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Abstract  

This paper presents a multi-objective resource-constrained project scheduling 
problem with positive and negative cash flows. The net present value (NPV) 
maximization and making span minimization are this study objectives. And since 
this problem is considered as complex optimization in NP-Hard context, we present 
a mathematical model for the given problem and solve three evolutionary 
algorithms; NSGA-II, MOSA and MOPSO are applied to find the set of Pareto 
solutions for this multi-objective scheduling problem. In order to show performance 
of the algorithms, different metrics are applied and comparisons between the two 
algorithms are also considered. The computational results for a set of test problems 
taken from the project scheduling problem Bandar Abbas Gas condensate Refinery 
project and library are presented and discussed. Finally, the computational results 
illustrate the superior performance of the NSGA-II, MOSA and MOPSO algorithm 
with regard to the proposed metrics. In order to solve proposed method from NSGA-
II algorithm, the results are compared with GAMS software in some problems. The 
proposed method is a Converge to the optimum and efficient solution algorithm. 
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Introduction 

Resource-constraint project scheduling problem (RCPSP) is a class of 
project scheduling that one’s activities should be scheduled subject to 
precedence and resource constraints and it is proven to be NP-hard 
(Aboutalebi1 et al., 2012). Minimization of project duration is often 
used as an objective of a general project scheduling problem while 
other objectives such as Maximizing of net present value of cash 
flows, and leveling of resource usage are also considered. Resources 
involved in a project can be single or multiple varieties, and can be 
renewable or nonrenewable (Ritwik & Paul, 2013). The time–cost 
tradeoff problem in project management originates when activity time 
can be reduced with some extra direct cost (Jongyul et al., 2012). 
Time Cost Trade off analysis is the compression of the project 
schedule to achieve a more favorable outcome in terms of project 
duration, cost, and projected revenues. The objectives of the Time 
Cost Trade off analysis are compressing the project to the optimum 
duration which minimizes the total project cost (Rifat & Önder Halis, 
2012).  

Another important type of objective emerges if cash flows occur while 
the project is carried out. Cash outflows are induced by the execution 
of activities and the usage of resources. On the other hand, cash 
inflows result from payments due to the completion of specified parts 
of the project. Typically, discount rates are also included. Note that 
cash flows related to activity j might occur at several points in time 
during execution of j. However, they can easily be compounded to a 
single cash flow at the beginning or the end of j. These considerations 
result in problems with the objective to maximize the net present 
value (NPV) of the project which subject to the standard RCPSP 
constraints (Shu-Shun & Chang-Jung, 2008). Project payment 
scheduling problem involves how to schedule progress payments 
effectively including the amount, time or spots (i.e. the key activities 
or events associated with payments), and so on of payments in the 
project so as to maximize the profits of the contractor or/and the 
client.  
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In real life situations, there are at least two parties involved in the 
project: the client, who is the owner of the project, and the contractor, 
whose job is to execute the project. They have to agree with the 
method of payment transferring from the client to the contractor for 
the execution of the project. The ideal situation for the client would be 
a single payment at the end of the project. The contractor, on the other 
hand, would like to receive the whole payment at the beginning of the 
project (Zhengwen & Yu, 2008). Time-Cost optimization (TCO) 
problem has been extensively examined by a number of research 
studies. Various approaches have been proposed for optimizing 
construction time and cost including (1) heuristic methods (Moselhi, 
1993; Siemens, 1971); (2) mathematical programming (Liu et al., 
1995; Moussourakis & Haksever, 2004); and (3) meta-heuristic 
methods. Mathematical programming such as linear programming is 
suitable for problems with linear time-cost relationships, but they 
often fail to solve the problem with discrete time-cost relationships 
(Feng et al., 1997). Moreover, it requires a lot of computational efforts 
to solve a large scale project network. Heuristic methods are able to 
overcome such limitation of a large scale problem, but fail to 
guarantee optimal solutions. Therefore, many research studies have 
focused on utilizing meta-heuristic methods in time-cost tradeoff 
analysis to overcome the limitation of heuristic methods and 
mathematical programming. 

Liu et al. (1995) have developed optimization model using a hybrid 
method that integrates linear and integer programming. Linear 
programming was used to find lower bounds of the solutions, and then 
integer programming was used to obtain the exact solution. The 
integer programming was then used to minimize total project cost with 
the constraints of activity precedence and the selection of a single 
resource utilization option for each activity. The hybrid model was 
developed using Microsoft Excel to provide a construction planner 
with an efficient means of analyzing time-cost trade-off decisions.  

Zheng et al. (2005) have developed GA-based multi-objective 
optimization model that simultaneously minimizes time and cost. In 
order to overcome the problem of genetic drift, the model utilized 
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Pareto ranking, niche formation, and adaptive mutation rate. The 
genetic drift occurs when GA converge to a single peak due to the 
stochastic errors during processing. The model incorporated which 
modified adaptive weight approach (MAWA) to exert a search 
pressure in GA. Pareto ranking mechanism overcomes the limitation 
of traditional proportional selections. Niche formulation is useful for 
stabilizing multiple subpopulations that arise along the Pareto-optimal 
front, and thereby it maintains diversity of population.  

Xiong and Kuang (2008) have used ant colony optimization (ACO) 
algorithm to solve time-cost tradeoff problem. The modified adaptive 
weight approach (MAWA) proposed by Zheng et al. (2004) was 
incorporated in the model to generate optimal time-cost tradeoff 
curve. The performance of developed model was compared with GA 
by two test examples. The results showed that ACO-based multi-
objective approach provides an attractive alternative to solving 
construction time-cost optimization. El-Rayes and Kandil (2005) have 
presented the multi-objective optimization model for time-cost-quality 
tradeoff analysis. Multi-objective genetic algorithm was used in the 
model to generate the optimal solutions for those conflicting 
objectives. The multi-objective genetic algorithm was implemented in 
the model to search for optimal resource utilization options for each 
activity that provides minimum project cost and time while 
maximizing quality performance. The model also provided 
visualization of tradeoffs among time, cost, and quality for the 
analyzed example.  

