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Abstract 

The present study is the first to analyze the dynamic response of a poroelastic beam subjected to a 

moving force. Moreover, the influences of attached mass-spring systems and non-ideal supports (with 

local movements in the supporting points or base due to the presence of factors such as gaps, 

unbalanced masses, and friction or seismic excitations) on the responses were investigated. Non-ideal 

support experiences time-dependent deflection and moment. To evaluate the effects of both the theory 

type and the material properties, three models were investigated for the beam with mass-spring 

attachment and non-ideal supports: i) elastic Euler-Bernoulli-type beam, ii) elastic Timoshenko-type 

beam, and iii) poroelastic beam. The governing-coupled PDE equations of the forced vibration of the 

saturated poroelastic beam were analytically solved via Laplace and finite Fourier transforms. The 

effects of various parameters on the responses were investigated comprehensively and illustrated 

graphically. The poroelastic nature of the material properties was found to attenuate the vibration 

amplitude, and it is assumed that the attached mass can considerably affect the vibration pattern.  

Keywords: Poroelastic beam, Dynamic response, Finite Fourier transform, Laplace transform, Non-

ideal support, Attached mass-spring system. 

 

1. Introduction 

Investigation of the forced vibration behavior 

of structures carrying mass-spring systems is 

an important issue in several engineering 

structures, including the automotive, 

aerospace, marine, and civil structures. The 
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control and measurement instruments attached 

to a control board and the navigation 

instrumentations as well as the passengers and 

sprung masses (e.g., the differential) of a 

vehicle may be regarded as an attached mass-

spring systems [1,2]. Moreover, it has been 

experimentally verified that a person or a 

crowd on a bridge or narrow plate-type 
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structure may be regarded as an attached mass-

spring or mass-spring-damper system when 

considering the interaction between the human 

and the structure [3]. The attached mass-spring 

system may be deliberately included into the 

structure to serve as a dynamic vibration 

absorber [4]. On the other hand, concrete or 

wooden beams may be regarded as poroelastic 

beams. Therefore, some combinations, such as 

the vehicle-bridge combination, may be 

modeled by a poroelastic beam with attached 

mass-spring system that may be exposed to the 

excitation of faster moving vehicles. 

Numerous papers are available on isotropic 

[5], functionally graded, and viscoelastic [6] 

beams with moving loads provided by either 

moving masses [7] or concentrated loads [8-

10], mainly based on the Euler-Bernoulli beam 

theory. Vibration of a transversely graded 

simply supported beam due to a moving load 

was investigated by Şimşek [11] by employing 

the Timoshenko beam theory. Wang and Chen 

[12] studied the effects of the acceleration of a 

moving mass on the beam responses. On the 

other hand, vibration of continuous systems 

with mass attachments has been the topic of 

some recent investigations. Turhan [13] 

analyzed the fundamental frequencies of an 

Euler-Bernoulli beam with an attached point 

mass. Chiba and Sugimoto [14] considered the 

vibration characteristics of a cantilever plate 

with a mass-spring system attached to it by 

using the Rayleigh-Ritz method.  

Several structural components such as those 

used in bioengineering and bioscience (e.g., 

bones), civil engineering (e.g., wooden piles), 

and ventilation facilities exhibit poroelastic or 

saturated poroelastic behaviors. In several 

applications, these elements may be modeled 

on the basis of the Euler-Bernoulli or 

Timoshenko beam theories in conjunction with 

the Biot theory of the saturated porous media. 

Zhang and Cowin [15] studied steady-state 

vibrations of a saturated poroelastic isotropic 

beam under cyclic loadings. Based on the 

three-dimensional Biot model, Wang et al. [16] 

presented a linear analytical solution for the 

steady and transient pure bending responses of 

a compressible saturated poroelastic eam. Li et 

al. [17] presented a geometrically non-linear, 

but constitutively linear formulation for large 

deflection of the fluid-saturated poroelastic 

beams that were permeable in the axial 

direction and impermeable in the transverse 

direction as per the Euler-Bernoulli beam 

theory. 

Often, under several conditions, the fluid or 

solid phases can be assumed to be 

incompressible from the microscopic 

perspective. While the Biot theory [18,19] has 

been commonly employed for the saturated 

poroelastic media, the theory of porous media 

[20] and the theory of hybrid mixture [21] have 

also been successfully employed in several 

fields of study such as soil dynamics, 

geophysics, and biomechanics. Using the Biot 

theory, Yang and Wang [22] analyzed the 

dynamic behavior of a saturated poroelastic 

cantilever beam subjected to a harmonic-end 

load by the finite element method. Yang and 

Wen [23] performed the dynamic analysis of a 

saturated poroelastic Timoshenko cantilever 

beam with an impermeable fixed-end and a 

permeable free-end that were subjected to a 

step-end load by considering the movement of 

the pore fluid in the axial direction only. The 

governing equations were solved by the 

Laplace transform. Based on the theory of 

porous media, Yi et al. [24] investigated the 

quasi-static and dynamical bending of a 

cantilever poroelastic beam subjected to a step-

end load. 

Few investigations have been accomplished 

on the dynamical and quasi-static behavior of 

the hydro-mechanical coupling of various 

saturated poroelastic structures. On the basis of 

the Biot model, Niskos et al. [25] investigated 

the bending deformations of poroelastic plates. 

