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Abstract
To start with, having employed transformation wave, some nonlinear partial

differential equations have been converted into an ODE. Then, using the infinite series
method for equations with similar linear part, the researchers have earned the exact
soliton solutions of the selected equations. It is required to state that the infinite series
method is a well-organized method for obtaining exact solutions of some nonlinear
partial differential equations. In addition, it is worth mentioning that this method can be
applied to non-integrable equations as well as integrable ones. This direct algebraic
method is also used to construct the new exact solutions of the three given examples. It
can also be claimed that any equation matching the special form which has been made in
this article, will be solved immediately by means of infinite series method.
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Introduction
Investigation of solutions to nonlinear evolution has

become an interesting subject in nonlinear science
field. Moreover, while conducting experiments to
determine the most efficient design for canal boats, a
young Scottish engineer named John Scott Russell
(1808-1882) made a remarkable scientific discovery
[1].

It was not until the mid-1960’s when applied
scientists began to use modern digital computers to
study nonlinear wave propagation that the soundness of
Russell’s early ideas began to be appreciated. He
viewed the solitary wave as a self-sufficient dynamic

entity, a “thing” displaying many properties of a
particle. From the modern perspective it is used as a
constructive element to formulate the complex
dynamical behavior of wave systems throughout
science: from hydrodynamics to nonlinear optics, from
plasmas to shock waves, from tornados to the Great
Red Spot of Jupiter, from the elementary particles of
matter to the elementary particles of thought. For a
more detailed and technical description of the solitary
wave, see [2]. In recent years, other methods have been
developed, such as the Backlund transformation
method [3], Darboux transformation [4], Tanh method
[5, 6], Extended tanh function method [7], Exp-
function method [8], Generalized hyperbolic function
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[9] and Modified F-expansion method [10]. In this
paper, by using Infinite Series method, the soliton
solution is solely obtained. Certainly, the purpose of
this paper is to find exact soliton solutions.

Here, the solutions are developed as series in real
exponential functions which physically corresponds to
mixing of elementary solutions of the linear part due to
nonlinearity. Hereman method falls into the category of
direct methods for nonlinear partial differential
equations. In addition, depending on the number of
nonlinear terms in the partial differential equation with
arbitrary coefficients, it is sometimes necessary to
specialize the particular values of the velocity in order
to find closed form solutions. On the other hand,
Hereman series method does give a systematic means
of developing recursion relations [11].

1. Description of Method
Consider a general nonlinear partial differential

equation in the form:
(1)  , , , , , , 0t x tt xx txF u u u u u u  

Where  ,u u x t is the solution of nonlinear
PDE Eq (1). Furthermore, the transformations which
are used are as follows:
(2)    , ,     .u x t U x t          

Where  is a constant. Using the transformation, it
can be found that
(3)            

2 2

2 2. . , . . , . . ,     
    

     
λ             

t ξ x ξ x ξ

At present, the relations (3) is employed to change
the nonlinear PDE equation (1), into a nonlinear
ordinary differential equation, say
(4)       , , , 0G U U U     

Now,  Hereman's approach can be applied. At first,
we solve the linear terms then solution is to assume the
following form:

(5)  
1

  ( ). n
n

n

U a f 






Where ( )f  is a solution of linear terms and the

coefficients of the expansion na ( 1, 2,3,n   ),
should be determined. To deal with the nonlinear
terms, we need to apply the extension of Cauchy’s
product rule to multiple series.

Theorem 1. (Extension of Cauchy’s product rule)
There exists:

(6)

11 1 1
( ) (1) (2) ( 1) ( )

1 1 1 2 2 1

 
qI n s m

j I I
l m l r p n r

j n r I p I m l

F a a a a
   


  

       

      ,

That:   ( )

1

              .
I

j jF a




represents infinite convergent series [11].
Substituting (5) into (4), a recursion relation is

obtained which gives the values of the coefficients.

2.  Applications of infinite series method
Let’s assume that Equation (1) based on

transformations (2), can be written as:
(7)      3 0A B         .

Where A and B are constants and 1   . In this
section, the exact solutions of nonlinear partial
differential equations in the form (7) will be obtained.
Due to this condition, the solution to linear part of (7)
is as the following

  exp(   )f A  .
Thus, the solution of (1), will be found that as

follows

(8)    
1

exp    n
n

a n A  




 .

