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Abstract 

The estimation of metallurgical parameters of flotation process from froth visual features is the 

ultimate goal of a machine vision based control system. In this study, a batch flotation system was 

operated under different process conditions and metallurgical parameters and froth image data were 

determined simultaneously. Algorithms have been developed for measuring textural and physical froth 

features from the captured images. The correlation between the froth features and metallurgical 

parameters was successfully modeled, using artificial neural networks. It has been shown that the 

performance parameters of flotation process can be accurately estimated from the extracted image 

features, which is of great importance for developing automatic control systems. 
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1. Introduction 

Froth flotation is one of the most commonly 

used mineral separation methods in mineral 

processing plants [1]. The control of flotation 

circuits is a difficult task owing to several 

variables involved along with some 

unintentional disturbances caused by changes 

in mineral characteristics and operating 

conditions [2]. 

Continuous monitoring of the metallurgical 

parameters (that is recovery and concentrate 

grade) is of vital importance for automatic 

control of flotation plants. The on-line 

measurement and estimation of these variables 

usually requires sophisticated and expensive 

instrumentation and on-line measurement of 

these variables requires sophisticated on-

stream analyzers which are expensive to 

purchase and maintain [3, 4].  

Machine vision is a reliable, non-intrusive 

and cost-effective approach for monitoring 

and controlling flotation circuits [3, 5, 6, 7, 8, 

9, 10, 11, 12]. The major function of a 

practical machine vision based control system 

is to predict process performance from the 

extracted froth features and to manipulate the 

operating variables (that is gas flow rate, 

reagent dosage, froth depth, etc.) in order to 

maintain optimum flotation performance [5, 8, 

11, 13, 14, 15, 16, 17, 18]. 
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In this study, a machine vision system was 

developed and validated to estimate the 

metallurgical parameters of a batch flotation 

system at different process conditions from the 

froth textural and physical features. 

2. Data acquisition 

Batch flotation tests were conducted on a 

copper sulfide ore with d80=75 μm in a 2.5 L 

laboratory flotation cell equipped with a video 

camera and a lighting system, installed above 

the froth surface (Fig. 1). The camera was 

mounted on a metal structure at a distance of 

20 cm from the froth surface and the lighting 

was provided by a single 50 W halogen lamp 

next to the camera.  

The flotation experiments were conducted 

at different process conditions (that is gas flow 

rate, slurry solids %, frother/ collector dosage 

and pH) and the metallurgical parameters (that 

is copper recovery, concentrate copper grade, 

mass recovery and water recovery) as well as 

the froth features (that is textural and physical 

features) were measured in each test (Table 1). 

 

Fig. 1. Laboratory-scale batch flotation cell and video 

camera set-up  

Table 1. Input and output variables of flotation experiments 

Input variables Range Output variables 

Gas flow rate (L/min) 5-10-15 
Cu recovery (Rcu); Concentrate grade (Gcu); Mass 

recovery (Rm); Water recovery (Rw);  

Slurry solids % 24-28-32 Froth bubble size (Db); Froth velocity (Vf); Froth color 

(Cf); Bubble collapse rate (Crb) Collector dosage (g/t)
 *
 20-30-40 

Frother dosage (ppm)
 **

 5-10-15 Energy (f1), Entropy (f2), Contrast (f3), Homogeneity 

(f4), Correlation (f5) pH 10.8-11.5-12.2 
* Collector: Potassium Amyl Xanthate; ** Frother: Aerofroth 65 

 
The concentrate samples were collected at 

time intervals of 0.5, 2 and 5 min and analyzed 

for their water, mass recovery and copper 

content. The tailings were filtered and dried 

and their copper content was determined. The 

video and metallurgical data collected for 2 

min were compared at different experiments. 

Twenty-five (25) frames per second and 3000 

frames per each test were captured and 

analyzed individually and the mean value of 

each feature was reported for each run [5]. 

Overall, 81 flotation experiments were 

conducted at different conditions based on a 

fractional factorial design obtained with a 

statistical software.   

2. Extraction of textural features 

Gray Level Co-occurrence Matrix (GLCM) is 

a well-established technique for the estimation 

of second-order joint conditional probability 

density functions of the pixel intensity values 

in the gray level image [10, 19, 20, 21]. In 

other words, spatial relationships of the pixel 

intensity in the image can be clearly 

represented by the GLCM created from the 

gray level image. The size of GLCM (L×L) is 

determined based on the number of gray levels 

of the image (L). Each element of the GLCM 

(i. e. p (i, j, d, θ)) is computed by counting the 

number of occurrences of two pixels with 

pixel intensity of i and j in the image when the 

distance and angle between two pixels are d 

and θ, respectively. Actually, a searching 

process is carried out to determine the number 

of occurrences of the pixels with gray levels i 

and j, respectively.  

