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ABSTRACT:This study investigated different concepts for natural-gas-fired power plants with the CO,

capture, and compared them based on the net plant efficiency and emission of CO,. The cycles were based on
a six oxy-fuel, one post-combustion and two pre-combustion capture concept. This paper presented the
results of an environmental evaluation performed by the application of the Life Cycle Analysis (LCA) method
using SimaPro model to compare an Advanced Zero Emission Power Plant (AZEP) concept with a conventional
combined cycle power plant from SOMW to 400MW. The LCA study was built upon the calculation and the
comparison of several impacts (emissions of CO,, CO, NO,, and SO,, consumption of water and primary

energy) and several impact categories (climate change, acid rain, ozone depletion and Ecotoxicity). The work
was developed entirely using the Eco-indicator99 of the LCA method. The results showed that for all studied

impacts, the AZEP power plants have fewer impacts. However, compared to the conventional combined cycle
power plants, the total primary energy consumption in the AZEP concept is bigger due to the lower electric

efficiency.

Key words: CO, capture, zero emissions, combined cycles, LCA, Simapro, Eco-indicator99

INTRODUCTION

The target of the LCA study was the comparison of
the environmental burdens associated with different
electric power production systems. Some different
cases of the same plant size (50 to 400 MW) were
considered: the conventional CCGT without CO,
capture, a CCGT including the AZEP (85,100%) concept
(Bolland and Undrum, 2003; Bolland and Saether, 1992;
Sundkvist et al., 2001). The LCA study was built upon
the calculation and the comparison of several impacts
(emissions of CO,, CO, NO,, and SO,, consumption of
water and primary energy) and several impact categories
(Greenhouse Effect, Acid Rain, Ozone Depletion, and
Photochemical Formation). Alternatively, combustion
in O,/ CO, atmospheres, whilst enabling almost total
CO, and NO, recovery, require expensive and energy-
consuming oxygen supplies.A less energy-intensive
proposition is based on Mixed Conducting Membranes
(MCM), which produce pure oxygen from air. Mixed
Conducting Membranes are made from non-porous,
metallic oxides that operate at high temperatures of over
700°C, and they have high oxygen flux and selectivity
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(Moller et al., 2006). These materials consist of complex
crystalline structures, which incorporate oxygen ion
vacancies. The transport principle for oxygen through
the membranes is surface adsorption followed by
decomposition into ions, which travel through the
membrane by sequentially occupying oxygen ion
vacancies. The ion transport is counterbalanced by a
flow of electrons in the opposite direction (see Fig. 1).
Since this transport process is based on ion diffusion,
the selectivity of the membranes is infinite as long as
the membrane surface is perfect. The driving force for
this oxygen transport is the positive difference in partial
pressure between the retentive side and the permeate
side of the membrane (Griffin et al.,2005). These
scenarios can facilitate assessing the degree of
uncertainty of the developed LCA according to the
choices made. Outside the limits of this work fall
uncertainties due to imprecise knowledge of the
different parameters used in the Life Cycle Inventory
(LCI), spatial and temporal variability in different
parameters of the LCI, and uncertainty due to the
inaccuracy of the environmental models used.
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Fig. 1. Mixed Conducting Membrane
(Griffinetal., 2003)

MATERIALS & METHODS

Life cycle assessment (LCA) is a method to evaluate
the environmental impacts of product systems ‘from
the cradle to the grave’. The life cycle inventory (LVI)
includes emissions and resources used from resource
extraction, production, and distribution, to the disposal
phase. The impact assessment evaluates the
contribution of these emissions and resource uses to
specific environmental impacts such as global warming,
human toxicity, and biotic resource extraction
(Kanokporn and lamaram, 2011; Veltman et al., 2010).
LCA has been developed independently in a number
of applications and disciplines, including chemical
engineering and energy analysis. The assessment of
alternative energy technologies has been one of the
most important application areas, and initial
assessments have focused on the cumulative (fossil)
energy demand, including embodied or “grey” energy.
An important motivation in the 1970s was to compare
fossil and renewable energy technologies consistently
in terms of the energy services they delivered for a
given amount of fossil fuel. LCA has since been
extended to address a wide range of environmental
concerns. It has been standardized by ISO.

