تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,881 |
تعداد دریافت فایل اصل مقاله | 97,206,443 |
A New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 11، دوره 49، شماره 1، شهریور 2015، صفحه 113-130 اصل مقاله (2.22 M) | ||
نوع مقاله: Reply to comment on Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2015.54635 | ||
نویسندگان | ||
Fereydoun Sharifi1؛ Ali Reza Arab-Amiri* 1؛ Abolghasem Kamkar-Rouhani1؛ Mahyar Yousefi2؛ Behzad Tokhmechi1 | ||
1Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University, Shahrood, Iran | ||
2Faculty of Engineering, Malayer University, Malayer, Iran | ||
چکیده | ||
In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local scales. Thus, geological structures and lithological units in regional scale have been investigated for groundwater potential. In this regard, suitable potential maps have been provided in the geographical information system (GIS) environment, using fuzzy data-driven and knowledge-driven methods. To obtain the final karstic water potential model, the prepared maps were combined using fuzzy ‘AND’ operator. In the local scale, geoelectrical surveys were conducted in the recognized high potential zones. Consequently, the results of geological investigations, analysis of lineaments extracted from satellite imagery and geoelectrical resistivity data modeling and interpretation were integrated to decide on the position of high yield extraction wells. As a result, karstic water zones in the study area were identified, and based on that, two suitable drilling locations to access and extract karstic groundwater in the study area have been suggested. | ||
کلیدواژهها | ||
combined fuzzy data-driven and knowledge-driven method؛ geoelectrical resistivity method؛ karstic groundwater potential modeling؛ sequential exploration approach.1 | ||
مراجع | ||
[1] Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: modeling with GIS. Pergamon Press, NewYork. [2] Carranza, E.J.M. (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Expration and Environmental Geochemistry. Elsevier, Amsterdam. [3] Zahiri, H., Palamra, D.R., Flentje, P., Brassington, G.M. & Baafi, E. (2006). A GIS- based Weights-of-Evidence model for mapping cliff instabilities associated with mine subsidence. Environmental Geology. DOI 10.1007/s00254-006-0333-y. [4] Porwal, A. (2006). mineral potential mapping with Mathematical Geological Models. Ph.D. Thesis, University of Utrecht, The Netherlands, ITC (International Institute for Geo-Information Science and Earth Observation), Publication NO. 130, Enschede. [5] Yousefi, M., Kamkar-Rouhani, A. & Carranza, E.J.M. (2012). Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35. [6] Sener, E., Davraz, A. & Ozcelik, M. (2005). An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeology Journal, 13, 826-834. [7] Van Beynen, P.E., Niedzielski, M.A., Bialkowska-Jelinska, E., Alsharif, K. & Matusick, J. (2012). Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida. Applied Geography, 32 (2), 868-877. [8] Elez, J., Cuezva, S., Fernandez-Cortes, A., Garcia-Anton, E., Benavente, D., Cañaveras, J.C. & Sanchez-Moral, S. (2013). A GIS-based methodology to quantitatively define an Adjacent Protected Area in a shallow karst cavity: The case of Altamira cave. Journal of Environmental Management, 118, 122-134. [9] Chang, N.B., Parvathinathan, G. & Breeden, J.B. (2008). Combining GIS with fuzzy muticriteria decision-makng for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87, 139-153. [10] Jaiswal, R.K., Mukherjee, S., Krishnamurthy, J. & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development an approach. International Journal of Remote Sensing, 24, 993-1008. [11] Srinivasa Rao, Y. & Jugran, D.K. (2003). Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrological Sciences Journal, 48, 821-833. [12] Srivastava, P.K. & Bhatacharya, A. (2006). Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. International Journal of Remote Sensing, 27, 4599-4620. [13] Ravi Shankar, M.N. & Mohan, G. (2006). Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan Volcanic Province of India. Journal of Environmental Geology, 49, 990-998. [14] Subba Rao, N. (2006). Groundwater potential index in a crystalline terrain using remote sensing data. Journal of Environmental Geology, 50, 1067-1076. [15] Riyadh, R.Y., Ros Fatihah, M. & Samsudin, H.T. (2013). Integrated Techniques To Identify Consequences Of Sinkhole Hazards For Constructing Housing Complexes On Carbonate Karst Terrains In Perak, Peninsular Malaysia. International Journal of Engineering Research & Technology (IJERT), 2(7), 2292- 2328. [16] Schowengerdt, (1997). Remote Sensing 2nd Ed, Elsevier (Academic Press), 1-522. [17] Mabee, S.B., Hardcastle, K. C. & Wise D. W. (1994). A method of collecting and analyzing lineaments for regionalscale fractured bedrock aquifer studies. Ground Water, 32, 884-894. [18] Kresic, N. (1995). Remote sensing of tectonic fabric controlling groundwater flow in Dinaric Karst. Remote Sensing of Environment, 53, 85-90. [19] Drury, S.A., Pert, R.J. & Deller, M.E. (2001). Hydrogeological potential of major fractures in Eritrea. Journal of African Earth Sciences, 32, 163-177. [20] Rodell, M. & Famiglietti, J.S. (2002). the potential for satellite-based monitoring of groundwater storage changes using Grace: the High Land Plains aquifer, Central US. Journal of Hydrogeology, 263, 245-256. [21] Koch, M. & Mather, P.M. (1997). Lineament mapping for groundwater resource assessment: a comparison of digital synthetic aperture (SAR) imagery and stereoscopic large format camera (LFC) photographs in the Red Sea Hills, Sudan. International Journal of Remote Sensing, 18, 1465-1482. [22] Bressan, M.A. & Anjos, C.D. (2003). Techniques of remote sensing applied to the environmental analysis of part of an aquifer located in the São José Dos Campos region SP, Brazil. Environmental Monitoring and Assessment, 84, 99-109. [23] Šumanovac, F. & Weisser, M. (2001). Evaluation of resistivity and seismic methods for hydrogeological mapping in karsts terrains. Journal of Applied Geophysics, 47, 13-28. [24] Vasconcelos, I. & Grechka, V. (2007). Seismic characterization of multiple fracture sets at Rulison Field, Colorado. Geophysics, 72, B19-B30. [25] Yang, Y-S., Li, Y-Y. & Cui, D-H. (2013). Identification of karst features with spectral analysis on the seismic reflection data. Environmental Earth Sciences, Springer-Verlag Berlin Heidelberg, DOI 10.1007/s12665-013-2477-x. [26] Kaufmann, O. & Quinif, Y. (2002). Geohazard map of cover-collapse sinkholes in the Tournaisis area, southern Belgium. Engineering geology, 65, 117-124. [27] Zhou, W., Beck, B.F. & Adams, A.L. (2002). Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental geology, 42, 922-928. [28] Gibson, P.J., Lyle, P. & George, D.M. (2004). Application of resistivity and magnetometry geophysical techniques for near-surface investigations in Karstic terrains in Irland. Journal of cave and karst Studies, 66, 35-38. [29] Deceuster, J., Delgranche, j. & Kaufmann, O. (2006). 2D cross-borehole resistivity tomographies below foundations as a tool to design proper remedial actions in covered karst. Journal of Applied Geophysics, 60, 68-86. [30] Qarqori, K.h., Rouai, M., Moreau, F., Saracco, G., Dauteuil, O., Hermitte, D., Boualoul, M. & Le Carlier de Veslud, C. (2012). Geoelectrical Tomography Investigating and Modeling of Fractures Network around Bittit Spring (Middle Atlas, Morocco). International Journal of Geophysics, DOI.org/10.1155/2012/489634. [31] Jardani, A., Dupont, J.P. & Revil, A. (2006a). Self-potential signals associated with preferential groundwater flow pathways in sinkholes. Journal of Geophysical Research, 111, PP. 1-13. [32] Suski, B., Lander, F., Baron, L., Vuataz, F.D., Philippossian, F. & Holliger, K. (2008). Detection and characterization of hydraulically active fractures in carbonate aquifer: results from self-potential, temperature and fluid electrical conductivity logging in the Combioula hydrothermal system in the southwestern Swiss Alps. Hydrogeology Journal, 16, 