The distance between the target pixel and 

its neighbor pixels is called distance offset (d) 

that is normally set to one because the GLCM 

cannot capture the detailed textural 
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information when the distance offset is large. 

In fact, a pixel is closely related to its nearest 

pixels.  

The angle between two pixels (θ) is another 

central factor which should be considered. 

Generally, each pixel is surrounded by eight 

neighboring pixels in different directions (θ= 

0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°). 

However, considering the definition of GLCM, 

the co-occurring pairs obtained by θ=0° would 

be similar to those obtained by θ=180° and 

similarly for θ=45°, 90° and 135°. Hence,  is 

commonly set to four directions 0°, 45°, 90° 

and 135° [21]. An example of a gray image 

with its four GLCMs matrices in four directions 

with d = 1 is shown in Figure 2.                               

 

Fig. 2. A paradigm of GLCM. 

After GLCM calculation, 14 features can 

be measured from this matrix. The most 

important features include energy, entropy, 

contrast, homogeneity and correlation [19, 20, 

21].  

(1) Energy 

Homogeneity of an image can be measured by 

energy feature as 

 
2

1

,

,
i j

f Energy p i j   (1) 

For an inhomogeneous image, the matrix 

has a large number of small entries with small 

energy values and vice versa. Energy values 

are in the range [0, 1]. 

(2) Entropy 

The complexity or disordering of an image is 

quantified by entropy feature as 

   2

,

, log ,
i j

f Entropy p i j p i j    
(2) 

The entropy value is high when the image 

includes uneven textural units (complex 

texture). Froth images with a wide range of 

bubble size, shape and color have high entropy 

values. 

(3) Contrast 

Contrast or inertia of an image measures the 

local variation of pixel intensity or intensity 

contrast between the pixel of interest and its 

neighboring pixels as 

  
2

3

,

,
i j

f Contrast p i j i j    (3) 

Therefore, an image with large local 

variations will have a high value of inertia. 

(4) Homogeneity 

This is a direct measure of the local 

homogeneity of a digital image that is 

quantified as 

 
4

,

,
( )
1

i j

p i j
f Homogeneity

i j
 

 
  (4) 

Minimum and maximum homogeneity 

value is zero and one, respectively. Contrast 

and homogeneity features are highly 

correlated in an inverse manner.  

(5) Correlation 

This feature is a measure of the linear 

correlation between two neighboring pixels as 

   
5

,

,
( )

i j

i ji j

p i j i j
f Correlation

 

 

 
   (5) 

where ( ,i i  ) are the mean and standard 

deviation of the row sums of the matrix and 

( ,i i  ) are the mean and standard deviation 

of the column sums of the matrix.  

It should be noted that the textural features 

were computed for each frame and the average 

values were reported for each experiment. 

The correlation matrix between the textural 

features is given in Table 2. It can be seen that 

the energy 1( )f  and entropy 2( )f  as well as 

the contrast 3( )f  and homogeneity 4( )f  are 

inversely related to each other.  
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Table 2. Correlation matrix between froth textural 

features 

Textural 

features 
     

 1.00 
-

0.92 

-

0.36 
0.57

*
 

-

0.40 

  1.00 0.63 
-

0.80 

0.15 

   1.00 
-

0.95 

-

0.66 

    1.00 0.46 

     1.00 

 

The correlation matrix between the 

metallurgical parameters and the froth textural 

features are listed in Table 3.  

Table 3. Correlation matrix between metallurgical 

parameters and textural features 

Textural features 
Metallurgical parameters 

    

 0.44 -0.70 0.68 0.67 

 -0.38 0.71 -0.70 -0.68 

 0.22 0.17 -0.17 -0.11 

 -0.02 -0.37 0.35 0.29 

 -0.62 0.45 -0.45 -0.53 

 
As indicated in Table 3, there is a good 

correlation between energy 1( )f , entropy 2( )f  

and correlation 5( )f  with performance 

parameters while the influence of other 

features such as contrast 3( )f , and 

homogeneity 4( )f  is not statistically 

significant. Hence,  and  features were not 

considered as the modeling variables. 

3. Extraction of physical features 

The most significant physical features include 

bubble size distribution, froth color, froth 

velocity and bubble collapse rate were also 

extracted from the froth images [18]. The 

bubble size distribution was measured by a 

marker-based watershed algorithm. The froth 

color was quantified through extraction of the 

red, green and blue (RGB) values from color 

images (the R channel was chosen because of 

its maximum correlation with the 

metallurgical parameters). The block matching 

algorithm was employed to estimate the froth 

velocity. The bubble collapse rate was 

determined from the difference between 

reflectance and shadow created at the froth 

surface, as a result of bubble appearing and 

disappearing in successive frames, along with 

the froth velocity information. More details 

can be found in other studies [18]. 