In order to facilitate the understanding of the work
presented in this paper, the author presents a brief
summary of the LCA that serves as the basis for the
study: a LCA model of a natural gas combined-cycle
power plant with or without CO, capture with the
objective of identifying the main types of
environmental impact throughout the life cycle, in order
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to deline possible ways of achieving environmental
improvements (Bolland and Undrum, 2003; Bolland and
Saether, 1992; Saeedi and Amini, 2007; Salehi etal.,2010;
Singh et al., 2011). The tinal environmental effect after
a lifespan of 20 years, and the reduction in emissions
and pollution due to the use of a clean energy source
was also evaluated. It was analyzed during the different
stages of its life cycle, taking into consideration the
production of each of its component parts, the
transport, the installation, the start-up, and the
operation (Clerici,2003). The software used in the
environmental analysis was SimaPro7.0 by Pré
Consultants (Pre Consultants, 2011). The procedures,
details, and results obtained were based on the
application of the existing international standards of
LCA .In addition, environmental details and indications
of materials and energy consumption provided by the
various companies related to the production of the
component parts were certitied by the application of
the environmental management system 1SO14001.
According to the requirements of the standard
[SO14044, allocation was avoided, since only the
production of electrical power was considered as the
function of the system in the study. LCA methodology
was based on Eco-indicator99. A series of cut-off
criteria was established in order to develop the study
in practice by delining the maximum level of detail in
the gathering of data for the different components.
The main cut-off criterion chosen was the weight of
each element in relation to the total weight. This
limitation in data collection did not mean a signiicant
weakening of the final results obtained; it simply
allowed the researchers to streamline, facilitate, and
adjust the LCA study to make it more {iexible. The
characterization of each component was obtained from
the most important basic data of its manufacture: the
raw material required, the direct consumption of energy
involved in the manufacturing processes, and the
information regarding transport used. This information
for specilic substances included the primary energy
consumption use related to the production,
transportation, and manufacture of 1 kg of material.
Due to limitations of time and cost, the LCA was
performed under the following conditions: The cut-off
criterion used was the weight of the components.
Previous work has indicated that the most efficient
and cost-effective utilization of the MCM reactor is its
integration into a conventional gas turbine system to
produce an Advanced Zero Emissions Power Plant,
the AZEP concept (Amini et al., 2008; Ataei etal., 2011;
Ataei and Yoo, 2010; Yoo et al., 2010). The combustion
chamber in an ordinary gas turbine is here replaced by
the MCM-reactor, which includes a combustion
chamber, a ‘low’ temperature heat exchanger, an MCM
membrane, and a high temperature heat exchanger



Int. J. Environ. Res., 6(3):801-814, Summer 2012

(Bruun,2000). After compression in the ordinary gas
turbine compressor, the compressed air at about 18 bar
is heated to about 800 - 900°C in the ‘low’ temperature
heat exchanger before it enters the MCM membrane
(Ataeietal., 2011). The MCM section combines heat
transfer and oxygen transport between the air stream
and a sweep gas stream. Permeated oxygen is picked
up by means of the circulating sweep gas containing
mainly CO, and H,0. The concentration of oxygen in
the circulating gas is about 10% at the inlet of the
burner. Hot combusted gas then enters the high
temperature heat exchanger co-current to the oxygen
depleted air stream. This air stream is then heated to
1200°C (up to 1400°C). The pressure difference over
the membrane should be kept low (below 0.5 bar) to
minimize any leakage. About 10% of the combusted
gas is bled off at about 18 bar and heat is recovered by
heating a smaller part of the compressed air. The hot
oxygen-depleted air is then expanded in the turbine to
generate electrical power. Waste heat in both the
oxygen-depleted air stream and the CO, containing
bleed gas stream is recovered in HRSG’s by generating
steam at various pressure levels and by pre-heating
the fuel gas. The steam is utilized in a steam turbine for
power generation. The CO, containing bleed gas is
further cooled to condense water. CO, is recovered,
compressed from about sweep gas pressure, liquefied,
and then pumped to its final pressure (100 bar). The
concept allows 100% CO, capture, and in this case,
has less than 1 ppm v/v NOx in the oxygen-depleted
outlet air.

