ( ) .

  

 

        

          

r p

r r r

k n k k

k k k
m



 

X X R W R I X y R W r

y y X y R W r r W r



Using matrix results (see, Rao et al. [8], Theorem
A.18), we can write

11 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )r p pk k n k I n k r k
                   X X I R R X X I R R  ,

where 1ˆ ( ) ( )pk n k     X X I X y .

Furthermore, as k tends to zero, ˆ ( )r k approaches
to the estimator ˆ

r .

Asymptotic properties of the ridge estimator
The exact distribution and finite sample properties of

the corrected score function estimates shown in (4) are
difficult to derive. So we propose to employ the large
sample asymptotic approximation theory to study the
asymptotic distribution of the estimators. We assume
that all the derivatives related to the log-likelihood exist
and the parameter  is identifiable. We also assume
that as n tends to infinity, the limits of

1 1( )n   Z Z R W R and 1 1( )pn k   Z Z R W R I exist

and 0E denotes the global expectation taken at the true

value 0 .

Theorem 1: ˆ ( )r k has asymptotic normal

distribution with mean 1
0 0k
 M M and covariance

matrix 2 1
0

ˆ ( ) ( )r k k kAV ar k        S M B M M ,

where 0 is the true value of  ,

1 1( )k pk    M Z Z R W R I ,
1 1

0
   M Z Z R W R and

2
0 0( )   nB Z Z   .

Proof: Since ( )E n  X X Z Z  , by Fung et al.
[31] we have

(5)
1
2( )pn n   OX X Z Z  .

Then we can write

(6)
1

1 1 1 1 2( ) ( ) ( )p p pn k n k n
            OX X R W R I Z Z R W R I 

It follows from (4) and (6) that

(7)
11 1

1 1 12 2

11 1
11 1 12 2

1 1
11 12 2

ˆ ( ) ( ) ( ) ( )

              ( ) ( ) ( )

              ( ) ( ) (

r p p

p p p

p p p

n k n k n n

n n k n

n n k n


   


   

  

 
        

 

 
           

 
 

         
 

O

O

O

 Z Z R W R I X y R W r

I Z Z R W R I X y R W r

I Z Z R W R I X y 1 ),R W r

where
11 1

2 2( ) ( )p p p pn n


  
   

 
O OI I is obtained

from Taylor series expansion. Moreover, since the limit
of 1 1( )pn k    C Z Z R W R I exists, then (7) can
be written as

(8)
1

1 1 2ˆ ( ) ( ),r pn k n
   O  C C

where
1

12 ( )
   n X y R W r is asymptotically

normal (Fung et al. [31]). It follows from
1 1

0 0( ) ( )E r      X y R W Z Z R W R  that
1

12
0 0( ) ( )E n

    Z Z R W R and by Fung et al.
[31], we can write

1
1 1 1 1 2

0( ) ( ) ( )pn n n
         X y R W r Z Z R W R O .

Therefore, we have
1 1

0( ) (1),pn n       Z Z R W R O then (8) can be

written as
(9) 1ˆ ( ) (1).r pn k   C O

Consequently, 1
0 0

ˆ ( )r kn k   M M  has
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asymptotically normal distribution with zero mean.
Furthermore, from (9) we have

1 1ˆ ( ) ( )rAVar n k Var     C C . The variance of 
can be obtained from

1 1 1

( ) ( ) ( )

           ( ) ( ),

Var E Var Var E

n E n Var  

        
    

 

 

   y y

y y

y y

y y Z y R W r

where E y and var y denote the expectation and
variance with respect to the random vector

( , )  y y r . Since 2
0 0 0( )E y y n     Z Z and

1 2 1
0( )Var    y Z y R W r M , therefore,

1 2 1
0( ) ( )Var n   B M whose limit exists as n

tends to infinity by the assumptions. Thus,
2 1

0
ˆ ( ) ( )r k k kAVar k        S M B M M , this

completes the proof.
Corollary: Since the limit of
1 1( )n   Z Z R W R exists as n tends to infinity

and 0k = , we have
1
2

0 0
ˆ( ) ( ,  )

D

r PN


  0 S I ,

where 2 1
0 0 0 0( )  S M B M M is the asymptotic

variance of ˆ
r .