Substituting (2) into (1) and by Lemma 1, it is
obtained that
(9)

   
1 1

2

1 2 1

  1 exp   0
n m

n l m l n m
n m l

n Aa B a a a A 
  

 
  

 
   

 
  .

Regarding (9), the recursion relation is as the
following

1 1

2
2 1

1 ,        3 
1

n m

n l m l n m
m l

Ba a a a n
A n


 

 
 

 
    


(10)

By assuming that 1a is arbitrary and 2 0a  in
(10), it can be obtained that
(11) 2 0, ka 

 
2 1
1

2 1 3 .       
2

k k
k

k k

aBa k
A





   
 

N
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Substituting (11) into (8) gives:
(12)

        
   

2 1
11

23
0 1

   
exp 2 1  

2 1 2  
8

k k
k

k
k

a exp AaB k A
BaA exp A

A


   

 





    
  



If
1

22 Aa
B

 , and replacing this condition with

(12), it can be written as:

(13)  
 
 

22    

1   2  

A exp A
B
exp A


 

 



.

Case I: If 0A  ,
In (13), if 1   and according to the definition,

2
2sech

1

t

t

et
e




, it is obtained:

(14)    2    A sech A
B

   .

Likewise, if 1  and according to the definition,

2
2csch

1

t

t

et
e



, it is obtained:

(15)    2    A csch A
B

    .

Case II: If 0A  ,
In (13), if 1   and according to the definition,

2
2sec

1

it

it

et
e




, it can be obtained that

(16)    2    A sec A
B

   .

Likewise, if 1  and according to the definition

2
2csc

1

it

it

et
e



, it is obtained:

(17)    2    A csc A
B

    .

As it can be seen, the exact solutions (14), (15),
(16), and (17) are soliton solutions.

Results
3-1. Davey-Stewartson (2+1)-dimensional Equation

Consider the following Davey-Stewartston Equation
(DSE) in two spatial functions involves a complex field
u and a real field v :

(18)
2

0 1 2  0t xx yy xiu c u u c u u c uv     ,

 2
3 0xx yy

x
v c v u   .

In fluid dynamics, the Davey-stewartson Equation
(DSE) was introduced in a paper by Davey and
Stewartson (1974) to describe the evolution of a 3-
dimensional wave-packet on finite depth water.

By using the transformation:
(19)    , ,  iu x y t e U  ,    , , v x y t V  ,

x y t      and ( )k x ly t    .

Where  ,  ,  , k , l and  are real constants,

it is obtained that 0   2( )c l    , substituting (19)
into (18), it changes has been obtained
(20)
             2 2 2 2 2 3

0 0 1 2 0kc k k l U c U c U c U V              

,
(21)       2 2 2 2

3 0k c k l V k U 
    .

Where by integrating of (21) once respect to , it
can be found that

(22)    2

2 2
3 3

 
(1 ) (1 )
U cV

k c l k c l


  

 
.

Where c is integration constant, substituting (22)
into (20), the following equation is obtained
(23)

     
2 2 2

30 1 3 2
2 2 2 2 2 2 2

0 3 0

(1 ) 0
(1 )( )

c c c l c cU U U
c k k l c l c k k l
        
  

  

Equation (23) coincides with (7), where A, B and ν are
defined by the relations

(24)
2 2

0
2 2 2

0

cA
c k k l
   



,

2
1 3 2

2 2 2 2
3 0

(1 )
(1 )( )

c c l c cB
c l c k k l
  


 

, 1  .

Substituting in (15) from (24), then the solution of
(23) can be obtained that
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(25)

 
  2 2 2 2 2

0 3 0
2 2 2 2

1 3 2 0

2 (1 )
   

(1 )

c c l cU csch
c c l c c c k k l

      
     

        

By integrating of (22) once respect to  , it can be
found that

(26)    3

2 2
3 3

 
(1 ) (1 )
U cV

k c l k c l


  
 

.

Therefore, the exact solutions of the Davey-Stewartson
(2+1)-dimensional will be found as follows:
 , ,       u x y t

  
  0

2 2 2 2 2
0 3 ( 2( )  )0
2 2 2 2

1 3 2 0

2 (1 )
   ( )

(1 )
i x y c l t

c c l ccsch k x ly t e
c c l c c c k k l

   
         
     

         

,

      
3

2 2
3 3

, ,
, , .