The first system design modeled is a reference
system. As such, a traditional CCGT power plant was
chosen (see Fig. 2). Data from such plants are in
abundance, both in terms of thermo-dynamical
performance used as a base in the modeling, and to
some extent, cost data. The AZEP 100% case is a
“traditional” type of combined-cycle arrangement, but
with an MCM-reactor system replacing the traditional
combustion chamber (Sundqvist et al., 2001). Air is
compressed in the gas turbine and is then heated in
the MCM-reactor. Due to MCM material and reactor
design limitations, the MCM-reactor outlet temperature
was restricted to 1200°C, which is considerably lower
than the reference CCGT. A percentage of the oxygen
contained in the air, typically 50%, is transferred
through the membrane, and is carried along by the
CO,/H,0O sweep gas. The oxygen containing sweep
gas then reacts with natural gas to generate heat in a
combustion chamber. A share of the sweep gas is bled
off to keep the sweep gas mass flow constant in the
MCM- reactor. The heat contained in the bleed gas is
recovered in a separate CO,/H,O HRSG, providing extra
steam for the steam cycle and preheating the natural
gas fuel. The heat recovery has to be terminated at a
higher temperature than in the ordinary HRSG due to
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the high water content in the bleed gas. After the HRSG,
the water is condensed and the remaining CO, is
compressed and liquefied from the MCM-reactor
pressure at around 20 bar to delivery pressure at 100
bar. A layout of the AZEP 100% cycle is shown in Fig.
3. The third alternative, the AZEP 85% case, includes
a sequential combustion chamber to increase the
turbine inlet temperature. This is to improve the thermal
performance of the MCM-based power plant (Asen et
al.,2003; Griffin et al., 2005; Moller; 2006). Fig. 4 shows
a power plantincluding a sequential burner increasing
the turbine inlet temperature (TIT) to 1327°C on the
airside using natural gas as fuel. Table 1 lists the power
plant construction material requirements used in this
study. These values were based on a study that
examined power generation via a number of
technologies - for example, a 400 MW NGCC system.

Table 2 is a comparison between the AZEP power-
plant concept (oxy-fuel) and the standard CCGT
without CO, capture from 5S0MW up to 400MW.

Net plant efficiency is defined as:
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The first term is related to thermodynamic work of
gas turbines, steam turbines, and gas turbine
compressors. This net thermodynamic work is
multiplied by a turbine to electricity grid efficiency, n t
—e, which for most of the concepts is 0.97. The 2nd
term is the fuel cell electric work, while the 3rd term
concerns the losses related to DC to AC conversion.
The last term is the sum of work related to consumers
as auxiliaries, pumps, ejectors, CO, compression, O,
production and compression, amine absorption, and
utilities. The base case of this LCA used the typical
natural gas pipeline composition listed in the Chemical
Economics Handbook (Lacson, 1999), which was
adjusted to include H,S (4 ppmv; based on the
specifications above). The composition of the natural
gas transported to the power plant is shown in Table
3. To show the diversification of natural gas
compositions found throughout the world, the range
of wellhead component values is also listed in Table 3.

RESULTS & DISCUSSION

The LCA study, built upon the calculation and the
comparison of several impacts (emissions of CO,, CH,,
CO, NO,, and SOx, consumption of water and primary
energy) and several impact categories (Greenhouse
Effect or Global Warming Potential, Acid Rain, Ozone
Depletion, and Photochemical Formation), shows a very
good environmental rank for the systems based on the
AZEP concept, as seen in Table 4 and in Fig. 5. This is
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Table 1. Power plant materials requirement for 400MW