Najafi and Niaki (2006) consider a cash flow related to a subset of 
activities, that is, a cash flow is initiated when the last activity of the 
subset is finished. Furthermore, the cash flow associated with activity 
j might depend on the mode chosen for j as lined out in Icmeli and 
Erenguc (1996). Smith-Daniels et al. (1996) propose the objective to 
maximize the discounted amount of cash available in each period. 
This amount is influenced by cash flows associated with each activity. 
Ulusoy and Cebelli (2000) investigate the negotiation process to find 
the timing of payments and the amount of each specific payment 
between a client and a contractor. Obviously, the client seeks to 
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minimize the NPV while the contractor aims at maximizing it. The 
objective in Ulusoy and Cebelli (2000) is to find the payment structure 
which minimizes each party’s loss in comparison to the respective 
ideal payment structure. Dayanand and Padman (2001) treat a similar 
problem, but restrict themselves to the client’s point of view. The 
client might associate a specific value with each event (starting or 
completion of a job). Cash outflows can be assigned to each event 
having a positive value. The problem is to find a project schedule and 
decide cash outflows to happen at a given number of events.  

The total outflow might exceed the total value of finished activities 
at no point of time. The objective is to find a solution such that 
discounted cash inflow (associated with finishing the project) minus 
total discounted cash outflow will maximize. Dorner et al. (2008) 
employ three objectives within a variant of the time-cost tradeoff 
problem. The first objective is a function of the project make span, 
while the second and the third are functions of the monetary and non-
monetary costs for crashing the activities, respectively. Afshar et al. 
(2009) proposed Non-dominated Archiving ACO (NA-ACO) 
algorithm in which all ant colonies are initiated by the same number of 
ants, and arbitrary order is given to the colonies. Ants in a certain 
colony simultaneously explore a solution according to the objective 
assigned to that colony. If there is an improvement, the optimal path is 
updated. The progress payment model corresponds to what Dayanand 
and Padman (1998) refer to as the periodic payment model. Dayanand 
and Padman provide mixed integer linear programming formulations 
for the so-called basic client, equal time intervals and periodic 
payment models. They provide insights about the characteristics of 
optimal payment schedules obtained with each model. Kim et al. 
(2012) present an improved genetic algorithm to solve a multi-mode 
resource-constrained discrete time–cost tradeoff problem; which is 
applicable to special knowledge intensive projects, and does not 
consider project activities' quality.  

Zhou (2011) has used ant colony algorithm to trade-off costs and 
time. The problem is considered as a multimode discrete and the 
objective function as the sum of the direct and indirect costs which 
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indirect cost is defined as a linear function of project time (Xu, 2011). 
Aladini et al. (2011) have proposed a multi-objective ant colony 
optimization model for minimizing the project direct cost by 
calculating discounted cash flow to solve costs and time tradeoff 
problem considering value of money over time (considering the 
discount rate), and importance of discounted cash flow analysis for 
owners and contractors. Vanhoucke (2010) has presented a scatter 
search algorithm for project scheduling problem with constrained 
resource and with discounted cash flows. He has assumed payment in 
connection with the implementation of the project activities as a 
constant parameter and has developed a heuristic optimization method 
for maximizing the project net present value of the objective function 
with respect to priority and renewable resources constraints 
(Khalilzadeh et al., 2011).  

 

Table 1. Literature of multi-objective optimization of time-cost trade-off problems in project scheduling 

NO. Name Years Using of Way Type 

1 Liu et al. 1995 

Have developed optimization model using a hybrid method that 
integrates linear and integer programming to minimize total 
project cost with the constraints of activity precedence and the 
selection of a single resource utilization option for each activity. 

2 Dayanand 
and Padman 1998 

Provide mixed integer linear programming formulations for the 
so-called basic client, equal time intervals and periodic payment 
models. 

3 El-Rayes 
and Kandil 2005 Have presented the Multi-objective genetic algorithm for time-

cost-quality tradeoff analysis. 

4 Zheng et al. 2005 

Have developed GA-based multi-objective optimization model 
that simultaneously minimizes time and cost. The model 
incorporated modified adaptive weight approach (MAWA) to 
exert a search pressure in GA. 

5 Najafi and 
Niaki 2006 

consider a cash flow related to a subset of activities, that is, a 
cash flow is initiated when the last activity of the subset is 
finished 

6 Xiong and 
Kuang 2008 have used ant colony optimization (ACO) algorithm to solve 

time-cost tradeoff problem 

7 Afshar et al. 2009 
Proposed Non-dominated Archiving ACO (NA-ACO) algorithm 
in which all ant colonies are initiated by the same number of ants 
and arbitrary order is given to the colonies. 

8 Vanhoucke 2010 
Has presented a scatter search algorithm for project scheduling 
Problem with constrained resource and with discounted cash 
flows. 

9 Zhou 2011 Has used ant colony algorithm to trade-off costs and time. 

10 Kim et al. 2012 Present an improved genetic algorithm to solve a multi-mode 
resource-constrained discrete time–cost tradeoff problem 
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Problem description and mathematical formulation model 

Our proposed model is categorized in resource-constrained project 
scheduling problem with discounted cash flows (RCPSPDCF) that can 
be defined as follows. A project consisting of n activities is 
represented by an activity-on-node network, G= (J,E), |J|= n, where 
nodes and arcs correspond to activities and precedence constraints 
between activities, respectively. Nodes in graph  are topologic and 
numerically numbered, that is an activity has always a higher number 
than all its predecessors. No activity may be started before all its 
predecessors are finished. The duration of activity j= (1,2,…,n) 
executed is dj. There are R renewable resources. The number of 
available units of renewable resource k= (k=1,2,…,R) is Rk. Each 
activity j is executed requiring rjk units of renewable resource k= 
(k=1,2,…,R) for its processing. A negative cash flow CF-

j is 
associated with the execution of activity j. For each completed activity 
occurs a negative cash flow until the completion time of a project. 
Finally, the contractor receives amount of cash flows CF+

j for each 
activity that has completed successfully. The value of an amount of 
money is a function of the time of receipt or disbursement of cash. 
Money received today is more valuable than money to be received 
some time in the future, since today’s money can be invested 
immediately. In order to calculate the value of NPV, a discount rate i 
α has to be chosen, which represents the return following from 
investing in the project. The objective is to find an assignment of 
modes to activities as well as precedence and resource-feasible 
starting times for all activities such that the net present value of the 
project is maximized. 