Busse et al. [26] presented a dynamical 

mathematical model for the Mindlin plates. 

Assuming the axial movement of the pore fluid 

only, the natural frequencies and attenuations 

of the free and forced vibrations of the simply 

supported saturated poroelastic Timoshenko 

beams subject to step loads were investigated 

by Yang [27]. 

Specifications of the boundary and edge 

conditions significantly affect the dynamic 

responses and the frequencies of the resulting 

vibrations. For example, a beam simply 

supported at its both ends may be immovable 

and moment-free at both ends. However, due 

to manufacturing tolerances, the hole and pin 

(pivot) assembly may have a small gap and/or 
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friction at the support, which may introduce 

small local relative displacements and/or 

moments. The same is true for a beam that is 

supported by bearings at its ends, except that 

the situation is more complex as, in this case, 

the resulting deflections and moments may be 

time-dependent. This situation occurs frequently 

in the automotive, aerospace, and civil 

engineering assemblies (in the latter, such a 

situation may occur during an earthquake). 

Pakdemirli and Boyaci investigated this effect 

by using the perturbation techniques [28]. 

Later, they investigated the effects of non-ideal 

support on non-linear vibration of a beam [29]. 

The effects of the non-ideal, simply supported 

boundary conditions on the vibration of 

rectangular isotropic plates were considered by 

Aydogdu and Ece [30]. Malekzadeh et al. [31] 

investigated the effects of non-ideal boundary 

condition on the vibrations of laminated plates 

based on elastic foundations. Boyaci [32] 

considered a simply supported, damped, Euler-

Bernoulli beam with immovable non-ideal end 

conditions that allow small deflections and 

moments and they found an approximate 

analytical solution by using the multiple-scales 

perturbation technique. Eigoli and Ahmadian 

[33] investigated the influences of non-ideal 

boundary conditions on the nonlinear vibration 

of damped Euler–Bernoulli beams subjected to 

harmonic loads in the form of small deflections 

and/or moments at the supports of the beam by 

using the iteration perturbation method.  

Considering that there is no published 

literature on the dynamic analysis of poroelastic 

beams with moving loads, especially for beams 

with non-ideal supports and attached mass-

spring systems, we undertook this task in the 

present research. The end support of the beam 

has a time-dependent, non-ideality that is 

unprecedented in the field. The governing 

equations are solved analytically by using 

Laplace and finite Fourier transforms. Results of 

three different models have been compared 

through a sensitivity analysis for beams with 

attached spring-mass system: i) elastic Euler-

Bernoulli, ii) elastic Timoshenko, and iii) 

poroelastic beams. In this regard, the effects of 

various parameters, such as the non-ideality of 

the right support, amount of the attached mass, 

and poroelastic material properties, have been 

investigated and discussed comprehensively in 

the Results section.  

2. The governing equations of the problem 

2.1. The elastic Euler-Bernoulli beam 

The governing equation of vibration of an 

Euler-Bernoulli beam subjected to axial and 

transverse loads is given below [35]:   

where, D = EI is the reduced flexural rigidity 

of the beam and E, I, w(x,t), ρ, A, and P are the 

elasticity modulus, inertia moment of the 

cross-section, transverse deflection of the 

beam, mass density, cross-section, and axial 

load of the beam, respectively. The beam with 

attached a mass-spring system, moving load, 

and non-ideal support are shown in Figure 1. 

For this beam, the distributed transverse load, 

f(x,t), may be expressed as follows: 

     

0 1 1

,

( );

      

 

of x t m g m y t x x

f x x x Vt




 (2) 

where, g, y(t), and L are the gravity 

acceleration, absolute vertical position of the 

mass relative to the static equilibrium point, 

and length of the beam, while δ(x-x0) is the 

Dirac delta function. Rewriting of Equation (1) 

gives the following equation: 

   

4 2 2

4 2 2

0 1 1( ); 0

  
  

  

    

  

o

w w w
E I A P

x t x

m g y t x x

f x x x Vt t







 
(3) 

where 0 (0, )x L  and V are the uniform 

velocity of the moving concentrated load. On 

the other hand, the governing equation of 

motion of the attached mass is as follows: 

0( , )m y k y kw x t    (4) 

 
4 2 2

4 2 2
,

  
  

  

w w w
D A P f x t

x t x
  (1) 
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Fig. 1. A poroelastic beam with an attached mass-spring system and a non-ideal support  

The following mathematical description 

was considered for the ideal and non-ideal 

simply supported boundary conditions of the 

beam: 

 
 

   
 

 

2

2

2

1 1 2 22

0,
0, 0, 0,

,
, = ,


 




 



w t
w t

x

w L t
w L t f t f t

x
 

 
(5) 

where, 
1  and 

2 are the amplitudes of the 

time-dependent deflection and normalized 

moment acting on the non-ideal, right-hand 

support of the beam due to factors such as 

movements of the base of the support, presence 

of a gap, friction between the pin and hole of 

the supporting pivot, and presence of 

unbalanced masses. Therefore, these types of 

excitations may be produced by some kind of 

bearings as explained previously. These 

parameters serve as perturbation parameters of 

the non-ideal boundary conditions. The initial 

conditions of the beam were as follows: 

0(0) , (0) 0y y y   
 

(6) 

 
 

1 2

,0
,0 ( ); ( )

w x
w x g x g x

t


 


 

 

(7) 

To cover the common practical situations, 

the support excitations are assumed to be 

harmonic, e.g., 1 2( ) ( ) sin( )f t f t bt  , to 

determine the analytical solutions of the 

problem. 