Choice of the ridge parameter
We use a slight extension of the mean squared error

matrix (MSEM) criterion, considered by Ozkale [32] to
study the superiority of ˆ ( )r k over ˆ

r . The MSEM

of an estimator ̂ of  is defined as
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )     MSEM        E Var Bias Bias ,

where ˆ ˆ( ) ( )Bias E    denotes the bias

vector. For any two given estimators 1̂ and 2
ˆ , the

estimator 2̂ is said to be superior to 1̂ under the
MSEM criterion if

1 2 1 2
ˆ ˆ ˆ ˆ( , ) ( ) ( ), MSEM MSEMD     is a

nonnegative definite (n.n.d.) matrix, i.e.

1 2
ˆ ˆ( , )  0 D . If 1 2

ˆ ˆ( , ) D is positive definite

(p.d.), 2̂ is said to be strongly superior to 1̂ , i.e.

1 2
ˆ ˆ( , )  0 D . We can obtain the asymptotic MSEM

of the estimators ˆ
r and ˆ ( )r k as follows

(10) 2 1
0 0 0

ˆ( ) ( )r   AMSEM  M B M M

(11)
2 1 2

0 0 0
ˆ ( ) ( )r k k k kk k      AMSEM   M B M M M M .

We are now interested in knowing under which
conditions ˆ ( )r k is better than ˆ

r . For this, we
investigate the difference

ˆ ˆ ˆ ˆ, ( ) ( ) ( ) .r r r rk k       AMSEM AMSEM   D

When ˆ ˆ, ( )r r k 
  D is a p.d. matrix, ˆ ( )r k is

preferred to ˆ
r . From (10) and (11), we find the matrix

difference as
(12)

2 2 2 2 2
0 0 0 0 0 0

ˆ ˆ, ( ) 2 2r r k p kk k k kB k B k             D M I M M M M M .

Note that 2 2 2
0 0 0 02k kB k B  M M M M is p.d.

Therefore, using Farebrother [33] we have that (12) is
p.d. if 2 2

0 02 pk k I    is positive semi-definite (p.s.d.).
Thus a sufficient condition is 2

0 0

2k 

 

. We may replace

the unknown parameters in k by appropriate
estimators to obtain 2ˆ2ˆ

ˆ ˆ
r

r r

k 

 

.

Mean shift outlier model and score test statistic
The MSOM is a common approach for detecting

outlier observations (Cook and Weisberg, [20]).
Suppose that the ith case is a candidate for an outlier,
then MSOM in model (3) can be represented as

(13)
,  1,..., ,  ,

,
,  1,..., ,  subject to
, with

, 0,

 

   

  
    
 

 0

j j j

i i i

l l l

y j n j i
y

l n

k k

z
z

x z
r R e

=

 






  

where  is an extra parameter, which describes the
outlier in ith case (Cook and Weisberg, [20]). It is easily
seen that, the nonzero value of  implies that the ith
case may be an outlier. To detect outliers, we estimate
the parameter  and an outlier test can be formulated
as a test of the null hypothesis that 0  . The
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corrected score estimates of  , 2 and  in MSOM

(13) are denoted by ˆ ( )m k , 2ˆ ( )m k and ˆ ( )m k ,
respectively, where m indicate the estimate of
parameters in MSOM. We rearrange the elements of the
y and X so that the ith deleted case to be in the first

row. Then we have
( )

i

i

y 
  
 

y
y

and
( )

= i

i

 
 
 

x
X

X
.

Therefore, the corrected log-likelihood of (13) is given
by

* 2

2
( ) ( ) ( ) ( )2

2 1

( , , , , , , )
1 1                 log(2 ) log ( ) ( )

2 2 2
                    ( ) ( ) ( ) .