All the parameters are used in the proposed RCPSPDCF model are 
summarized below: 

N: Number of activities 
G: Acyclic digraph representing the project 
dj: Duration of activity j executed 
CF-

j: Negative cash flow associated with activity j executed  
CF+

j: Positive cash flow associated with activity j executed 
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STj: Starting time of activity j 
FTj: Finishing time of activity j 
EFj: Earliest finishing time of activity j 
LFj: Latest finishing time of activity j 
Pj: Setting of all predecessors of activity j 
R: Number of renewable resources 
Rk: Number of available units of renewable resource k, k=1,2,…R 
rjk: Number of units of renewable resource k required by activity j 

executed  
α: Discount rate 
Cmax: The maximum time for completion 
T: Horizon of Project Scheduling 
NPV: Net Present Value of the project 
Pk: Paid the amount of k 
K: The number of continuous payments 
U: The total amount of payments 
   

    
                                                 
                                                                         

  

    
    

                                          
                                                   

  

By using the above notations, the proposed model can be 
formulated as the following mathematical programming problem: 
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Equation (1) represents the objective function which is to maximize 
the net present value of the project, and the contractor is calculated 
according to the method of payment. Equation (2) represents the 
objective function, the maximum completion time of activity n+1 that 
should be minimized. The constraint set (3) makes sure that all 
precedence relations are satisfied. The Constraints set (4) shows the 
completion time of project activities. Constraint (5) calculates 
maximum project completion. Constraint (6) calculates project 
planning horizon which is equal to all project activities. Constraint (7) 
ensures that the project is completed before project planning horizon. 
Constraints (8) are for applying renewable resource constraints, and in 
each period, summation of consumption of all activities from each 
resource in each time unit cannot exceed from maximum amount of 
that resource (Rk) in its relevant time unit. Constraints (9) expresses 
project starts time. Constraints (10) are related to transposition 
relations (without delay) between project activities. In such a way that 
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no activity can start before the end of all its prerequisite activities, and 
on the other hand, projects activities are continuous. Constraints (11) 
show that j the activity start time is equal or larger than its prerequisite 
activities end time. Constraints (12) show that 0 and n+1 activity are 
virtual activities. Constraints (13) shows number of payments K for 
certain event m. constraint (14) ensures that one payment is allocated 
at the end of event. Constraint (15) ensures that summations of all 
payments are equal to project contractor price. Constraint (16) also 
shows that payments values always are positive. 

In real life situations, there are at least two parties involved in the 
project: the client, that is, the owner of the project and the contractor 
who undertakes the execution of the project. The legal basis of the 
execution of a project is provided by a contract organizing aspects of 
the interactions between the stakeholders. There are a large number of 
contract types with considerable amount of detail involved. A treatise 
of different contract types is given by Herroelen et al. (1997). For the 
purposes of this paper, we are interested in the basic payment 
structures specified in the contracts. Four types of payment scheduling 
models are of particular interest in practice: Lump-sum payment, 
payment at event occurrences, payment at equal time intervals, and 
progress payment. 

Lump-sum payment (LSP) is one of the more commonly used 
payment structures in the literature. Here, the whole payment is paid 
by the client to the contractor upon successful termination of the 
project (Seifi & Tavakkoli-Moghaddam, 2008). The LSP model 
represents the ideal situation for the client––he makes a single 
payment to the contractor only at the end of the project. However, in 
general, this shifts the entire financial burden on the contractor, which 
may not be acceptable in some project environments (Marek et al., 
2005). 
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In the payments at event occurrences (PEO) model, payments are 
made at predetermined set of event nodes. The problem is to 
determine the amount and timing of these payments (Seifi & 
Tavakkoli-Moghaddam, 2008). PEO is a very reasonable model, 
where the contractor gets his payments for successful completion of 
each activity (Marek et al., 2005). 
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In the equal time intervals (ETI) model, the client makes H 
payments for the project. Of these payments, the first (H-1) are 
scheduled at equal time intervals over the duration of the project, and 
the final payment is scheduled on project completion (Seifi & 
Tavakkoli-Moghaddam, 2008).  In the ETI model the client and the 
contractor agree about the number of payments over the course of the 
project. The payments are then made at equal time intervals (Marek et 

al., 2005). 
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In the progress payment (PP) model, the contractor receives the 
project payments from the client at regular time intervals until the 
project is completed. For example, the contractor might receive at the 
end of each month a payment for the work accomplished during that 
month multiplied by a profit rate agreed upon by both the client and 
the contractor (Seifi & Tavakkoli-Moghaddam, 2008). A similar 
situation concerns the PP model, where the payments are also made at 
regular time intervals, but in this case the two parties agree about the 
length of this interval, not the number of payments (Marek et al., 
2005). 

The difference between the ETI and PP models is that in the latter 
case the number of payments is not known in advance.  
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Schedule Generation Schemes  

Schedule generation schemes (SGS) are the core of most heuristic 
solution procedures for the RCPSP. SGS start from scratch and build a 
feasible schedule by stepwise extension of a partial schedule. A partial 
schedule is a schedule where only a subset of the n+2 activities have 
been scheduled. The so-called serial SGS performs activity 
incrimination and the so-called parallel SGS performs time-
incrimination. 

Serial schedule generation scheme 

We begin with a description of the serial SGS. It consists of g = 1… n 
stages, in each of which one activity is selected and scheduled at the 
earliest precedence and resource feasible completion time. Associated 
with each stage, g is two disjoint activity sets. The scheduled set Sg 
comprises the activities which have been already scheduled; the 
eligible set Dg comprises all activities which are eligible for 
scheduling. Note that the conjunction of Sg and Dg does not give the 
set of all activities J because, generally, there are so-called ineligible 
activities, that is activities which have not been scheduled and cannot 
be scheduled at stage g because not all of their predecessors have been 
scheduled. Consider Rk(t)=Rk-jεA(t)rj,k is the remaining capacity of 
resource type k at time instant t and               is the set of all 
finish times, and  further is                  

 the set of eligible 
activities. The initialization assigns the dummy source activity j = 0 a 
completion time of 0 and puts it into the partial schedule. At the 
beginning of each step g, the decision set Dg, the set of finish times Fg, 
and the remaining capacities Rk(t) at the finish time’s t   are 
calculated. Afterwards, one activity j is selected from the decision set. 
The finish time of j is calculated by first determining the earliest 
precedence feasible finish time EFj and then calculating the earliest 
(precedence-and) resource-feasible finish time Fj within [EFj, LFj]. 
LFj denotes the latest finish time as calculated by backward recursion 
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(cf. Elmaghraby, 1977) from an upper bound of the project's finish time T 
(Möhring & Stork, 2000). 