2.2. The elastic Timoshenko-type beam 

Timoshenko bam theory may be adopted to 

incorporate the effects of shear deformations in 

the elastic beam. The relevant governing 

equation of motion of the beam shown in 

Figure 1 has the following form: 

4 2 2

4 2 2

4 2 4

2 2 4

2 2

2 2

1

0

  
  

  

  
  

   

 
    

 

w w w
EI P A

x x t

E w I w
I

G x t G t

EI f I f
f t

AG x AG t






 



 

 (8) 

where G is shear modulus of the material of the 

beam and is the shear correction factor. As 

in the former case, the distributed transverse 

force may be described by Equation (2). 

Therefore, the right hand side of Equation (8) 

becomes as given below: 

2 2

2 2

(2) (2)

0 0

(4) 2 (2)

0 0

0 0 0 1

( ) ( ) ( )

( ) ( )

( ) ( ) ( ); , (0, )

 
   

 

      

      

     

EI f I f
f

AG AGx t

EI
m g y x x f x Vt

AG

I
my x x V f x Vt

AG

m g y x x f x Vt x x L



 

 



 



 

 (9) 

in which 
(2)

0( )x x   is the second derivative 

of the Dirac delta function with the following 

definition: 

(2)

0 0( ) ( ) ( )x x f x d x f x



   (10) 

The governing Equation of motion of the 

attached mass is identical to Equation (4). The 

boundary conditions of the simply supported 

beam with ideal and non-ideal supports shown 

in Figure 1 are as follows: 

 0,
(0, ) 0, 0


 



t
w t

x


 (11) 

 
1 2

,
( , ) sin( ) , sin( )


 



L t
w L t bt bt

x


   (12) 
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in which, according to the Timoshenko beam 

theory, the rotation  may be related to the 

lateral deflection as follows:  

2 2

2 2

w w f

x x G t AG

 

 

  
  

  
 (13) 

Such that 0),(),0(  tLftf and the 

boundary conditions of  Equations (11) and 

(12) become: 

     2 2

2 2

(0, ) 0,

0, 0, 0,
0



  
  

  

w t

t w t w t

x x G t

 



 (14) 

     
1

2 2

2 2

2

( , ) sin( ),

, , ,

sin( )



  
 

  



w L t bt

L t w L t w L t

x x G t

bt



 





 (15) 

Since ),0( tw  is constant with respect to 

time, its time derivatives become zero. Hence, 

 2

2

0,
0






w t

t
, and 1( , ) sin( )w L t bt , so that 

 2

2

12

,
sin( )


 



w L t
b bt

t
 . Therefore 

 2

2

0,
(0, ) 0, 0


 



w t
w t

x
 (16) 

 
1

2 2

2 12

( , ) sin( ) ,

,
sin( )



  
  

  

w L t bt

w L t b
bt

x G




 



 (17) 

The initial conditions are follows: 

0(0) , (0) 0 ,

(0) 0 , (0) 0 ,

 

 

y y y

y y
 (18) 

 
 

   

1 2

2 3

2 3

,0
,0 ( ) , ( )

,0 ,0
0, 0.


 



 
 

 

w x
w x g x g x

t

w x w x

t t

 (19) 

2.3. The poroelastic beam 

Using Biot theory of the saturated porous 

media and neglecting the effects of the axial 

force and the axial displacements [19], the 

governing equations of vibration of the 

poroelastic Euler-Bernoulli beam can be shown 

by the following equation:  

 

24 2

4 2 2
( )

,

 
  

  



p

S F S

Mw w
E I A

x x t

f x t

 
 

(20) 

223

2 2
0

pF

V

Mnw
I

x t S x


 

  
 (21) 

where ES, ρF, ρS, nF and SV are respectively 

Young’s modulus of the solid constituent, 

partial densities of the fluid and solid 

constituents, respectively, volume fraction of 

the fluid phase, and the interaction coefficient 

between the solid skeleton and the pore fluid. 
2 /V F FS n K  (22) 

where γ is the dynamic viscosity of the fluid and 

KF is permeability under dynamic and quasi-

static conditions. F(x, t) is defined in Equation (2) 

and the equivalent couple of the fluid pore 

pressure p, i.e., Mp, is defined as follows: 

p
A

M zpdydz   (23) 

For the poroelastic beam with an attached 

mass-spring system, Equations (20), (21), and 

(4) should be solved in conjunction with 

Equation (2). 

Both the ends of the beam are supposed to 

be permeable and one end is non-ideal simply 

supported. Therefore, the fluid pressure 

boundary conditions are consequently, 

(0, ) ( , ) 0p pM t M L t   (24) 

 2

2

0,
(0, ) 0, 0


 



w t
w t

x
 (25) 

 2

1 22

,
( , ) sin( ), sin( )


 



w L t
w L t bt bt

x
   (26) 

Initial values of all parameters are supposed 

to be zero, except for 

3. Analytical solutions of the three types of 

governing equations  

3.1. The elastic Euler-Bernoulli beam 

Transverse deflection of the beam ( , )w x t  

may be resolved into two parts as follows: 

0(0)y y  (27) 

( , ) ( , ) ( , )w x t u x t v x t    (28) 
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where the function v(x, t) may be defined as follows: 

4 32 2

2 2

1 1( , ) 2 sin( )
6 6

       
          

        

L Lx x
v x t bt

L L

 
   (29) 

Indeed, solving w(x, t) like Equation (28) 

makes the process of application of the finite 

Fourier sine transform slightly easier because 

the definition of v(x, t) in the form of Equation 

(29) gives a partial differential equation in 

terms of u(x, t) with homogeneous boundary 

conditions.  