1319-1328. [33] Boucher, M., Girard, J.F., Legchenko, A., Baltassat, J.M., DÖrfliger, N. & Chalikakis, K., (2006). Using 2D inversion of magnetic resonance soundings to locate a water-filled karst conduit. Journal of Hydrogeology, 330, 413-421. [34] Legtchenko, A., (2013). Magnetic Resonance Imaging for Groundwater. Wiley-ISTE, 235 p. [35] perttu, N., person, L., ErlstrÖm, M. & Elming, S. (2012). Magnetic resonance sounding and radiomagnetotelluric measurements used to characterize a limestone aquifer in Gotland Sweden. Journal of Hydrology, 424-425, 184-195. [36] Vouillamoz, J.M., Legchenko, A., Albouy, Y., Bakalowicz, M., Baltassat, J.M. & Al-Fares, W. (2003). Localization of karst aquifer with magnetic resonance sounding and resistivity imagery. Ground water, 41, 578-586. [37] Marcak, H., Golebiowski, T. & Tomecka-Suchon, S. (2008). Geotechnical analysis and 4D GPR measurements for the assessment of the risk of sinkholes occurring in a Polish mining area. Near Surface Geophysics, 6(4), 233–243. [38] Carrière, S.D., Chalikakis, K., Sénéchal, G., Danquigny, C. & Emblanch, C. (2013). Combining Electrical Resistivity Tomography and Ground Penetrating Radar to study geological structuring of karst Unsaturated Zone. Journal of Applied Geophysics, 94, 31–41. [39] Bosch, F.P. & Müller, I. (2001). Continuous gradient VLF measurements: a new possibility for high resolution mapping of karst structures. First Break, 19, 343-350. [40] Galve, J.P., Bonachea, J., Remondo, J., Gutierrez, F., Guerrero, J., Lucha, P., Cendrero, A., Gutierrez, M. & Sanchez, J.A. (2008). Development and validation of sinkhole susceptibility models in mantled karst settings. A case study from the Ebro valley evaporite karst (NE Spain). Engineering geology, 99, 185–197. [41] Garcia-Moreno, I. & Mateos, R.M. (2011). Sinkholes related to discontinuous pumping: susceptibility mapping based on geophysical studies. The case of Crestatx (Majorca, Spain). Environmental Earth Sciences., 64, 523–537. [42] Margiotta, S., Negri, S., Parise, M. & Valloni, R. (2012). Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics. Natural Hazards, 62, 657–676. [43] Kaufmann, G. & Romanov, D. (2009). Geophysical investigation of a sinkhole in the northern Harz foreland (North Germany). Environmental geology, 58, 401– 405, DOI 10.1007/s00254-008-1598-0. [44] Chalikakis, K., Plagnes, V., Guerin, R., Valois, R. & Bosch, F.P. (2011). Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeology Journal, 19(6), 1169-1180. [45] Youssef, A.M., El-Kaliouby, H.M. & Zabramawi, Y.A. (2012). Integration of remote sensing and electrical resistivity methods in sinkhole investigation in Saudi Arabia. Journal of Applied Geophysics, 87, 28-39. [46] De Geoffroy, J.G. & Wignall, T.K. (1985). designing optimal strategies for mineral exploration. Plenum press, New york and London. [47] Edwards, P., & Bowen, P. (2013). Risk management in project organisations. Routledge. [48] Roberts, R.G., Sheahan, P. & Cherry, M.E. (1988). Ore Deposit Models. Geoscience Canada Reprint Series 3, Geological Association of Canada, Newfoundland. [49] Rather, J.A., Zameer A.B. & Andrabi, R. (2012). Fuzzy Logic Based GIS Modeling for Identification of Ground Water Potential Zones in the Jhagrabaria Watershed of Allahabad District, Uttar Pradesh, India. International Journal of Advances in Remote Sensing and GIS, 1(2), 218- 233. [50] Goldscheider, N. & Drew, D. (2007). Methods in Karst Hydrogeology. Taylor & Francis Group, London, UK. [51] Francese, R., Mazzarini, F., Bistacchi, A., Morelli, G., Pasquarè, G., Praticelli, N., Robain, H., Wardell, N. & Zaja, A. (2009). A structural and geophysical approach to the study of fractured aquifers in the Scansano-Magliano in Toscana Ridge, southern Tuscany, Italy. Hydrogeology journal, 17, 1233-1246. [52] Ford, D. & Williams, P. (2007). Karst Hydrogeology and Geomorphology. England, John Wiley & son Ltd, PP. 1-562. [53] Parizek, R.P. (1976). On the nature and significance of fracture traces and lineaments in carbonate and other terrains, In: Yevejevich. karst hydrology and water resources, Water resources