Components Amount
Constructional
Aluminum (kg) 440000
Concrete (m3) 6000
Copper (kg) 440000
Rock wool(kg) 660000
Polyethylene (kg) 1300000
Chromium steel (kg) 1800000
Reinforcing steel(kg) 8800000
Nickel, 99.5%(kg) 6300
Chromium (kg) 976
Cobalt (kg) 720
Ceramic tiles(kg) 4200
Operational
Natural gas(Mj) 154000000
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Table 2. Process Simulation Results of the 50 MW to 400 MW Power Plant Cases

Plant Data Net power Plant fired Net plant CO2
output (MW)  heat (MJ/s) efficiency compression
(LHV) (%) power (MW)
50 MW (15-50) CCGT 63.9 120.6 53 -
AZEP 100% 46.2 954 48.5 0.49
AZEP 85% 53.9 107.1 50.3 0.47
100MW (51-100) CCGT 112 200.2 547 -
AZEP 100% 87 149.5 489 0.78
AZEP 85% 98 182 515 0.7
200MW (101-200) CCGT 208 339.1 56 -
AZEP 100% 143 290 492 1.67
AZEP 85% 178 314.7 52 1.51
400MW (201 &uppe) CCGT 400 692.4 579 -
AZEP 100% 248.1 500.5 49.6 2.95
AZEP 85% 3004 562.5 534 2.85
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Table 3. Natural Gas Composition

Component Pipeline composition  Typical range of  Typical range of
wellhead wellhead
Mol % (dry) Low value High value
Carbon dioxide (CO2) 0.5 0 10
Nitrogen (N2) 1.1 0 15
Methane (CH4) 94.4 75 99
Ethane (C2H6) 3.1 1 15
Propane (C3HS) 0.5 1 10
Iso-butane (C4H10) 0.1 0 1
N-butane (C4H10) 0.1 0 2
Pentanes + (C5+) 0.2 0 1
Hydrogen sulfide (H2S) 0.0004 0 30
Helium (He) 0 0 5
Heat of combustion, LHV 48,252 J/g - -
(20,745Btu/Ib)
Heat of combustion, HHV 53,463 J/g - -
(22,985Btu/Ib)

(a) Taken from Chemical Economics Handbook (Lacson, 1999)

and adjusted to include H2S.

(b) Taken from Ullmann’s Encyclopedia of Industrial Chemistry, 1986

particularly evident for two global effects, the
Greenhouse Effect and the Acid Rain Potential, and for
two impacts, the CO,, and NO, emissions. For all the
studied impacts and impact categories, the AZEP power
plants have less environmental impacts. However, due
to lower electric efficiencies, the total consumption of
primary energy is larger for both the CO,-capturing
concepts compared to the conventional CCGT plants.
The impact category Global Warming Potential
(expressed in CO, equivalents) is dominated by
Combustion Emissions. Of the other emission sources
(Gas Life Cycle, Auxiliary Systems, Liquid Waste), only
the Gas Life Cycle emissions have a non-negligible
impact on the Global Warming Potential. In the LCA
study, the emissions of CO and CH, (per kWe (LHV) of
fuel) for the AZEP plants were assumed to be on the
same level as in conventional CCGT plants. In the AZEP
process, however, these components are mainly flashed
off after the CO, liquefaction stage together with some
nitrogen and oxygen. Probably more than 90% of these
carbon components can be burnt in a catalytic converter
and recycled to the CO, compression train Appel at el,
2002; Carroni et al., 2003; Carroni et al., 2002; Eriksson
et al., 2006; Mantzaras et al., 2006; Mantzaras et al.,
2000; Mark et al., 1996). Thus, the ‘Potential of
Formation of Oxidants Agents by Photochemical Effect’
would be reduced accordingly. AZEP with no
sequential burner will produce very little NOx since
there is no combustion in the air stream. In the case of
sequential combustion in the air stream before the
expander, some NOx might be formed, dependent on
the combustion temperature. This has not yet been
studied. However, the NOx formation will be
significantly lower than in a conventional CCGT.