Substitution of  Equations (28) and (29) into 

Equations (3) and (4) gives the following 

equations: 

     
4 2 2

04 2 2
( , )

  
       

  
o

u u u
EI A P m g y x x f x Vt h x t

x t x
    (30a) 

 
  4 32 2

2 2
1 2 1 1

,0
,0 ( ) , ( ) 2

6 6

u x L Lx x
u x g x g x b

t L L

 
 

        
            

         

 (30b) 

 
 

 
 2 2

2 2

0, ,
0, 0, 0, , 0, 0

u t u L t
u t u L t

x x

 
   

 
 (30c) 

where, 

4 2 2

4 2 2
( )

v v v
h x EI A P

x t x


  
  

  
 (31) 

Applying Laplace transform to Equations (4), (30a), and (30c) gives the following: 

 
4 2

2 2

0 04 2
( ,0) ( ,0) ( , )

     
               

U U u g
EI P A s U su x x m s Y sy x x H x s

x x t s
   (32) 

2

0 0( , )ms Y msy kY kW x s    (33) 

 
 

 
 2 2

2 2

0, ,
0, 0, 0, , 0, 0

U s U L s
U s U L s

x x

 
   

 
 (34) 

where, U and Y stand for the transformed 

version of the corresponding functions. Finding 
 from Equation (33) and substituting it into 

Equation (32) gives the following: 

 
4 2

2 2 0 0
0 04 2 2

( , )
( , )

     
        

    

kW x s msyU U g
EI P As U m s sy x x G x s

x x s ms k
   

 
(35) 

where, 

( , ) ( , ) ( ,0) ( ,0)
u

G x s H x s A su x x
t


 

     
 (36) 

In order to obtain a compact equation, Equation (35) can be rewritten as follows: 

 
4 2

2

0 04 2
( , ) ( , )

U U
EI P As U x s x x G x s

x x
 

 
    

 
 (37) 

where,  

0 0( , ) ( , )x s W x s   (38) 

where in, 
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2

0

2

( )

( )

mg ky s kg
m

s ms k

 



 (39) 

2

2

mks

ms k



 (40) 

To complete the solution process of the 

problem, the finite Fourier sine transform with 

the following definition was used [36]:  

0
[ ( ); ] ( ) ( )sin

 
   

 


a

s s

n x
F f x n f n f x dx

a


 
 
(41) 

whose inverse transform may be obtained from 

the following equation: 

1

1

2
( ); ( ) ( )sin






 
      

 
s s s

n

n x
F f n x f x f n

a a


 (42) 

Employing the integration by parts rule, the 

following relation is derived when f(a)= f(0)= 

0, as per the definition presented in Equation 

(41): 

4 4 4

4 4
; ( )s s

d f n
F n f n

dx a

 
 

 
 (43) 

Thus, imposing the boundary conditions 

presented in Equation (34) based on Equations 

(41) and (43) at a=L, the transformed form of 

Equation (37) may be written as follows: 

4 4 2 2
2 0

04 2
( , ) ( , )sin ( , )s s

n xn n
EI P As U n s x s G n s

L L L

 


   
      

  
 (44) 

Obtaining ( , )sU n s  from Equation (44) 

and applying the inverse Fourier transform 

defined in Equation (42) gives the following 

solution: 

0
0

1

4 4 2 2
21

4 2

( , )sin ( , )
2

( , ); ( , ) sin

s

ss

n

n x
x s G n s

n xL
F U n s x U x s

n nL L
EI P As

L L





 







 
 

          
 

  (45) 

According to Equation (28), Equation (38) can be rewritten as follows: 

0 0 0( , ) ( , ) ( , )x s V x s U x s    (46) 

where, 

4 32 2

0 02 2
0 0 1 12 2

( , ) [ ( , )] 2
6 6

x xL Lb
V x s L v x t

s b L L

 
 

       
           

         

 (47) 

Rewriting Equation (45) based on Equation (46) gives the following:  

  0
0 0

4 4 2 2
21

4 2

( , ) ( , ) sin ( , )
2

( , ) sin

s

n

n x
U x s V x s G n s

n xL
U x s

n nL L
EI P As

L L





 






 
   

    
 

 

  (48) 

Notably, in Equation (48), U(x, s) appeared 

at the left hand side of the equation while a 

relevant 0( , )U x s term merged at the right hand 

side of the mentioned equation. To find a 

( , )U x s expression independent of 0( , )U x s , 

Equation (48) may be used as it is a general 

form for ( , )U x s
, 

which is true for all 

[0, ]x L  including 0x . Thus, to find an 

independent expression for ( , )U x s , x must be 

replaced by 0x at both the sides of Equation (48) 

to find an expression for 0( , )U x s and then 

substituting it into the right hand side of 

Equation (48). Conducting some manipulations, 

the following results were obtained:  
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1 0 3 0
0