 




 

     

            

m

i i i i

i i

l k
m

y n k



 

      

X y r

W y X y X

x r R W r R

The corrected score estimates ˆ ( )m k , ˆ ( )m k and
2ˆ ( )m k are derived with differentiating of *

ml with

respect to  ,  and 2 , respectively. Therefore, we
have

1 1 1

1 1

ˆ ˆ( ) ( ) ( )
ˆ ˆ          ( ) ( ) ( )

m p i m

r p i m

k n k k

k n k k





  

 

          
     





X X R W R I X y x R W r

X X R W R I x





ˆˆ ( ) ( )m i i mk y k   x  .

Replacing ˆ ( )m k into ˆ ( )m k we obtain

 1 1 ˆˆˆ ˆ( ) ( ) ( ) ( ) i
m i i r p i m

i

vk y k n k k
c

            x X X R W R I x 
.

in which
1 11 ( )i i p ic n k       x X X R W R I x and

ˆˆ ( )i i i rv y k  x  . Furthermore, for the estimate of
2 in model (13) we have

2 22

1

2 2 2
2

ˆ ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ              ( ) ( ) ( ) ( ) ( ) ( )

1ˆ ˆ ˆ             ( )

m m m i i m i i m m

m m m m m m

i
r i i

i

m k k k y k y k k

n k k k k k k k

cm k v v
c

 





                      
           

 
   

 

y X y X x x

r R W r R

   

     
2

2 21 1ˆ ˆ2 .i i
i i

i i

c cv v
c c

    
    

   

Therefore, we have

2 2 1 2
2

ˆ ˆ( ) ( )ˆ ˆ= ( ) 1 1
ˆ ( )

r r
m r i

r

k kk m t
k

 



  
       

  , where

ˆ
ˆ

i
i

v i

vt
c

 is the ith studentized residual of the model

and 2 2 ˆ ˆˆ ˆ ( ) ( ) ( )v r r rk k k      is an estimate of
the variance of i i iv y  x  .

The score test statistic for the ith observation ( iSC )
based on the corrected observed information matrix

( , )J  of the MSOM, for testing 0 :  0H   versus

1 :  0H   , is given by

(14)
2* 2( , , , , , , )m

i
l kSC J  


 
   

 X y r ,

where J  is the lower right corner of 1( , )J   .

Substituting 0  , ˆ ( )r k  and 2 2ˆ ( )r k 
into the (14), we have

* 2

2
( , , , , , , ) 1 ˆ ( )

ˆ ( )
m

i r
r

l k k
k

 
 

    
 X y r y x

1

2
1( , )

ˆ ( ) 1
P i

r i

n k
J

k



    
   


X X R W R I x

x


and
2ˆ ( )
c

r

i

kJ  
 . Then under 0 : 0H 

22 2
2 2

ˆ1 ˆ ( )
ˆ ˆ( )c ( )

v
i i i r i

r i r

SC k t
k k


 

    y x  .

We can also write 2
2

ˆ ˆ( ) ( )1
ˆ ( )

r r
i i

r

k kSC t
k

 
  
 

  .

Therefore, the score test statistic is a multiple of the
square of studentized residual of the model that is an
adequate diagnostic statistic as often used in linear
regression diagnostics. If 0H is rejected, then the ith
case may not come from the original model and so is an
outlier.

Case deletion model
To quantify the effects of deleting the ith observation

on ˆ ( )r k and 2ˆ ( )r k , a fundamental approach is
called CDM with the ith observation deleted and can be
represented as

(15)

( ) ( ) ( )

( ) ( ) ( )

,  where
,   1,..., ,    subject to

, with

.