NSGA-II methodology 

The NSGA-II algorithm is the first and one of the commonly used 
evolutionary multi-objective optimization (EMO) algorithms which 
search for solution space to find Pareto-optimal solutions in a multi 
objective optimization problem. NSGA-II uses the elitist principle and 
an explicit diversity preserving mechanism. In addition, it emphasizes 
non-dominated solutions, and forms the Pareto front as Pareto-optimal 
solutions. The NSGA-II algorithm uses two effective strategies 
including an elite-preserving and an explicit diversity-preserving. 
NSGA-II uses an explicit diversity-preservation or niching strategy to 
assign a diversity rank to all the individuals that are in the same non-
dominated front and thus have the same non-dominated rank in the 
population. The members within each non-dominated front that are in 
the least crowded region in that front are assigned a higher rank. For 
calculating the density of solutions surrounding a particular solution in 
the population, a crowding distance metric is used that is achieved 
from the average distance of the two solutions on either side of the 
solution along each of the objectives. Respecting that this particular 
niching strategy does not require any external parameters; therefore, it 
was chosen for NSGA II. Details can be found elsewhere. Because of 
the nature of the models of the multi-objective optimization problems, 
non-dominated sorting genetic algorithm (NSGA) can be used to find 
the non-dominant optimal solutions. In the absence of any additional 
information about multi-objective optimization problem, one of these 
Pareto-optimal solutions cannot be considered as better solution than 
the others. Superiority and Suitability of one solution over the others 
depends on several factors including user’s choice and problem 
environment. Therefore, the NSGA II determines a set of dominant 
solution and as a result Pareto front is obtained (Salimi et al., 2013). 

Initial population for NSGA-II algorithm 

Initial individuals are obtained by fixing the activities modes 
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randomly from the remaining set of modes after the preprocessing 
procedure. Then, the activity list is constructed with respect to the 
resulting mode assignment. The ensuing schedule is precedence and 
nonrenewable resource feasible. 

The initial generation is obtained by repeating the next steps POP 
times. Firstly, a mode assignment is generated by randomly selecting 
        for activities j=1,…J. Secondly, the resulting mode 
assignment is checked for nonrenewable resource feasibility. In 
presence of violation, a local search procedure is applied trying to 
improve the current mode assignment. The process consists of 
randomly selecting a job j which has more than one mode alternative, 
and its current mode is changed by randomly selecting       

           . The result is a new mode assignment   . If there is 
improvement,      is replaced by      . This process is repeated until J 
consecutive unsuccessful trials to improve the mode assignment have 
been made, or in the best case, until the individuals become 
nonrenewable resource feasible. Thirdly, we adopt the mode 
assignment and construct a precedence feasible schedule by randomly 
sampling. The procedure consists of J stages; at each stage, a decision 
(say also eligible) set is determined; this set includes all unscheduled 
activities which every predecessor has scheduled yet. An activity is 
chosen randomly and scheduled at its earliest precedence and 
renewable resource feasible start time. These steps are repeated until 
the J steps are fulfilled. Finally, activities finish times are computed 
and the makespan of the project is derived (Elloumi & Fortemps, 2010). 

Updated the population 

Crossover operator 

pc Parameter is considered as Crossover probability and for selecting 
parent’s chromosome in Crossover, we repeat the following process 

)( cpsizepop  times. For i=1, 2… pop-size, we use three Crossover 
types as one point and two point unified Crossover. This process is 
described as follow. First, we must select a stochastic number in one 
point Crossover in [0, N-1] and then we break both parents in this 
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point and by moving their sequence, we produce two new child. Then 
in two point Crossover we select two different random number in [0, 
N-1] interval and we break both generator in these two points and by 
moving points between two parts of both generators, we produce two 
child and then in unified intersection we produce two random numbers 
like V in [0, 1] interval and if V≤pc (in proposed algorithm is equal to 
0.9), xi chromosome is selected as a parent in Crossover operation. 
Then, we reach the number of (pop-size) pc parents for Crossover 
operation. We number them again from the start and specify them by 
prime sign as (      

    ). In the next phase, if we want to have an 
Crossover between two parents like   

     
   

   
   

     
   

   

  
     

   
   

   
     

   
  , we must first produce a random number in 

[0, 1] interval and then do the intersection operation by using the 
following equation which are new chromosome and named as child 
chromosome and are signed by ". If both Childs are feasible, then we 
replace parents with them. If one of the parents is possible then we 
keep that and repeat Crossover operations to reach another possible 
child. If both of them are not possible, we repeat the operation to two 
possible childe.  

Mutation operator 

pm Parameter is considered as probability of mutation. Parent 
chromosome is selected by the same method which was mentioned in 
intersection operations. Parent chromosome  is selected which is 
almost as many as              . Then mutation operation is 
applied as the following method. In this research, gussing method is 
used for producing mutants that for X variables which is      and 
    , new variable must have normal distribution with zero mean and 
   variance. That         and           . This means that a 
standard value is produced and multiplied by    and summed by X 
value and    is equal to                . Which    is equal to 
mutation steps. Therefore, mu% (mutation ratio) is selected randomly 
and to have an integer value for mutants and at least one case may be 
found, value is rounded up. 