Electricity generation from the NGCC power plant
without CO, capture implies an emission of 425 g/
kWh, with over 86% direct emission from fuel
combustion. In the case of the NGCC power plant
coupled with carbon capture and a storage system,
this emission intensity decreases to 125 g ,/kWh. Fig.
5 illustrates the CO, account and compares the emission
sources for both the cases, with and without CCS. The
capture process at the power plant facility captures
90% of the CO, from the flue gas. However, additional
CO, is generated from fuel combustion because of the
energy penalty, operational inputs, and the
infrastructure required for capture, operation,
transport, and storage. The increased CO, production
results in a larger amount of ‘CO, generated per unit of
product’ (508 g..,/kWh).

Total CO, captured in the production of electricity
with the CCS system is about 383¢g . /kWh, reducing
the CO, capture efficiency over the complete life cycle
to 75%. In addition to CO, emissions, there are various
other direct and indirect emissions throughout all the
processes, from raw material extraction for fuel,
infrastructure, and other required materials to waste
treatment and disposal. Fig. 6 compares the absolute
scores after characterization for ‘with CCS’ and ‘without
CCS’ systems. The results show that there is an increase
in all environmental impacts. These scores reveal the
magnitude of the impact emanating from the whole life
cycle of electricity generation. The impacts are
unevenly distributed over various processes (natural
gas combustion at the power plant, CO, capture,
infrastructure, solvent production) and locations
(offshore natural gas production facilities, chemical
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Table 4. Comparing 1 p ‘Life cycle AZEP100%’, 1 p “Life cycle AZEP85%’and 1 p “Life cycle NGCC’
Method: Greenhouse Gas Protocol VV1.00/ C02 eq (kg) Indicator: Characterization (400MW)

Impact category Unit Lifecycle Lifecycle Lifecycle
AZEP100% AZEP85% NGCC
Fossil CO2 eq kg CO2eq 30660571 32482622 41056289
Biogenic CO2 eq kg CO2eq 307221.75 307675.84 309914.55
CO2 eq from land kg CO2eq 454.98486 459.20713 479.14303
transformation
CO2 uptake kg CO2eq 370831.3 371274.13 373455.04
B Life cycle NGCC 45
Life cycle AZEP 85% 40
H life cycle AZEP 100%
35
30
25
g
20 £
15
10
5
| I 0
FossilCO2eq Biogenic CO2eq CO2eq fromland  CO2 Uptake

manufacturing sites, power plant facilities, iron and steel
industries, mining sites, etc.). The Damage assessment
for LCI (AZEP 100%) is shown in Fig. 7. Direct
emissions at the power plant facility consist of various
substances, such as NO,, SO, acetaldehyde,
formaldehyde, and hazardous reclaimed wastes (Veltman
etal., 2010). The capture process, while capturing CO,,
reduces NO, SO,, and particulate emission. However,
their net removal efficiency per kWh electricity
generation is lower than the designed performance
parameter, due to the increased combustion of natural
gas to meet the energy requirements of the capture
process. The results of single score LCI analyzing for
NGCC and AZEPs are shown in Figs 8,9,10.

The energy penalty also results in increased
emissions of CH,, CO, and other pollutants that are not
captured by the process. These compounds have
potential for causing various environmental impacts.
Table 6 compares impacts due to direct emissions from
the facility and their contributions to the total impact,
quantifying the immediate hazards from capture

technology. The contribution analysis in Table 6 shows

transform

Fig. 5. Comparing 1 p ‘Life cycle AZEP100%’, 1 p ‘Life cycle AZEP85%’, and 1 p ‘Life cycle NGCC’Method:
Greenhouse Gas Protocol V1.00/ C02 eq (kg) Indicator: Weighting
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that the direct emissions at plant facilities are responsible
for 45% and 57% of the total acidification and marine
eutrophication, respectively for 85% of NGCC and 100%
of AZEP concepts, respectively. The capture process
reduces the score due to SO, and NO, removal; however,
the reduction is insignificant to the impact from increased
emissions of NOx. Direct emissions from the plant facility
constitute 45% of the total life cycle score. NO,_emission
from fuel combustion is the main contributor to this impact
(94% of'the direct impact). The second major source (40%)
of the impact is due to emissions of CH, and SO, in the
natural gas production chain and about 14% of the impact is
from infrastructure demands. The results of LCI analysis
with weighting indicator for NGCC and AZEPs are shown
in Tables 7,8,9.