2 0

( , ) ( , )
( , )

1 ( , )

F x s F x s
U x s

F x s





 (49) 

where, 

20 0
1 0 4 4 2 2

21

4 2

( , )2
( , ) sin

n

V x s n x
F x s

n nL L
EI P As

L L



 






  
  

 
 

  (50) 

2 0
2 0 4 4 2 2

21

4 2

2
( , ) sin

n

n x
F x s

n nL L
EI P As

L L



 






 
  

 
 

  
(51) 

0
3 0 4 4 2 2

21

4 2

2 ( , )
( , ) sin

s

n

n xG n s
F x s

n nL L
EI P As

L L



 






 
  

 
 

  
(52) 

Substituting 0( , )U x s from Equation (49) into 

Equation (48) gives the final form of ( , )U x s . 

After applying the inverse Laplace transform, 

( , )u x t can be obtained and, consequently, 

( , )w x t can be found from Equation (29).  

3.2. The elastic Timoshenko beam 

The process of establishing the analytical 

solution of the elastic Timoshenko beam is 

almost similar to that of the elastic Euler-

Bernoulli beam. After resolving ( , )w x t into 

two parts like in Equation (28), ( , )v x t may be 

defined as follows: 

4 32 2 2

3 3
1 1 3 2 1( , ) 2 sin( ) ,

6 6

L Lx x b
v x t bt

L L G

  
    



       
            

        

 (53) 

Substituting Equation (53) into Equation 

(8), imposing the boundary conditions (16,17) 

and the initial conditions (18, 19) and the 

Laplace transform on the resulting equation, as 

well as by substituting Y from the Laplace 

transformed version of Equation (4) into the 

transformed version of the governing equation 

of Timoshenko beam gives the following 

equation: 

4 2 2
2 2 4

4 2

2 (2)0 0
0 02

4 30 0
0 02

2 0 0

2

1

( , )
( )

( , )
( )

( , )

U E U I
EI P I s As s U

x G x G

kW x s msyEI g
m s sy x x

AG s ms k

kW x s msyI
m s s y x x

AG ms k

kW x s msyg
m s sy

s ms k


 

 









     
             

   
     

  

   
    

  

 
   

 
0 0 1( ) ( , )x x G x s

 
  

 

 (54) 

where, 
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2

0
1 2 2

4 32 2

3 3
1 2 1 1

42 22 2

3 31
2 1 12 2

1
( , )

( ) ( ) 2
6 6

( )
1 ( ) 2

6 6

s x

V
f sEI I

G x s e
AGV AG s V

L Lx x
A s g x g x b

L L

L Lg xE x
I s g x b

G x x L



 

 
  

 
  



 
    
 

         
             

          

       
           

      

3 42 22
3 2 3 3

1 2 1 1

3 4 32 2
3 3 3

1 1 1

( ) ( ) 2
6 6

2
6 6

L Lx I x
s g x s g x b

L G L

L Lx x x
b H

L L L

 
 



 
 

  
  
   

          
                           

           
                              

( , )x s

 
(55) 

where, 

4 2 2 4 2 4

1 4 2 2 2 2 4
( , ) 1

v v v E v I v
H x t L EI P A I

x x t G x t G t


 

 

      
       

         

(56) 

Applying the finite Fourier sine transform to Equation (54) gives the following equation: 

  0
11 1 0( , ) ( , ) ( , ) ( , ) ( , ) sin ( , )s

n x
n s U n s A n s B n s W x s G n s

L




 
   

 
 (57) 

where, 

4 4 2 2 2
2 2 4

4 2
( , ) 1

n E n I
n s EI P I s As s

L G L G

  
  

 

   
        

    
 (58) 

32 2

0 0 0
1 2 2 2 2
( , )

ksy ksy kms yg EIm g n I
A n s m

s ms k AG s ms k L AG ms k

 

 

   
       

     
 (59) 

2 2 2

1 2 2
( , ) 1

mks EIm n I
B n s

ms k AG L AG

 

 

 
   

  
 (60) 

Therefore,  

0
1 1 0 1 0

1

[ ( , ) ( , )]sin ( , )
2

( , ) sin
( , )

s

n

n x
A B U x s B V x s G n s

n xL
U x s

L n s L











 
   

    
 

  
(61) 

Such that 

4 0 6 0
0

5 0

( , ) ( , )
( , )

1 ( , )

F x s F x s
U x s

F x s





 (62) 

where, 

21 1 0 0
4 0

1

( , ) ( , ) ( , )2
( , ) sin

( , )n

A n s B n s V x s n x
F x s

L n s L









  
  

 
  (63) 
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2 01
5 0

1

( , )2
( , ) sin

( , )n

n xB n s
F x s

L n s L









 
  

 
  (64) 

0
6 0

1

2 ( , )
( , ) sin

( , )

s

n

n xG n s
F x s

L n s L









 
  

 
  (65) 

As in the previous case, substituting 

0( , )U x s from Equation (62) into Equation 

(61), the final form of ( , )U x s can be obtained. 

After imposing the inverse Laplace transform 

on this expression, ( , )u x t can be derived and 

consequently ( , )w x t can be determined based 

on Equation (28). 