 

  

 

0

i i i

i i i i n

k

y Z
X Z
r R e

=

 



 





Detection of Outliers and Influential Observations in …

361

The corrected log-likelihood for model (15) is given
by

* 2
( ) ( )

2
( ) ( ) ( ) ( )2

1

( , , , , , )
1 1 1                 log(2 ) log ( ) ( )

2 2 2
                    ( 1) ( ) ( ) .

c i i

i i i i

l k
m

n k








      

         



 

     

X y r

W y X y X

r R W r R

The estimate of  will be obtained with

differentiating of *
cl with respect to  and is denoted

by ( )
ˆ ( )i k . Then we have

(16)
11 1

( )

1 1 1 1

ˆ ( ) ( 1) ( )

          ( ) ( ) ( ).

 

   

             
           





 X X x x R W R I X y R W r x y

X X R W R I x x X y R W r x y O
i i i p i i

p i i i i p

k n k

n k n

However, using matrix results (see, Rao et al. [8],
Theorem A.18) we have

1 1

1 1 1 1

11 1 1 1

( )

            ( ) ( )

               1 ( ) ( ) .

p i i

p p i

i p i i p

n k

n k n

n k n k

 

   

   

     

          

              

X X R W R I x x

X X R W R I X X R W R I x

x X X R W R I x x X X R W R I



 

 

With substituting the above expression in ( )
ˆ ( )i k ,

we obtain
1 1 1

( )
ˆˆ ˆ( ) ( ) ( ) ( )          X X R W R I x Oi

i r p i p
i

vk k n k n
c

.

Taking the differential of *
cl with respect to 2 , we

have

2 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2

ˆ ˆˆ( 1) ( ) ( ) ( )

ˆˆ ( ) (1)





          

  

i i i i i i i

i
r p

i

m k k k

vm k O
c

y y X y r W r R W r 

or
2 1 2 2 1
( ) 2

ˆ ˆ( ) ( )ˆ ˆ( ) ( 1) ( ) 1 ( )
ˆ ( )

 


 
         

    

r r
i r i p

r

k kk m k m t O m
k

  .

Analogous of generalized Cook's distance
As a measure of influence, an appropriate measure

would be Cook's distance [34]. Cook's distance is used
by statisticians to detect influential observations in the
data set. It is based on the difference between two
estimators, one includes the ith observation in the data
set; the other excludes the ith observation. The Cook’s
distance statistic for model (15) can be defined
analogously by

( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )i r i r iCD k k k k            M .

Where,
* 1

2
1ˆ ( ) ( )

ˆ ( )
     p

r

I n k
k

M = X X R W R I  and

*ˆ ( )I  is an estimate of the corrected observed

information matrix
* 2

* ( , , , , , )( ) l kI 
 

 

 

X y r for

 . Then we have
1

( ) ( )

2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
( )

ˆ ( )

           
r i p r i

i
r

k k n k k k
CD

k

   


X X R W R I .

We can get

1 2 2
1 1

2 2 2 2

( ) ˆ ˆ(1 )( ) ( ) ( )
ˆ ˆ( ) ( ) 


 

      
    
  

i p i i i i
i p p

r i r i

n k v c vCD O n O n
k c k c

x X X R W R I x




Substituting 2

2

ˆ
ˆ ( )

i
i

r i

vSC
k c

 into the above

expression, we have
1 2 1

2

ˆ ˆ(1 ) 1 ( ) ( )( ) ( ) 1 ( )
ˆ ( )

   
     

 
i i i r r

i p i p
i i r

c SC c k kCD O n t O n
c c k

  

Cases for which ( )iCD  's are large have

substantial influence on both the estimates of  , and
deletion of them may result in important changes in
conclusions.