(1 ) (1 )
u x y t cv x y t k x ly t
k c l k c l

   
 

3-2. Generalized Hirota-Satsuma coupled KdV
equation

Consider the following Hirota-Satsuma coupled
KdV system [11]

(27)  21 2 3
4t xxx x x

u u uu w v    ,

1 3
2t xxx xv v uv  ,

1 3
2t xxx xw w uw   .

Where 0w  , Equations (27) reduces to be the
well-known Hirota-Satsuma coupled KdV system [12].
The transformations which are used are as follows
(28)

             , ;       , ;      , ;        u x t U v x t V w x t W x t         

Substituting (28) into (27), it is obtained that
(29)

 3 21( ) ( ) 3 ( ) ( ) 3 ( ) ( )
4

U U U U W V   
             

(30)

     31 3 ( )
2

V V U V            ,

.

(31)      31 3 ( )
2

W W U W           

Let’s suppose
(32)    2

0 0A  V ξ BU    ,

   W CV D   .

where 0 0,  , A B C and  D are constants.
Substituting (32) into (30) and (31), integrating once, it
is clear that (30) and (31) give rise to the same equation
(33)

       0 30
2 2

2 3 2 0
B AV V V


  

 


   .

Equation (33) coincides with (7), where A, B and
ν are defined by

(34)
 0

2

2 3B
A





 , 0
2

2AB


  , 1   .

Substituting (34) into Eq. (14), then the solution of
(33), can be obtained that

(35)    00
2

0

2 32(3 )    
BBV sech

A
 


 
 
 
 

,

That 03B  . By means of (32) and (28), the
solutions of (27) are given by
(36)
        2

0 0 0, 2 3 sech 2 3  u x t B B x t B       ,

      0
0

0

2(3 ),   2 3  Bv x t sech B x t
A
  

   ,

      0
0

0

2(3 ),   2 3  Bw x t C sech B x t D
A
  

    .

If 03B  , it can be written as the following

(37)    00
2

0

2 32(3 )    
BBV sec

A
 


 
 
 
 

.

Substituting (34) into (16), also by means of (32)
and (28), the solutions of (27) are given by
(38)         2

0 0 0, 2 3 sec 2 3  u x t B B x t B       ,

      0
0

0

2(3 ),   2 3  Bv x t sec B x t
A
  

   ,
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      0
0

0

2(3 ),   2 3  Bw x t C sec B x t D
A
  

    .

If 0 0B  and 0D  then, the exact solutions
(36) and (38) of the Hirota-Satsuma coupled KdV

system (27) are soliton solutions.

3-3. Phi-four equation
We consider the Phi-four equation [13]

(39) 3 0,           0tt xxu au u u a     .

Where is real constant.
With the transformation defined by

(40)    ,u x t U  ,      x t    .

It is obtained that
(41)          3

2 2 2 2

1 1 0U U U
a a   

   
  

 
.

Equation (41) coincides with (7), where A, B and
ν are defined by

(42)
 2 2

1A B
a 

  


, 1   .

Substituting (42) into (14), and 2 a  , then the
solution of (39) can be obtained that

(43)    2
1, 2    u x t sech x t

a



 

    
.

If 2 a  , then substituting in (16) from (42) the
exact solution of (39) can be obtained that

(44)    2
1, 2    u x t sec x t

a



 

    
.

At hand solutions of the Phi-four equation (39) are
considered as soliton solutions. If 1  and 2 
are selected, the figures of these solutions of (39), are
provided as follows

Discussion
In this study, Infinite series method was employed

to solve the special form (Elliptic-like). Accordingly,
the exact solutions were obtained to three selected
equations, with the aid of a simple transformation
technique. Besides, it was shown that the Davey-
Stewartson (2+1)-dimensional Equations, generalized
Hirota-Satsuma coupled KdV system and the Phi-four
equation, can be reduced to the special form (Elliptic-
like) with a specific solution.

In spite of the fact that these new solutions may be
important for physical problems, this method can be
utilized to solve many systems of nonlinear partial
differential equation arising in the theory of soliton and
other related areas of research. Finally, it is worthwhile
to mention that the proposed method is straightforward
and concise.
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