تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,027 |
تعداد مشاهده مقاله | 125,499,077 |
تعداد دریافت فایل اصل مقاله | 98,761,274 |
شبیهسازی رشد ذرت تحت مدیریتهای مختلف آب و نیتروژن با مدل AquaCrop | ||
تحقیقات آب و خاک ایران | ||
مقاله 6، دوره 46، شماره 2، تیر 1394، صفحه 207-220 اصل مقاله (1.57 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2015.55926 | ||
نویسندگان | ||
میلاد ابراهیمی1؛ وحیدرضا وردی نژاد* 2؛ ابوالفضل مجنونی هریس3 | ||
1دانشجوی کارشناسی ارشد آبیاری و زهکشی گروه مهندسی آب دانشکدة کشاورزی دانشگاه ارومیه | ||
2استادیار گروه مهندسی آب دانشکدة کشاورزی دانشگاه ارومیه | ||
3استادیار گروه مهندسی آب دانشکدة کشاورزی دانشگاه تبریز | ||
چکیده | ||
در این مطالعه کارایی مدل شبیهسازی رشد گیاه AquaCrop در پیشبینی عملکرد دانه، رشد مادة خشک، و پوشش گیاهی ذرت تحت مدیریتهای مختلف عمق آبیاری و نیتروژن ارزیابی شد. آزمایش مزرعهای با سه سطح نیتروژن شامل 0 و 150 و 300 کیلوگرم نیتروژن بر هکتار (به ترتیب N1 و N2 و N3) و چهار عمق آبیاری شامل 60، 80، 100، و 120 درصد تخلیة رطوبت خاک (به ترتیب I1، I2، I3، و I4) با سه تکرار طی دو سال و به صورت طرح بلوک کامل تصادفی اجرا شد. مدل AquaCrop بر اساس اطلاعات زراعی سال اول آزمایش واسنجی و سال دوم اعتبارسنجی شد. به طور کلی، مدل AquaCrop دقت بالایی در شبیهسازی رشد ذرت داشت. اما در سطح آبیاری I1 در تخمین مادة خشک و سطح کودی N1 در تخمین پوشش گیاه دقت کمتری نشان داد. متوسط ریشة میانگین مربعات خطای نرمال (NRMSE) تخمین عملکرد دانه در مرحلة واسنجی و اعتبارسنجی به ترتیب 89/7 و 86/4 درصد به دست آمد. در پیشبینی رشد مادة خشک، در سطح نیتروژن معین، افزایش تنش آبی باعث افزایش خطای پیشبینی مادة خشک توسط مدل شد. در همة تیمارها مادة خشک به صورت بیشبرآورد پیشبینی شد و متوسط NRMSE پیشبینی رشد مادة خشک در مرحلة واسنجی و اعتبارسنجی به ترتیب 7/18 و 9/20 درصد محاسبه شد. همچنین، مدل AquaCrop رشد پوشش گیاهی در سطح نیتروژن N2 را با دقت بالا پیشبینی کرد؛ اما در سطوح نیتروژن N1و N3 به ترتیب خطای کمبرآورد و بیشبرآورد نشان داد. متوسط خطای ریشة میانگین مربعات (RMSE) تخمین پوشش گیاهی (کل تیمارها) در واسنجی و اعتبارسنجی به ترتیب 7/11 و 3/7 درصد محاسبه شد. | ||
کلیدواژهها | ||
رشد پوشش گیاهی؛ رشد مادة خشک؛ شیراز؛ عملکرد دانه؛ مدل رشد گیاه | ||
مراجع | ||
Allen, R. G., Preira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper, No. (56), Rome, Italy.
Dai, X., Shi, H., Li, Y., Ouyang, Z., and Huo, Z. (2009). Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrological Processes, 23: 442-450.
De Juan Valero, J. A. M., Maturano, A., Artigao, J. M., Ramirez, T. M. B., and Ortega, A. J. F. (2005). Growth and nitrogen use efficiency of irrigated maize in a semiarid region as affected by nitrogen fertilization. Spanish Journal of Agricultural Research, 3(1), 134-144.
Geerts, S. and Raes, D. (2009). Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas.Agricultural Water Management, 96, 1275-1284.
Ghamari, M., Andarziyan, B., Bakhshandeh, A., Gharineh, M. H., and Fathi, Gh. (2011).Simulate theeffects ofdroughtand nitrogenon yield,waterand nitrogenuse efficiencyin maize usingCERES-Maize. Journal ofCrop Physiology,3(11), 21-31. (In Farsi)
Gheysari, M., Mirlatifi, S. M., Bannayan, M., Homaee, M., and Hoogenboom, G. (2009a). Interaction of water andnitrogen on maize grown for silage. Agricultural Water Management, 96(5), 809-821.
Gheysari, M., Mirlatifi, S. M., Bannayan, M., Homaee, M., Asadi, M. S., and Hoogenboom, G. (2009b). Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agricultural Water Management, 96(6), 946-954.