Likelihood distance
The likelihood distance is a popular measure to

assess the influence of the ith observation on corrected
score estimate. We consider the corrected log-likelihood
evaluated at 2ˆ ˆ( ), ( )r rk k 

  and 2
( )

ˆ ˆ( ), ( )i rk k 
  , then

a measure of the influence of the ith observation on ̂
can be defined as

 * 2 * 2
( )

ˆ ˆˆ ˆ( ) 2 ( ), ( ), , , , ( ), ( ), , , ,i r r i rLD l k k k l k k k          X y r X y r

Taylor expansion of
* 2

( )
ˆ ˆ( ), ( ), , , ,i rl k k k 
  X y r at ˆ ( )r k gives

2 2

2 2

* 2
( )

* 2
* 2

ˆ ( )ˆ( ), ( )

2 * 2

ˆ( ) ( )ˆ( ), ( )

ˆ ˆ( ), ( ), , , ,

( , , , , , )ˆ ˆ ˆˆ( ), ( ), , , , ( ) ( )

1 ( , , , , , )ˆ ˆ ˆ( ) ( )
2

r r

r r

i r

r r i rk k

i r ik k

l k k k

l kl k k k k k

l kk k

 

 








 

 

   
          

         

 

 



  

  
 

X y r

X y rX y r

X y r ˆ( ) ( ) .rk k  

We have

2 2

* 2

ˆ ˆ( ), ( )

( , , , , , )
r rk k

l k
 


 

 
  

0
 




X y r



Vol. 26 No. 4 Autumn 2015 F. Ghapani, et al. J. Sci. I. R. Iran

362

2 2

12 * 2

ˆ 2ˆ( ), ( )

( , , , , , )
ˆ ( )r r

p
k k

r

n kl k
k 






 

    
    

 


 

X X R W R IX y r 

and so
2 1

( ) ( )
ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) .i r r i p r iLD k k k n k k k                  X X R W R I

As seen, we have ( ) ( )i iLD CD  .

Empirical distribution
The following simulation procedure (see, Lin et al.

[35] and Rebai et al. [36]) will be used to obtain the
empirical distributions of the

iSC and
iCD test

statistics under the hypothesis of no outliers and
influential observations exist:

Step1: We fit the model (1) with stochastic linear
restrictions (2) to the data and estimate ridge
parameters. A mixed ridge estimate of Z can be
derived as, 2 ˆˆ ˆ ˆ( ) ( )r v rk v k   Z X   (see, Rasekh
[30]).

Step 2a: Generate a new data vector
* *ˆˆ ( ) ( ) ,

ˆ ˆ ( )
r r

r

k k

k

 

  

y Z

X Z

 



where * is randomly generated as 2ˆ, ( )r nN k  0 I

and  is randomly generated as ( , )0 nN I  .
Step 2b: Generate a new data vector

* *ˆ ( )r k r R e ,

where *e is randomly generated as 2ˆ, ( )r qN k  0 I

and R is a known matrix.
Step 3: Compute the test statistics

iSC and iCD for
1, 2,...,i n and save the order statistics of the set

(  and :1,2,..., )i iSC CD n .
Step 4: Repeat steps 2 and 3, M times, for M

reasonably large. This generates an empirical
distribution of size M for each order statistic.

Step 5: Calculate the 100(1 ) percentile for each
order statistic for the level  .

The percentile of the ith order statistic can be
considered as a threshold for the ith largest value of the
test statistics from the original data. If the i largest
values of the test statistic iSC (or iCD ) from the
original data all exceed their respective thresholds, then
it is concluded that these data are all outliers (or
influential) observations.

Simulation Study
In this section, we conducted a parametric bootstrap

simulation to present the performance of the score test
statistic in terms of type I error and power of test. We
generated the jth set of simulated data as

(17) ,
,

j j

j j

 

 

y Z
r R e

 


 1,...,1000,j 

where, 1( ,..., )j j njy y y , (1) (2) (3)( , , )Z z z z and
( )

1( ,..., ) ,  1,2,3s
s nsz z s z , j is rewritten in

accordance with jy . Furthermore, R is a known

matrix, 1 2( , )j j jr r r and je is rewritten in

accordance with jr . We consider the following
combinations for simulation: n=50 or 100,

1 2 3( , , ) (2.5,2,0.8)      or

1 2 3( , , ) (3.5,2.75,0.5)     , (1) ~ (10,100)z U ,
(2) ~ (10,100)z U , (3) (2)  z z ,

2~ (0, )ij N  , 2~ (0, )ije N  , 2
1~ (0, )N 

for 1,...,i n , 2 0.09  or  0.25  , 2
1 1  ,

diag(0.1,0.1,0.1) or

diag(0.15,0.15,0.15) and 1 1 3
2 1 1

R  
  
 

.