3.3. The poroelastic beam 

Combining Equations (20) and (21) gives the 

following equation that is in terms of the lateral 

deflection of the beam (i.e., w ) only. 

   
4 3 2

04 2 2 2
( ) ( )V

S F S o

F

ISw w w
E I A m g y t x x f x Vt

x n x t t
   

  
            

 (66) 

Therefore, the associated governing 

equations and the initial and boundary 

conditions may be summarized as follows: 

   
4 3 2

04 2 2 2
( ) ( )V

S F S o

F

ISw w w
E I A m g y t x x f x Vt

x n x t t
   

  
            

 (67) 

0( , )m y k y kw x t   (68) 

   0(0) , (0) 0, ,0 0, ,0 0y y y w x w x     (69) 

   2 2

1 22 2

0, ,
(0, ) 0, 0, ( , ) sin( ), sin( )

 
   

 

w t w L t
w t w L t bt bt

x x
   (70) 

Finding an analytical solution for the 

system of Equations (67)-(70) is achievable by 

following the mathematical procedure 

presented in the previous sections. In this 

regard, after resolving w(x, t) into two parts 

like in Equations (28) and (29), Equations (67), 

(69), and (70) may be rewritten based on the 

new variables u(x,t) and v(x,t) as follows:  

   
4 3 2

04 2 2 2
( ) ( ) ( , )V

S F S o

F

ISu u u
E I A m g y x x f x Vt h x t

x n x t t
   

  
        

   
 (71) 

 
  4 32 2

2 2
1 2 1 1

,0
,0 ( ) , ( ) 2

6 6

u x L Lx x
u x g x g x b

t L L

 
 

        
            

         

 (72) 

 
 

 
 2 2

2 2

0, ,
0, 0, 0, , 0, 0

u t u L t
u t u L t

x x

 
   

 
 (73) 

where, 
4 3 2

4 2 2 2
( , ) ( )V

S F S

F

ISv v v
h x t E I A

x n x t t
 

  
   

   
 (74) 

Applying Laplace transform to Equation (71)gives the following equation:  
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 
4 2

2

0 04 2 2
( ) ( , ) ( , )V

S F S

F

IS sU U
E I As U x s x x G x s

x n x
  

 
     

 
 (75) 

where,  

( , ) ( , ) ( ) ( ,0) ( ,0)F S

u
G x s H x s A su x x

t
 

 
      

 (76) 

In Equation (75), 
0( , )x s  may be defined 

according to Eq. (38). In order to complete the 

solution procedure of the problem, the finite 

Fourier sine transform can be used, such that  

0
0 0

4 4 2 2
21

4 2 2

[ ( , ) ( , )]sin ( , )
2

( , ) sin

( )

s

n V
S F S

F

n x
U x s V x s G n s

n xL
U x s

IS sn nL L
E I As

L n L





 
 





 
   

    
 

  

  (77) 

So that, 

0
0 0

0
0 4 4 2 2

21

4 2 2

[ ( , ) ( , )]sin ( , )
2

( , ) sin

( )

s

n V
S F S

F

n x
U x s V x s G n s

n xL
U x s

IS sn nL L
E I As

L n L





 
 





 
   

    
 

  

  (78) 

With few manipulations, the following equation is achieved: 

1 0 3 0
0

2 0

( , ) ( , )
( , )

1 ( , )

F x s F x s
U x s

F x s





 (79) 

where, 

20 0
1 0 4 4 2 2

21

4 2 2

( , )2
( , ) sin
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S F S

F

V x s n x
F x s

IS sn nL L
E I As

L n L



 
 





  
  

 
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  
(80) 

2 0
2 0 4 4 2 2

21

4 2 2

2
( , ) sin

( )n V
S F S

F

n x
F x s

IS sn nL L
E I As

L n L



 
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



 
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 
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  
(81) 

0
3 0 4 4 2 2

21

4 2 2

2 ( , )
( , ) sin

( )

s

n V
S F S

F

n xG n s
F x s

IS sn nL L
E I As

L n L



 
 





 
  

 
  

  
(82) 

Substituting 0( , )U x s from Eq. (78) into 

Equation (77) gives the final form of ( , )U x s , 

such that application of the inverse Laplace 

transform gives ( , )u x t  and, consequently, 

( , )w x t  based on Equation (28). 

4. Results and Discussions 

4.1. Verification of the results 

The considered general problem consists of 

several aspects that have not been combined 

fully or even partially in any prior research. 

This point makes verification of the results of 

the presented formulation a formidable task. 

The poroelasticity, non-ideal support, attached 

mass, and moving load are among some of 

these parameters. For this reason, dynamic 

deflection results of a simply supported beam 

without attached mass-spring system 

(i.e., 1 2 0  
 

and 0m  ) having ideal 

supports were compared with the results of 

Fryba [37] under the action of a moving load. 
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Fryba [37] presented a closed-form solution for 

simple elastic Euler-Bernoulli beams under 

moving loads: 

3

0

2 2 2
1

1
( , ) sin sin sin

48 ( )
j

j

f L j x
w x t j t t
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where, 
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Figure 2 presents the comparison of the 

present results with those of a previous paper 

[37] as follows:  

3

1

1 2 0

1 , 50 , 10 , 5 / 6, 7800 / , 48 ,

210 , 0, 0, 10 , 1 /

     

     

L m a mm h mm k kg m G GPa

E GPa m f N V m s



 

Fig. 2. Comparison between the lateral deflection results of the present study and those of a previous study [37] for an 

elastic beam without attached mass-spring system and non-ideal supports under the action of a moving load  

In this regard, the present results for the 

elastic Euler-Bernoulli and elastic Timoshenko 

beams have been compared with the results of 

a previous study [37]. Fryba [37] derived the 

response of the Euler-Bernoulli beam based on 

the Fourier finite sine integral transformation 

in the time domain. As shown in Figure 2, the 

present results are almost coincident with the 

results of Fryba for the Euler-Bernoulli beam. 