, 
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The Multi-Objective Particle Swarm Optimization (MOPSO) 

PSO simulates a social behavior such as bird flocking to a promising 
position or region for food or other objectives in an area or space. Like 
evolutionary algorithm, PSO conducts search using a population, 
which is called swarm, of individuals, which are called particles. Each 
particle represents a candidate position or solution to the problem at 
hand to represent a potential solution. During searching for optima 
each PSO particle adjusts its trajectory towards its own previous best 
position, and towards the best previous position attained by any 
member of its neighborhood (i.e., the whole swarm). Thus, global 
sharing of experience or information takes place and particles profit 
from the discoveries of themselves (i.e., local best), and previous 
experience of all other companions (i.e., global best) during search 
process. PSO is initialized with a population of M random particles 
and then searches for best position (solution or optimum) by updating 
generations until getting a relatively steady position or exceeding the 
limit of iteration number (i.e., T). In every iteration or generation, the 
local bests and global bests are determined through evaluating the 
performances (Azimi et al., 2011; Bashiri et al., 2011). A swarm 
consists of a set of particles and each particle represents a potential 
solution.       is the position of each particle that is defined by adding 
a velocity to a current position: 

              +        

That the velocity vector is defined as fallow: 

                     
                       

                 

where             is position of the best particle member of the 
neighborhood of the given particle,             is the best position of 
the best particle member of the entire swarm (leader),w is inertia 
weight,    is the cognitive learning factor and    is the social learning 
factor (usually defined as constants), and              are random 
values (Ritwik & Ginu, 2013; Bashiri et al., 2011). 
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Main algorithm of MOPSO 

In case of the relative simplicity of PSO, multi objective particle 
swarm optimization allows PSO algorithm to solve multi objective 
problems. This algorithm is based on Pareto dominance and it 
considers every non-dominated solution as new leader. This approach 
also uses a crowding factor to filter out the list of available leaders. 
This algorithm works thus. First, a swarm is initialized and a set of 
leaders is also initialized with the non-dominated particles from the 
swarm. This set is usually stored in an external archive. Then, some 
sort of quality measure is calculated for all the leaders in order to 
select one leader for each particle of the swarm. At each generation 
for each particle, a leader is selected and a flight is performed. Then, 
the particle is evaluated and its corresponding          is updated. A 
new particle replaces its           particle usually when this particle is 
dominated or if both are non-dominated with respect to each other. 
After all the particles have been updated, the set of leader is updated, 
too. Finally, the quality measure of the set of leaders is re-calculated 
and this procedure is repeated for a certain number of criterions. 
External repository: The main objective of the external repository is to 
keep a record of non-dominated vectors found during the search 
process. The external repository consists of two components; the 
archive controller and the grid, which are discussed in more details. 
The function of archive controller is to decide whether a certain 
solution should be added to archive or not. The mechanism of the grid 
is to produce well-distributed Pareto fronts (Aboutalebi et al., 2013). 

Multi-Objective Simulated Annealing 

Simulated annealing (SA) is one of the stochastic search algorithms 
which have been originally motivated by thermodynamic process of 
annealing in physics. Though SA was designed originally to use only 
one search agent, and therefore it does not need large memory to keep 
the population, there are some techniques for empowering SA to find 
the set of estimated Pareto-optimal solutions for multi-objective 
problems. Considering a minimization problem, SA allows “uphill” 
moves so as to avoid getting stuck at a local optimum by accepting 
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worse solutions with a probability defined by “acceptance probability 
function.” We find that the performance of the MOSA depends on the 
type of acceptance probability function applied and the rule of 
replacing current solution by candidate solution (Varadharajan & 
Rajendran, 2005). The SA algorithm starts with an initial solution for 
the given problem and repeats an iterative neighbor generation 
procedure that improves the objective function. During searching for 
the solution space and in order to escape from local minima, the SA 
algorithm offers the possibility to accept the worse neighbor solutions 
in a controlled manner. A neighboring solution (S') of the current 
solution (S) is generated in each iteration of the inner loop. If the 
objective function value of S' is better than S, then the generated 
solution replaces with the current one; otherwise, the solution can be 

also accepted with a probability     
 

 . where T is the value of 
current temperature (i.e., higher values of T give a higher acceptance 
probability) and Δ = f(S) − f (S′). The acceptance probability is 
compared to a number y  [0, 1] generated randomly, and S' is 
accepted whenever p > y (Chen et al., 2010). 

A target-vector approach to solve a bi-objective optimization 
problem has been used. Ulungu et al (1999) have proposed a complete 
MOSA algorithm which they had tested on a multiobjective 
combinatorial optimization problem. A weighted aggregating function 
to evaluate the fitness of solutions has been used. The algorithm 
worked with only one current solution but maintained a population 
with the non-dominated solutions found during the search. The 
algorithm uses only one solution and the annealing process adjusts 
each temperature independently according to the performance of the 
solution in each criterion during the search. An archive set stores all 
the non-dominated solutions between each of the multiple objectives. 
A new acceptance probability formulation based on an annealing 
schedule with multiple temperatures (one for each objective) has also 
been proposed. The acceptance probability of a new solution depends 
on whether or not it is added to the set of potentially Pareto-optimal 
solutions. If it is added to this set, it is accepted to be the current 
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solution with probability equal to one. Otherwise, a multiobjective 
acceptance rule is used. However, the acceptance decision of new 
solution has to take into consideration the improvement (or 
deterioration) of k objectives, simultaneously. In case of two 
optimization objectives (i.e. k = 2), the comparison of the actual and 
the new solution (i.e. decision vector) results depicted in three cases. 

Case (a): The move from Xact to Xnew is improving with respect to 
all k objectives. This means that  

                           (Supposing a minimization MOP) for 
         . 

Case (b): An improvement and deterioration can be simultaneously 
observed on different objectives. This means, there exist a     and a     
with     < 0 and      > 0. This is the case where the new solution is 
indifferent to the actual one. Thus, a strategy has to be defined to 
decide if the new solution should be accepted as current solution for 
the next iteration. 

Case (c): All objectives are deteriorated, with      ≥ 0 for all 
   and             such that      > 0. In this case, an acceptance 
probability to accept Xnew has to be calculated. 

Parameter settings for the NSGA-II, MOPSO and MOSA algorithms 

Tables 2, 3, 4 present the control parameters for the NSGA-II, 
MOPSO and MOSA algorithms. 