The simulation study was carried out using the R
software (The R codes are available from the second
author upon request). For each simulated data set, we
derived k̂ , ˆ ( )r k , 2ˆ ( )r k and the score test statistic
for the first observation. The choice of the first
observation was arbitrary. To generate an empirical
distribution of the test statistic under the null
hypothesis, the data sets for 1,...,2500h were
simulated as

* *

* *

ˆˆ ( ) ( ) ,
ˆ ( ) ,

 

 

jh rj rj jh

jh rj jh

k k

k

 



y Z

r R e

where *
jh and *

jhe have normal distribution with

zero mean and variances 2ˆ ( ) rj nk I and 2ˆ ( ) rj qk I ,

respectively. Also ˆ ( )rj k , ˆ ( )rj kZ and 2ˆ ( )rj k are the

corrected mixed ridge estimates of  , Z and 2
from model (17). The score test statistic was performed
for the first observation of each simulated data and
100(1 ) percentile from the empirical distribution
of test statistic was used as threshold value of the test
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statistic of the model (17). The probability of a type I
error estimate for the score test statistic and 0.1 
was calculated as the number of data sets for which the
score test statistic exceeded the 100(1 ) percentile
of the empirical distribution, divided by the number of
replicates (Table 1). It appears that in general the type I
error of score test statistic for different combinations of
parameters are close to the nominal value of 0.1 . We
found no substantial difference between result of both
values of  .

In order to evaluate the relative sensitivity of the
score test statistic, we introduce the shift values 1, 3,
and 5 for the first observation and again for each
combination of parameters, 1000 data sets are generated
from the following model

,
,
  

 
j j

j j

y Z d
r R e

 


 1,...,1000,j 

for 1,  3  or 5 where d is an 1n  vector with
value 1 in the first element and zero elsewhere.

Again, for each simulated data set, we derive the
ridge estimate of parameters and the score test statistic
for the first observation. The power of the score test
statistic was calculated as the number of data sets for
which the score test statistic exceeded the 100(1 )
percentile of the empirical distribution, divided by the
number of replicates. The results are presented in Table
2.

A review on the results of this table shows that with
increase of the displacement,  , the power of the score
test statistic, increases in general. Moreover, we can see
that power of the test also increase as sample size
increases, while with the increase of  , the power of

the test will decreases slitghtly.

Example: Egyptian pottery data

Diagnostic measures developed in the previous
sections are applied to a real data set, which is known as
the Egyptian pottery data. Briefly, this data set arises
from an extensive archaeological survey of pottery
production and distribution in the ancient Egyptian city
of Al-Amarna. The data consist of measurements of
chemical contents (mineral elements) made on many
samples of pottery using two different techniques, NAA
and ICP (see Smith et al, [37] for description of
techniques). The set of pottery was collected from
different locations around the city. In general, two type
of clay were used to make the ancient Egyptian pottery-
Silt and Marl. In addition, archaeologists have classified
some sherds as imports from North African countries.

The group structure among the objects arises from
two main sources, fabric code and location of pottery.
Both of these subdivisions are important to the
archaeologists. Consequently, according to this group
structure, the selected vessels have been divided into 27
groups and one group of imported vessels is selected as
stochastic linear restrictions. In each group, there are
different numbers of vessels from the same fabric code
and provenance, which can essentially be regarded as
replicated observations. Among all mineral elements,
our interest is in the relation between Na measured with
NAA versus mineral elements Na, Al, K, V, Cr and Mn
measured with ICP. The data set is available from the
second author upon request.