Deviations of results of Timoshenko beam 

from the results of Fryba were <1%. Therefore, 

all three types of results are in excellent 

agreement. 

4.2. Results of the elastic Timoshenko and 

Euler-Bernoulli beams 

The present section discusses the observations 

of the investigation of some parameters that 

have not been considered previously, including 

the non-ideal supports and the attached mass-

spring system. A comprehensive parametric 

study was accomplished to extract practical 

conclusions. Consider the case of an elastic 

beam with attached mass and a moving load, 

with the following geometric, material, and 

stiffness specifications: 

3

1 2 1 0 0 0

1 , 50 , 10 , 7800 / , 48 , 210 ,

5 , 0, 5000 / , 5 / 6, 50 , 0.5 , 0.

     

       

L m a mm h mm kg m G GPa E GPa

m kg k N m k f N x m y



 

where a and h are respectively, width and 

height (thickness) of the beam section. 

Therefore, the mass of the beam was 3.9 kg. 

Since the beam is thin, as Figure 2 implies, 

almost no noticeable differences were observed 

between the responses of Timoshenko and 

Euler-Bernoulli two theories; therefore, only 

the results of the Timoshenko beam will be 

illustrated in some of the figures cited 

subsequently.  
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4.2.1. Influence of the magnitude of the 

attached mass 

The effects of the magnitude of the attached 

mass on time history of the lateral deflection of 

the mid-point of the beam are illustrated in Fig. 

3 for an elastic beam with the information 

mentioned in the foregoing section and 

0 50 , 1 /f N V m s  . 

As shown in Figure 3, the influence of the 

magnitude of the mass of the attached mass-

spring system on the fundamental natural 

frequency of the multi-body system is 

negligible; but, this parameter significantly 

affects the amplitude of the vibration of the 

beam under a moving load such that the 

amplitude increases in proportion with the 

amount of the attached mass. This 

phenomenon is partially monitored by the in-

phase and anti-phase relative vibration modes 

of the beam and the attached mass.  

4.2.2. Effects of parameters of the non-ideal 

support 

In the present section, the effects of the 

existence of non-ideal (with transverse and 

moment-type excitations) supports and the 

relevant values of the parameters were 

investigated. To avoid any influences on the 

results of interaction between the moving load 

and the non-ideal support excitations, a beam 

without any moving load was used to observe 

the effects of the non-ideal support more 

clearly. The effects of the non-ideal supports 

on the responses of a beam with a moving load 

have been discussed in the next section, where 

the more general case of a poroelastic beam 

with a moving load and an attached mass-

spring system has been considered. 

Specifications of the resulting multi-body 

system are similar to those mentioned in the 

previous sections, expect for the following 

information: 

0 1 20.005 , 0.005, 10.y m b      

Time variations of the lateral deflection of 

the middle point of a Timoshenko beam with an 

non-ideal support (Fig. 1), whose general 

specification are mentioned in the previous 

sections, are demonstrated in Figure 4 for 

different   values ( 0 0.005y  ). As expected, 

the amplitude of the vibration was proportional 

with the amplitude of the applied excitations; 

however, the amplitude of the superimposed 

vibrations that performed with the fundamental 

natural frequency experienced only small 

changes. Therefore, the total amplitude of the 

vibration did not vary proportional to the 

amplitude of the excitations as implied by 

Figure 4. 

Fig. 3. Vibration of a Timoshenko beam with an attached mass-spring system and an ideal support under a moving 

load ( 0 50 , 1 /f N V m s   and 1,2,5m kg )  
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Fig. 4. Time variations of the lateral deflection of the middle point of a Timoshenko beam with an attached mass-

spring system and a non-ideal support ( 1 2 0, 10, 0.5Eps b x     ) 

 4.3. Results of the Poroelastic beam 

In the present section, the more general case of 

a poroelastic beam with an attached mass-

spring system was considered. Various cases 

(e.g., free and forced vibration of beams with 

or without non-ideal conditions) were 

considered to enable a parametric study, with 

  = 10
-3

 Ns/m
2
 for water. 

4.3.1. Free vibration 

Free vibration is usually considered to identify 

characteristics of the transient response of a 

structure. We considered the solid and fluid 

phases of the beam structure as wood and 

water, respectively. Due to the existence of a 

wide range of wood types, the approximate 

material properties of the resulting porous 

structure as well as the kinematic and dynamic 

parameters were selected as follows: 

2 3
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0 1 2
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 
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  



To present the effects of poroelasticity of 

the material properties, beam supports were 

temporary assumed to be ideal. The transient 

lateral deflection response of the poroelastic 

beam due to imposing of an initial 

displacement to the attached mass has been 

illustrated in Figure 5. As shown in Figure 5, 

the resulting free vibrations disappear with 

time. The beat-type oscillations observed can 

be attributed to the presence of the suspended 

mass. 