The correlation between the metallurgical 

parameters and the froth physical features is 

shown in Table 4. The strong correlation 

between the metallurgical parameters and the 

froth physical properties indicate that the 

flotation performance is well reflected in the 

froth visual features, which is of great 

importance for control purposes. Among the 

froth visual features, the bubble collapse rate 

exhibits the least dependency with the 

performance factors, hence was excluded from 

the modeling variables.   

Table 4. Correlation matrix between metallurgical 

parameters and physical features  

Physical features 
Metallurgical parameters 

    

 -0.71 0.72 -0.69 -0.71 

 0.51 -0.76 0.88 0.89 

 0.48 -0.6 0.62 0.65 

 -0.23 0.39 -0.43 -0.43 

4. Prediction of metallurgical parameters 

from froth features 

The ultimate aim of an on-line machine vision 

based control system is to estimate the 

flotation metallurgical parameters from the 

froth visual features and adjust the process 

variables accordingly, to achieve optimum 

separation [3, 8, 11, 12]. In order to achieve 

these objectives, the correlation between the 

process performance and image data should be 

discovered and modeled.   

The artificial neural network is an 

intelligent and robust technique for modeling 

of non-linear and complicated systems like 

froth flotation [2, 5, 18]. The multi-layer feed-

forward neural networks were utilized for 

modeling the relationship between the 

metallurgical parameters and the froth textural 

and physical features. The input and output 

variables of the developed neural network 

models are listed in Table 5. As indicated in 

Table 5, the statistically significant textural 

and physical features were used as inputs and 

the metallurgical parameters as outputs. 



Massinaei / Int. J. Min. & Geo-Eng., Vol.49, No.1, June 2015 

 

79 

Table 5. Input and output variables of neural 

network models 

Input 

variables       

Output 

variables 
Rcu Gcu Rm Rw  

 
Four individual neural networks were 

developed for predicting the metallurgical 

parameters via the characteristics of the froth. 

A simplified structure of the proposed neural 

network for mass recovery model is presented 

in Figure 3. It should be pointed out that 70% 

of data was randomly selected for training, 15% 

for checking and 15% for testing the network. 

 

Fig. 3. Structure of developed neural network for 

mass recovery model 

Determination of the number of hidden 

layer neurons is a critical stage in designing a 

neural network. Excessive neurons employed 

in the hidden layer may result in over-training 

and inadequate neurons can lead to 

insufficient training. In the current study, the 

optimum number of hidden layers was 

determined by trial and error. In other words, 

the neural network with minimum prediction 

error was chosen.                                          

The predictive capability of the models was 

evaluated by the correlation coefficient (R) 

and the root mean square error (RMSE) was 

calculated from the following expression: 

 

     
2 2

2 2

n yy y y
R

n y y n y y




 

  

   
 

(6) 

 
1/2

21
RMSE y y

n

 
  
 
  (7) 

where y and  are the measured and predicted 

values, respectively, and  is the number of 

data element.  

The prediction accuracy of the neural 

network models for estimating the flotation 

metallurgical parameters are presented in 

Table 6. The prediction error of the models on 

testing data is also shown in Figures 4 and 5. 

The results show that the developed models 

can effectively simulate the correlation 

between the froth features and the 

metallurgical parameters. Furthermore, it 

seems that the prediction accuracy of the 

existing models (by textural and physical 

features) have slightly improved compared 

with the previously developed models (by 

only physical features) [18].  

Thus, the performance parameters can be 

accurately predicted from the froth visual 

features and used as inputs to a feedback 

control system. This control system will 

manipulate the process variables in a 

predetermined order proportional to the 

deviation of the estimated performance 

parameters from the set points.   

Table 6. Performance evaluation of developed neural network models 

Metallurgical 

parameters 

R RMSE 

Training 

data 

Checking 

data 

Testing 

data 

Total 

data 

Training 

data 

Checking 

data 

Testing 

data 

Total 

data 

  0.92 0.96 0.92 0.93 2.18 2.13 2.48 2.22 

  0.96 0.97 0.95 0.96 1.01 1.24 0.94 1.04 

  0.97 0.97 0.95 0.97 1.26 1.22 1.44 1.28 

  0.97 0.97 0.96 0.97 2.53 2.53 2.73 2.56 
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Fig. 4. Prediction error of concentrate grade and recovery models (testing data) 

 

Fig. 5. Prediction error of mass recovery (Rm) and water recovery (Rw) models (testing data) 

 
5. Conclusion 

In this research work a machine vision was 

developed to predict the metallurgical 

parameters of a batch flotation system from 

the textural and physical features extracted 

from the froth images. For that purpose, a 

laboratory flotation cell was operated at 

different process conditions and the froth 

surface was filmed. The captured images were 

analyzed for extraction of textural and 

physical information. The correlation between 

the process performance and image data was 

successfully modeled by the neural networks. 

It can be concluded that combination of 

textural and physical characteristics extracted 

from the froth images will provide more 

accurate predictions of the flotation 

performance at different conditions. 
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