publications, Colorado, USA, 1, 47-100. [54] Robert, T. (2012). Geophysical identification, characterization, and monitoring of preferential groundwater flow paths in fractured media. [55] Lattman L.H., Parizek R.R. (1964). RELATIONSHIP BETWEEN FRACTURE TRACES AND THE OCCURRENCE OF GROUND WATER IN CARBONATE ROCKS. Journal of Hydrogeology, 2, 73-91. [56] Morelli, M. & Piana, F. (2006). Comparison between remotely sensed lineaments and geological structures in intensively cultivated hills (Monferrato and Langhe domains, NW Italy). International Journal of Remote Sensing, 27(20), 4471-4493. [57] Mogaji, K.A., Aboyeji, O.S. & Omosuyi, G.O. (2011). Mapping of lineaments for groundwater targeting in the basement complex region of Ondo State, Nigeria, using remote sensing and geographic information system (GIS) techniques. International Journal of water resources and environmental engineering, 3(7), 150-160. [58] Hung, L.Q., Batelaan, O. & De Smedt, F. (2005). Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Souimuoi tropical karst catchment, Vietnam. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology, 5983, 1-12. [59] Meijerink, A. M. J., Bannert, D., Batelaan, O., Lubczynski, M. W. & Pointet, T. (2007). Remote Sensing Applications to Groundwater. In IHP-VI, Series on Groundwater no. 16, United Nations Educational, Scientific and Cultural Organization, Paris, France. [60] Kann, S. D. & Glenn, N. F. (2006). New strike-slip faults and litho-units mapped in Chitral (n. Pakistan) using field and ASTER data yield regionally significant results. International Journal of Remote Sensing, 27 (20), 4495-4512. [61] Park, Y., Lee, K. & Kim, S.H. (2000). Effects of Highly Permeable Geological Discontinuities upon Groundwater Productivity and Well Yield. Mathematical Geology, 32 (5), 605-615. [62] Hung, L.Q., Dinh, N.Q., Batelaan, O., Tam, V.T. & Lagrou, D. (2002). Remote sensing and GIS-based analysis of cave development in the Suoimuoi catchment (Son La-NW Vietnam). Journal of Cave and Karst Studies, 64(1), 23-33. [63] Nguyen, F., Garambois, S., Chardon, D., Hermitte, D., Bellier, O. & Jongmans, D. (2007). Subsurface electrical imaging of anisotropic formations affected by a slow active revers fault, Provence, France. Journal of applied geophysics, 62, 338-353. [64] Skinner, D. & Heinson, G. (2004). A comparison of electrical and electromagnetic methods for the detection of hydraulic pathways in a fractured rock aquifer, Clare valley, South Australia. Hydrogeology Journal, 12, 576-590. [65] Zadeh, L.A. (1965). Fuzzy sets. IEEE Information and Control 8(3), 338-353. [66] Hall, G.B., Wang, F. & Subaryono, J. (1992). Comparison of Boolean and Fuzzy classification methods in land suitability analysis by using geographical information systems. Environment and Planning, 24, 497–516. [67] Porwal, A., Carranza, E.J.M. & Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1–25. [68] Yousefi, M., Kamkar-Rouhani, A. & Carranza, E. J. M. (2013). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, PP. 2012-144. [69] Vaziri, S.H., Majidifard, M.R. & Saidi, A. (2001). Geological map of Iran. Tehran, Geological survey of Iran, sheet No. 6962, scale 1:100,000. [70] Suzen, M.L. & Toprak, V. (1998). Filtering of satellite images in geological lineament analysis: an application to a fault zone in central Turkey. International Journal of Remote Sensing, 6, 1101-1114. [71] Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32, 1283– 1298. [72] Zuo, R. (2011). Exploring the effects of cell size in geochemical mapping. Journal of Geochemical Exploration, doi:10.1016/j.gexplo. 2011.11.001. [73] Zimmermann, H.J. (1991). Fuzzy sets. IEEE Information and control. 8 (3), 338-353. [74] Kirsch, R. (2006). Groundwater Geophysics-a Tool for Hydrogeology. Springer-Verlag Berlin Heidelberg, PP. 85-116. [75] Reynolds, J.M. (2011). An Introduction to Applied and Environmental Geophysics. PP. 418-459. [76] Loke, M.H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys. PP. 1-128. | ||
آمار تعداد مشاهده مقاله: 2,912 تعداد دریافت فایل اصل مقاله: 2,618 |