 
Table 2. Control parameters for the NSGA-II algorithms 

The parameters amount Parameter 

200 Maximum Number of Iterations 
100 Population Size 
0.9 Crossover Percent 

2*round(pCrossover*nPop/2) Number of Crossover 
1/ String length of chromosome Mutation Percent 

round(pMutation*nPop) Number of Mutation 
0.01 Mutation rate 

0.2*(VarMax-VarMin) Mutation step size 
Binary tournament 

Production of 200 generations 
Parent selection method 

Stopping rule 
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Table 3. Control parameters for the MOPSO algorithms  

The parameters amount Parameter 

200 Maximum Number of Iterations 
100 Population Size 
100 Repository Size 
0.5 Inertia Weight 

0.99 Inertia Weight Damping Rate 
1 Personal Learning Coefficient(c1) 
2 Global Learning Coefficient(c2) 
5 Number of Grids per Dimension 

0.1 
2 

Inflation Rate 
Leader Selection Pressure 

2 Deletion Selection Pressure 
0.1 Mutation Rate 

Production of 200 generations Stopping rule 

 
Table 4. Control parameters for the MOSA algorithms 

The parameters amount Parameter 

1000 Maximum Number of Iterations 
1 Population Size 
35 Number Variables 
5 Number move 

Pareto. Cost/10000 Initial Temperature 
 

Computational Results 

Proposed method presented in this research is coded by using multi 
objective genetic algorithm which proposed in MATLAB software. In 
this part, input parameters which consider general and control 
variables  are presented and results of proposed algorithm solving are 
discussed and the proposed multi objective genetic algorithm is 
validated by GAMS. In Table 5, required information for Bandar 
Abbas Gas Condensate Refinery Construction Project including 
activities time, prerequisite relations, required resources for activities, 
and positive and negative financial flows for activities. In this project, 
it is assumed that there is no limit in non-renewable resources and 
maximum values of these resources are as follow: human resources 
equal to 150 (R1=150) and 100 unite machinery (R2=100). 
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Table 5. information about the activities of the installation of steel structures 

   
 

    
 

 
Resource 

requirements 

Prerequisite 

activities 
duration Activities 

0 0 - - - 0 1 
55800 24800 23 20 1 16 2 

234900 104400 30 41 1 45 3 
114075 50700 23 27 2 30 4 
71212.5 31650 29 33 2 15 5 
332100 147600 34 38 2 60 6 
97875 43500 22 32 2 25 7 
43560 19360 15 23 2 16 8 

110205 48980 18 34 2 31 9 
112725 50100 19 36 2 30 10 

484492.5 215330 47 59 4 61 11 
281475 125100 38 44 4,5 45 12 
94500 42000 18 39 5,12 25 13 

206550 91800 26 37 5 45 14 
41175 18300 16 21 5 15 15 
65880 29280 25 29 5 16 16 

281475 125100 40 39 6 45 17 
157500 70000 34 55 2,3,9 25 18 
5781600 2569600 78 97 2,7,8 439 19 
46575 20700 14 34 13,14,15 15 20 
39780 17680 16 12 11,20 16 21 

274387.5 121950 45 23 13,20 45 22 
151222.5 67210 21 19 16 46 23 
123525 54900 23 34 16 30 24 

112387.5 49950 13 23 16,24 45 25 
110272.5 49010 23 27 16,25 25 26 
357120 158720 34 43 25 61 27 

122377.5 54390 13 23 24 45 28 
49680 22080 12 18 20,22 25 29 

7472362.5 3321050 79 120 23,24,25,26 504 30 
40545 18020 12 23 27,30 16 31 

102375 45500 22 36 26,28,30 25 32 
96525 42900 21 19 23,30 30 33 

122850 54600 28 21 17,19 30 34 
375412.5 166850 45 65 3,19 45 35 
3723525 1654900 96 95 30 241 36 

0 0 - - 21,28,32,33,34,35,36 0 37 
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With the algorithm implementation Surface of the front Pareto of 
generated solutions by the algorithm is based on payment type. 
According to these results, the contractor is faced with a set of 
answers which could be due to the importance of each objective 
function (Maximum completion time and maximizing the NPV of the 
project) one alternative that represents a method to select the mode is 
operational activity. 

Therefore to prove efficiency of the proposed algorithms, several 
sample problems in small scale including sub sets of Reference are 
listed in addition Bandar Abbas Gas condensate Refinery project 
with14 (Pan et al., 2008), 18 (Rifat & Önder, 2012), 20 (Luong & 
Ario, 2008), and 25 (Kwan et al., 2003) activity is solved by the 
proposed algorithms based on the four types of payments. 

Indicators Performance 

Because of the multi objective nature of the problem, the numerical 
results obtained by each algorithm were evaluated in terms of quality 
of the produced set of non-dominated solutions and of the associated 
approximation of the Pareto front. This quality of the Pareto front 
commonly includes not only the number of non-dominated solutions, 
but also convergence and distribution concepts. In our experiments, 
we evaluated the results (i.e., the pareto fronts) obtained by NSGA-II 
and MOPSO algorithms for each problem according to different 
quality metrics usually adopted in the literature of MOO. The adopted 
metrics were: Spacing, Maximum Spread, and Spread. Each metric 
considers a different aspect of the pareto front. 

Spacing (S): this metric was proposed by Schott. S estimates the 
diversity of the achieved Pareto Front. S is derived by computing the 
relative distance between adjacent solutions of the Pareto Front as 
follows: 

 

(21) 
mean

N

i

meani
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S
)1(
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1
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where n is the number of non-dominated solutions, di is the distance 
between adjacent solutions to the solution VI and is the average 
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distance between the adjacent solutions. S=0 means that all solutions 
of the Pareto Front are equally spaced. Hence, values of S near zero 
are preferred (Kashif Gill et al., 2006).  

Maximum Spread (MS): it was proposed by Zitzler et al. (2000) 
and evaluates the maximum extension covered by the non-dominated 
solutions in the Pareto Front. MS is computed by using as follows. 

(22) 2

1
)min(max j

i

m

j

j

i ffD  


 

where n is number of solutions in the Pareto front, k is the number of 
objectives. This measure can be used to compare the techniques and 
thus define which of them covers a bigger extension of the search 
space. Hence, large values of this metric are preferred. 