To demonstrate the damping effect of the 

poroelastic material, the response of the beam 

has been plotted for 0Fn  in Figure 6. This 

response corresponds to that of an elastic 

Euler-Bernoulli beam. Notably, as in Figure 6, 

in contrast to the response shown in Figure 5, 

oscillations of the beam accomplished without 

any suppression in the vibration amplitude. 

Effect of the magnitude of the suspended mass 

on free vibration of the poroelastic beam has 

been shown in Figure 7. Figure 7 also reveals 

that, due to altering of the differences between 

the fundamental and subsequent natural 

frequencies by changing the magnitude of the 

suspended mass, the beat-type oscillation may 

become an overall vibration with a 

superimposed minor oscillation associated with 

the higher vibration modes or a quite disorder 

vibration whose effects of the higher modes are 

more pronounced (a vibration with significant 

local oscillations). 
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Fig. 5. Free vibration of a poroelastic beam with an attached mass-spring system and an ideal support ( 0 0.005y m ) 

 

Fig. 6. Free vibration of an elasticEuler-Bernoulli beam with an attached mass-spring system and an ideal support 

( 0 0.005y m ) 

Fig. 7. Effects of the magnitude of a suspended mass on the free vibration of a poroelastic beam with an ideal support 

( 0 0.005y m ):a) beat-type oscillations, b) a global vibration with local superimposed oscillations, and c) a vibration 

with pronounced local oscillations 
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4.3.2. Effect of a moving load (forced 

vibration) 

In this section, forced vibration of a poroelastic 

beam with zero initial and boundary conditions 

under a moving load was investigated. The 

employed geometric, material, and vibration 

information was as follows: 

2 3

0 1 2

0

10

0.23,  10 / ,  20 ,  13 ,  1000 / ,

0.5 , 0, , 500 /

 0,
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  





In this regard, the effects of both magnitude 

and speed of a moving load on the lateral 

deflection response was studied (results are 

given in Fig. 8). As shown in Fig. 8, it may be 

deduced that, generally, the amplitude of the 

resulting vibration is not proportional to the 

magnitude of the moving load and that the 

moving speed only slightly affects the 

vibration amplitude. Furthermore, damping of 

the transient vibration following passage of the 

load is noticeable. Moreover, when the load 

passes at a higher velocity, the amplitude of the 

vibration at the moment of leaving the beam 

becomes greater, because damping of the 

energy induced by a moving load to the beam, 

due to poroelasticity nature of the materials, is 

more remarkable when this energy is subjected 

to damping for a longer passage time. 

Fig. 8. Influence of both the magnitude and speed of a moving load on the vibration of a poroelastic beam with an 

attached mass-spring system and ideal supports 
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4.3.3. Effect of the non-ideal support on 

vibration of poroelastic beam 

Finally, the most general case of a poroelastic 

beam with an attached mass-spring system and 

a non-ideal support subjected to a moving 

concentrated force was considered. The beam 

was initially at a stationary situation. Time 

variations of the lateral deflection of the 

middle point of the poroelastic beam have been 

plotted in Fig. 9 for the following material, 

geometric, and dynamic parameters: 

2 3

0

0

1

0

0 0.5 , 10, , 50

0.23,  10 / ,  20  ;  13 , 1000 / ,  0,
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Fig. 9. Vibration of a poroelastic beam with an attached mass-spring system and a non-ideal support subjected to a 

moving load ( 1 2 Eps   ) 

5. Conclusions 

The novelties of the present approach may be 

summarized as follows: 

1. Dynamic analysis of poroelastic beams with 

moving loads was performed for the first 

time. 

2. The complexity increases by considering 

non-ideal supports and attached mass-spring 

systems. 

3. Free and forced vibration responses of Euler-

Bernoulli and Timoshenko elastic beams were 

compared with those of poroelastic beams. 

4. The governing-coupled PDE equations of the 

forced vibration of the saturated poroelastic 

beam were analytically solved by using 

Laplace and finite Fourier transforms.  

Apart from the novelties presented in the 

modeling and solution stages, some of the 

practical conclusions of this study can be 

summarized as follows: 

1. The poroelasticity nature of the material 

properties attenuates the vibration 

amplitude and leads to structural damping. 

2. Due to the occurrence of anti-phase vibration 

modes, increasing the magnitude of the 

attached mass may lead to grown 

amplitudes of vibration for beams with 

moving loads. However, the natural 

frequency of a beam may not be 

considerably affected by the magnitude of 

the suspended mass (unless a considerably 

heavy mass is used). 

3. The vibration pattern may be changed from a 

global one with superimposed local 

oscillations to a disordered local or beat-

type by selecting a proper magnitude of the 

attached mass.  

4. Since amplitude of the superimposed 

transient vibrations of a beam with non-

ideal support experiences small changes 

with the amplitude of the support excitation, 

the total amplitude of the vibration does not 

vary in proportion to the amplitude of the 

support excitations. 

5. The amplitude of the vibration of the beam is 

generally not proportional to the magnitude 

of a moving load and the moving speed 

only slightly affects the vibration amplitude. 

Moreover, when a load passes over a 

poroelastic beam, the amplitude of the 

vibration at the moment of leaving the beam 

becomes greater at higher passage speeds. 
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