Particulate matter formation potential (PMFP) results
show an increase of 33% in the total life cycle score.
37% of the total PMFP impact is attributed to direct
emissions from the plant facility with NO_ emissions
from fuel combustion being the largest contributor (93%).
Natural gas production constitutes 32% of the impact
and 31% is from infrastructure demands.
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Table 6. Comparing 1p ‘Life cycle AZEP100%’, 1 p ‘Life cycle AZEP85%’, and 1 p ‘Life cycle
NGCC’Method: Selected LCI results V1. Indicator: Characterization (400MW)

Impact category Unit Life cycle Lifecycle Life cycle NGCC
AZEP100% AZEP85%

NMVOC kg 21853.981 22566.673 25920.419
Carbon dioxide fossil kg 27636454 29348681 37405562
Sulphur dioxide kg 12977291 130391.17 133306.27
Nitrogen oxides ke 71098.875 72204.554 77410.575
Particulates, <2.5 um ke 32127.573 32151.153 32299.169
Land occupation m?2 1134838.7 1135914.5 11412444
BOD kg 42844 .845 42961.601 43514316
Cadmium kg 0.003472432 0.00347964 0.003514453
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CONCLUSION

The different uncertainties arising from the options
given during the development of the LCA of a combined
cycle power plant (or AZEP) have been analyzed in
this study, using the Eco-indicator99 LCA method. In
addition, the impact that these scenarios may present
on the tinal LCA has also been assessed. Undoubtedly,
the choices made at the turbine maintenance stage
have an important effect on the results of the LCA.
Therefore, it is necessary to precisely analyze the
average of major corrections that a model of combined
cycle power plant (or AZEP) may experience along its
20 years of life. Another issue that signiticantly
inGluences the Gnal results of the LCA study of an
AZEP is the considerations made about recycling and
reuse of components and materials from an
environmental point of view. Compared with a
conventional CCGT the optimized AZEP concept for
the 50 MW size gives 4.5 percentage points reduction
in thermal efficiency (LHV) with 100% CO, capture
including pressurization of CO, to 100 bar. In the AZEP
50 MW case with a CO, capture of 85% the penalty in
thermal efficiency is less than 3.0 percentage points
compared to a standard CCGT. The 400 MW size has
more penalty for the 100% CO, capture case and
therefore needs a sequential combustion before the
expander to improve the thermal efficiency. In an AZEP
400 MW case with 85% CO, capture the penalty in
thermal efficiency (LHV) is 4.5 percentage points. The
LCA study shows a very good environmental rank for
the systems based on the AZEP concept. This is
particularly evident for two global effects, the
Greenhouse Effect (Global Warming Potential) and the
Acid Rain Potential, and for two impacts, the CO, and
NO, emissions. For all studied impacts and impact
categories, the AZEP power plants have fewer impacts.
However, compared to the conventional CCGT plants
the total consumption of primary energy is bigger for
both the CO, capturing concepts due to lower electric
efficiencies for these concepts.

Abbreviation

AZEP Advanced Zero Emissions Plant
LCA Life Cycle Assessment

LCI Life Cycle Inventory

LCIA Life Cycle Impact Assessment
BFW Boiler Feed Water System
CCGT Combined Cycle Gas Turbine
HP High Pressure

LP Low Pressure

HRSG Heat Recovery Steam Generator
MCM Mixed Conducting Membrane
TIT Turbine Inlet Temperature

HTP Human Toxicity Potential
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PMFP Particulate Matter Formation Potential
BOD Biological Oxygen Demand
NMVOC  Non-Methane Volatile Organic Compounds
W Fuel cell electrical work
o> We Thermodynamic work of gas
turbines, steam turbines, and gas turbine compressors
W, 0 ac Losses related to DC to AC conversion
consumers Work related to auxiliaries, pumps,
ejectors, CO, compression, O, production and
compression.

L Electricity grid efficiency
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