Criterion of Pareto solutions: Criterion of Pareto solutions numbers 
represents Pareto optimum solutions which can be found in every 
algorithms and the more number of Pareto front lead to a better 
situation (Zitzler et al., 2000). 

Diversity: The scale measures disturbance among a set of non-
dominated solutions. The related formula is as follows: 

(23) j
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m

i

j
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1
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In place where,    
 
    

 
   is direct distance between the xi non-

dominated solutions and yi non-dominated solutions. The more the 
criterion, the less similar solutions and more diversity among the 
responses will be which covers a larger space; this shows the extent of 
the Pareto Front. 

The algorithm execution time criterion: the algorithm execution 
time is considered as quality assessment criteria. 

Comparative results: The performance of proposed NSGA-II 
algorithms and  MOPSO are analyzed to solve condensate Abbas the 
algorithm with 35 activities and show examples of problems with 
number 14 (Pan et al., 2008), 18 (Rifat & Önder, 2012), 20 (Luong & 
Ario, 2008),  and 25 (Kwan et al., 2003)  activities based on the four 
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types of payments. The algorithms results are shown in Tables 6, 7, 8, 
and 9. 

 
Table 6. Comparative results based on the LSP 

Comparative 

Indicators 
 

Number of 

 activities 

Spacing 
Maximum 

Spread 

Number 

of Pareto 

solution 

Diversification 

Metric 
Time 

J=14 
NSGA-II 0.5 259.9 35 361.67 258.3 
MOPSO 1 265.03 16 243.89 157.29 
MOSA 0.54 258.09 28 323.04 39.6 

J=18 
NSGA-II 1 7330.63 16 1055.24 282.55 
MOPSO 0.52 6873.13 14 993.45 151.51 
MOSA 0.37 7010.87 15 1026.42 55.62 

J=20 
NSGA-II 0.18 438.16 20 652.58 265.8 
MOPSO 0.36 436.13 19 635.95 160.49 
MOSA 0.28 436.08 20 652.74 50.94 

J=25 
NSGA-II 0.17 431.13 22 638.47 303.05 
MOPSO 0.24 366 19 593.89 204.91 
MOSA 0.26 429.01 22 636.54 87.43 

J=35 
NSGA-II 0.66 775236.35 73 6265.14 756.42 
MOPSO 0.78 752524.75 35 4936.62 997.06 
MOSA 0.9 677365.5 37 4568.86 286.92 

 
Table 7. Comparative results based on the PEO 

Comparative 

Indicators 
 

Number of 

activities 

Spacing 
Maximum 

Spread 

Number 

of Pareto 

solution 

Diversification 

Metric 
Time 

J=14 
NSGA-II 0.51 54.82 13 492.01 252.48 
MOPSO 0.28 54.68 9 230.92 161.54 
MOSA 0.25 55.04 10 202.43 41.74 

J=18 
NSGA-II 0.74 808.15 9 745.42 291.15 
MOPSO 1.06 956.76 7 681.1 155.14 
MOSA 59 958.78 5 681.11 46 

J=20 
NSGA-II 0.34 146.94 15 579.18 276.39 
MOPSO 1.18 149.67 15 579.23 174.35 
MOSA 0.51 151.54 14 559.54 54.47 

J=25 
NSGA-II 0.55 95.14 16 557.09 327.13 
MOPSO 1.22 94.03 13 502.2 177.17 
MOSA 1.49 89.61 11 462.01 87.57 

J=35 
NSGA-II 0.79 365502.22 33 13116.45 776.43 
MOPSO 1.13 318008.8 12 7946.42 814.57 
MOSA 0.76 306008.4 15 9218.79 286.3 
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Table 8. Comparative results based on the ETI 

Comparative 

Indicators 
 

Number of 

activities 

Spacing 
Maximum 

Spread 

Number of 

Pareto 

solution 

Diversification 

Metric 
Time 

J=14 
NSGA-II 0.48 63.63 9 138.56 262.98 
MOPSO 0.71 249.49 8 182.12 137.92 
MOSA 0.41 99.3 6 133.69 41.78 

J=18 
NSGA-II 0.44 1209.15 6 607.69 296.56 
MOPSO 1.33 2471.8 4 545.39 153.37 
MOSA 0.99 6373.86 4 610.39 55 

J=20 
NSGA-II 0.47 154.49 10 468.39 280.54 
MOPSO 1.56 324.81 6 357.88 120.77 
MOSA 0.49 394.57 6 358.11 54.32 

J=25 
NSGA-II 0.31 111.29 8 384.28 329.09 
MOPSO 1.55 98.54 6 303.81 180.73 
MOSA 0.54 64.73 5 303.81 90.31 

J=35 
NSGA-II 0.9 516742.1 10 5565.03 707.15 
MOPSO 0.97 498873.4 8 5843.67 786.45 
MOSA 0.91 334016.3 9 6134.72 299.64 

 
Table 9. Comparative results based on the PP 

Comparative 

Indicators 
 

Number of 

activities 

Spacing 
Maximum 

Spread 

Number 

of Pareto 

solution 

Diversification 

Metric 
Time 

J=14 
NSGA-II 1 1272.56 12 124.51 253.8 
MOPSO 1.61 1080.91 7 118.45 155.67 
MOSA 1.65 1080.7 8 134.78 42.14 

J=18 
NSGA-II 1.2 6919.69 10 780.44 288.01 
MOPSO 1.29 5981.53 6 680.54 161.06 
MOSA 1.27 6527.37 8 876.52 60.17 

J=20 
NSGA-II 0.25 3252.61 11 306.01 274.51 
MOPSO 0.3 2612.6 7 269.89 169.67 
MOSA 0.93 2106.09 7 291.64 54.44 

J=25 
NSGA-II 0.96 1333.59 10 251.27 320.54 
MOPSO 0.69 2522.06 8 146.44 211.9 
MOSA 0.58 2127.25 5 179.26 89.23 

J=35 
NSGA-II 0.89 1717730.93 13 4251.28 727.16 
MOPSO 0.58 907479.38 7 3318.16 521.72 
MOSA 0.57 159564.1 10 3619.34 281.79 

The main problem that tables and the selected sample problems 
with 10, 18, 20 and 25 activity tables represent are the following 
topics: 

NSGA-II algorithms have a greater ability to achieving higher 
number of answers in Pareto front, that from this perspective, 
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contractor is faced with more number of options to choose 
administrative methods. NSGA-II algorithms have more extensive 
solutions in many cases. NSGA-II algorithm have more Pareto front 
extensive compared to other algorithms and show more diversity 
among the responses. NSGA-II algorithm has more uniformity in 
Pareto solutions than other algorithms. MOSA algorithm has less 
solving time compared to the NSGA-II and MOPSO algorithm in four 
payment and all studied problems. 