Gholami, A. R. and Pirmoradiyan, N. (2011). Calibration of a simple model (VSM) for yield prediction of corn under different water and nitrogen managements.Journal of Water and Soil, 25(2), 258-265. (In Farsi)
Girardin, P., Tollenaar, M., Deltour, A., and Muldoon, J. (1987). Temporary N starvation in maize (Zea mays L.): effects on development, dry matter accumulation and grain yield. American Society of Agronomy,7, 289-296.
Heng, L. K., Hsiao, T. C., Evett, S., Howell, T., and Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. American Society of Agronomy, 101, 488-498.
Hsiao, T. C., Heng, L. K., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E. (2009). AquaCrop-the FAO crop model to simulate yield response to water, III: Parameterization and testing for maize. Agronomy Journal, 101, 448-459.
Jones, C. A. and Kiniry, J. R. (1986). CERES-Maize: A simulation model of maize growth and development.Texas A&M University Press, College Station, Texas.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie, J. T. (2003). The DSSAT cropping system model.European journal of agronomy, 18, 235-265.
Khoshravesh, M., Mostafazadeh-Fard, B., Heidarpour, M., and Kiani, A. R. (2013). AquaCrop model simulation under different irrigation water and nitrogen strategies.Water Science and Technology, 67.1: 232: 238. doi: 10.2166/wst.2012.564.
Kropff, M. J., Cassman, K. G., Van Laar, H. H., and Peng, S. (1993). Nitrogen and yield potential of irrigated rice. Plant and Soil, 155/156, 391-394.
Majdam, M., Naderi, A., Nourmohammadi, GH., Siyadat, A., Aynehband, A., and mousavi, H. (2008). Effectof waterstressvaluesandmode ofdistribution ofnitrogenon yield andnitrogenoutputof maize. IranianJournalof AgriculturalSciences, 39(1), 97-106. (In Farsi)
Majidian, M., Ghalvand, A., Karimiyan, N., and Kamgar-haghighi, A. A. (2008). Effects of nitrogen different amounts, manure and irrigation water on yield and yield components of corn. ElectronicJournalof CropProduction, 1(2), 67-85. (In Farsi)
Majidian, M. and Ghadiri, H. (2002). Effect of water stress and different levels of nitrogen fertilizer during different growth stages on grain yield, yield components, water use efficiency and some physiological characteristics of Corn (Zea Mays L.).Iranian Journal of Agricultural Sciences, 33(3): 521-533. (In Farsi)
Majnooni, A., Zand-parsa, SH., Sepaskhah, A. R., Kamgar, A., and Yasrebi, J. (2011). Modificationand validation of maize simulation model (MSM) at different applied water and nitrogen levelsunder furrow irrigation.Archives of Agronomy and Soil Science, 57(4), 401-420.
McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P., and Freebairn, D. M. (1996). APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research. Agricultural Systems,50, 255-271.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE: American Society of Agricultural and Biological Engineers, 50(3): 885-900.
Nielsen, D., Juan, J., Garcia, M., and Lyon, J. (2012). Canopy cover and leaf area index relationships for Wheat, Triticale, and Corn. American Society of Agronomy J., 104, 1569-1573.
Norwood, C. A. (2000). Water use and yield of limited irrigated and dry land corn. Soil Science Society of America Journal, 64, 365-370.
Patel, J. B., Patel V. J., and Patel, J. R. (2006). Influence of different methods of irrigation and nitrogen levels on crop growth rate and yield of maize (Zea mays L.). Indian Journal of Crop Science, 1(1-2), 175-177.
Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E. (2009). AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and software description. American Society of Agronomy, 101, 438-447.
Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E. (2012). Reference manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
Rabie, M., Mirlatifi, S. M., and Gheysari, M. (2012a). Calibration and evaluation of the CSM-CERES-MAIZE model for maize hybrid 704 single-cross in Varamin. Journal of Water and Soil, 26 (2): 290-299. (In Farsi)
Rabie, M., Gheysari, M., and Mirlatifi, S. M. (2012b). Evaluation of DSSAT model for nitrate leaching under different water and nitrogen rates in maize field.Journal of Science and Technology of Agriculture and Natural Resources (Water and Soil Science), 17 (63): 71-80. (In Farsi)
Rahimikhoob, H., Sotoodehnia, A., and Massahbavani, A. R. (2014). Calibration and evaluation of Aquacrop for Maize in Qazvin region.Iranian Journal of irrigation and Drainage, 8(1), 108-115. (In Farsi)
Singh A. K., Tripathy, R., and Chopra, U. K. (2008). Evaluation of CERESWheat and CropSystmodels for water-Nitrogen interactions in Wheat crop. Agricultural Water Management, 95: 776-786.
Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E. (2009). AquaCrop—the FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Journal of Agronomy, 101, 426-437.
Stockle, C. O. and Nelson, R. L. (1994). Cropsyst User’s manual (Version 1.0).Biological Systems Engineering Dept., Washington State University, Pullman, WA, USA.
Zand-Parsa, Sh., Sepaskhah, A. R., and Rownaghi, A. (2006). Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management,81, 227-256. | ||
آمار تعداد مشاهده مقاله: 1,966 تعداد دریافت فایل اصل مقاله: 1,497 |