Rasekh [38] analyzed this data set and fitted a
functional measurement error model. In addition,
Rasekh [22] considered the same data set and realized
that there is collinearity among the explanatory

Table 1. Type Ι error ( 0.1  ) of score test statistic for a mean shift model with different combination of

parameters  , 2 and  .
n  2 Score test

(0.1, 0.1, 0.1) diag (0.15, 0.15, 0.15) diag

50
(2.5,2,0.8) 0.09 0.120 0.093

0.25 0.089 0.083
(3.5,2.75,0.5) 0.09 0.113 0.130

0.25 0.106 0.096

100
(2.5,2,0.8) 0.09 0.101 0.121

0.25 0.076 0.081
(3.5,2.75,0.5) 0.09 0.106 0.131

0.25 0.091 0.100
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variables. He fitted a ridge measurement error model
and studied the local influence of minor perturbation on
the ridge estimate in the measurement error model.

In this section we analysed this data set using the
ridge measurement error model with stochastic linear
restrictions given in (3). Also, the score test statistic and
Cook's distance were calculated for each group under
model (3) and 10000 simulated data sets were generated
from the fitted model under the null hypothesis of no
outliers and influential groups exist. In each simulation,
model (3) was fitted for each group and the test statistics
were sorted and used to generate the empirical
distribution of the order statistics for each test.

Figures 1 give plots of the test statistics from the

original data and 95th percentile from the empirical
distribution of the first, second and third largest values
for each test statistic. Figure 1(a) shows that the score
test statistic for group 14 is larger than the 95th
percentile of the distribution of the corresponding order
statistic. So we conclude that this data set contains only
one outlier. On the other hand, Figure 1(b) shows that
the Cook's distance for group 14 is larger than the 95th
percentile of the distribution of the first order statistic.
Therefore, group 14 has also more influence on the
estimate of  .

The corrected score estimates of the full data set and
with only group 14 deleted, are given in Table 3. As
seen, after deleting group 14, the effect of Al and Cr

Table 2. The power of score test statistic for a mean shift model with different combination of parameters  , 2 ,  and  .
n 

2
 Power of Score test

(0.1, 0.1, 0.1) diag (0.15, 0.15, 0.15) diag

50

(2.5,2,0.8)

0.09

1 0.108 0.089

3 0.266 0.184

5 0.761 0.479

0.25

1 0.084 0.087

3 0.284 0.174

5 0.808 0.489

(3.5,2.75,0.5)

0.09

1 0.103 0.121

3 0.164 0.155

5 0.376 0.276

0.25

1 0.081 0.100

3 0.173 0.114

5 0.445 0.254

100

(2.5,2,0.8)

0.09

1 0.145 0.141

3 0.625 0.430

5 0.993 0.915

0.25

1 0.130 0.106

3 0.590 0.407

5 0.977 0.898

(3.5,2.75,0.5)

0.09

1 0.128 0.131

3 0.404 0.277

5 0.855 0.650

0.25

1 0.112 0.110

3 0.366 0.250

5 0.800 0.614
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have been less than before. Also after deleting group 14,
the effect of NA, K and Mn have been more than
before.

Discussion
We derived the estimate of parameters in the linear

ridge measurement error model with stochastic linear
restrictions based on the corrected likelihood of
Nakamura [3], and we investigated the performance of
the mixed ridge estimators over the mixed estimators of
the parameters, by the variance and the MSE matrix
criteria. We extended the case deletion and mean shift
outlier models of the proposed model. We derived the
score test statistic for testing that an observation stands
out as a possible outlier. In addition, we derived
analogous of Cook's distance and likelihood distance for
detecting influential observations of the proposed
model. The performance of the score test statistic is
studied using a parametric bootstrap simulation. It was
found out that with the increase of shift value the power

of the score test statistic increase.
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