Validation of the proposed algorithm 

For proving efficiency of the Meta heuristic algorithm, solution of the 
algorithm is compared with solution of GAMS software. Therefore, to 
prove efficiency of the proposed method, several sample problems in 
small scale including sub sets of real problem (with 10, 14, 18 and 20 
activity) are solved by the proposed NSGA-II algorithm and GAMS 
software. Results and duration of executing NSGA-II algorithm and 
GAMS software are shown and analyzed which compared in Table 10 
to 12. To compute means of different percentage of the results of 
GAMS and NSGA-II, we use the following formulation. 

Average difference percentage= ((NSGA-II result – GAMS result) / 
GAMS result) * 100 
 
 

Table 10. Results from GAMS software and NSGA-II 

        PP       ETI        PEO       LSP Type of payment 
 

 

Problem NPV      NPV      NPV      NPV      

1773.26 16 3840.09 14 4335.43 15 4297.59 15 NSGA-II 
J=10 

1948.15 14 3840.34 14 4436.2 14 4304.09 14 GAMS 

2772.83 87 3954.71 85 4214.3 85 3959.68 85 NSGA-II 
J=14 

2780.51 83 3962 83 4214.58 83 3969.90 83 GAMS 

78445.25 188 77852.39 196 93336.19 188 73489.38 190 NSGA-II 
J=18 

78611.21 187 78435.38 187 93427.17 187 73816.44 187 GAMS 

12407.68 66 22079.6 65 22502.47 64 21516.57 64 NSGA-II 
J=20 

13612.09 63 22100.15 63 22519.73 63 21595.11 63 GAMS 

12968.16 65 18533.39 68 19516.25 66 18784.05 67 NSGA-II J=25 

13412.05 64 18555.29 65 19529.84 64 18834.45 65 GAMS  
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Table 11. Percentage Average difference between Results from GAMS software and NSGA-II 

PP ETI PEO LSP Type of payment 
 

Problem NPV Cmax NPV Cmax NPV Cmax NPV Cmax 

1.28 0 0 0 2.2 7.1 0.15 7.1 J=10 
0.27 4.8 0.18 2.4 0.006 2.4 0.25 2.4 J=14 
0.21 0.53 0.74 4.8 0.097 0.53 0.44 1.6 J=18 
8.8 4.7 0.09 3.1 0.07 1.5 0.36 1.5 J=20 
3.3 1.5 0.11 4.6 0.06 3.1 0.26 3.7 J=25 

2.27 2.33 0.22 3 0.5 2.95 0.29 3.7 The average 
percentage difference 

 
Table 12. implementation time from the GAMS software and NSGA-II 

J=35 J=25 J=20 J=18 J=14 J=10 Problem 

707.15 327.09 265.6 282.55 252.48 228.76 NSGA-II 
- 5162.57 3627.94 2475.43 923.63 414.31 GAMS 

Completion time of the project and reaching to a solution time for 
different problems with different activities with different payments 
methods are presented in Table 10. This problem is solved by Meta 
heuristic simulation method, too. Result of differences for proposed 
method and precise method are presented in Table 11 in which their 
differences are very small and less than 3%. Also based on Table 12 
and Figure 1, time to reach a solution is constant in the proposed 
method, but it increases as a quadratic function whereas above results 
shows the proposed method is a convergence to an optimum and 
solution algorithm. 

 

 
 

Fig. 1. Time of sample problems solving in the proposed NSGA-II algorithm and GAMS software 
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Conclusion 

In this research, the scheduling section limited portion of the 
construction of a refinery by using a meta-heuristic approach 
investigated. The objectives of this model have been considered, 
minimizing project completion time and maximizing the net present 
value of the project. Also, the major Constraints and multi-objective 
model and Computational time complexity are classified as in the 
group NP-Hard problems. Therefore, in this paper, NSGA-II, MOPSO 
and MOSA algorithms are used in order to achieve optimal 
scheduling. Since every algorithm must be validated before use, the 
current study is applied for a real project which is progressive; we 
cannot also compare algorithm results with project results; therefore, 
to prove efficiency of the algorithm, the algorithm results are 
compared with results of solving the problem which is solved by 
GAMS software for some problems in small scales. Results represent 
that they are almost similar and smaller than 3%. Also, time to reach a 
solution in proposed method is constant, but in GAMS software 
increases as quadratic function. These results show that the proposed 
method is a convergence algorithm to optimal and efficient solution. 
The results of the NSGA-II, MOPSO and MOSA algorithm were 
investigated with comparative indices. The results of the NSGA-II, 
MOPSO and MOSA algorithm for the main problem and sample 
problems Indicates NSGA-II algorithm in the different criteria, have 
performed better than the other algorithms. For example, the NSGA-II 
algorithm in the number of Pareto solutions in problems all have been 
more of MOPSO, and MOSA algorithm provides  more options for 
the decision makers. In the diversity, Maximum Spread (MS) and 
Spacing (S) index in the overwhelming of cases performed better than 
the other algorithms that Indicates are  considered the extent and 
greater distribution of response space and uniformity between the 
solutions. 

 

Suggestion that can be implemented in process of the project: 
 Considering other objectives, such as robust, resources leveling, 

and project quality in the objective function 
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 Considering the time and activities Implementation cost  and the 
amount of resources consumed as  a fuzzy matter 

 Considering non-renewable resource constraints 
 Using the other algorithms for improvement and production 

solutions 
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