تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,021 |
تعداد مشاهده مقاله | 125,497,521 |
تعداد دریافت فایل اصل مقاله | 98,758,921 |
بررسی تنوع ژنتیکی ماهی کپور معمولی (Cyprinus carpio) در آب های ایرانی دریای خزر با استفاده از نشانگرهای ریزماهواره ای | ||
شیلات | ||
مقاله 11، دوره 68، شماره 1، فروردین 1394، صفحه 129-138 اصل مقاله (608.42 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfisheries.2015.53878 | ||
نویسندگان | ||
فرامرز لالوئی* 1؛ سهراب رضوانی گیل کلائی2؛ محمد جواد تقوی3 | ||
1کارشناس ارشد، بخش بیوتکنولوژی، پژوهشکدة اکولوژی دریای خزر، ساری، ایران | ||
2استاد مؤسسة تحقیقات شیلات ایران، تهران، ایران | ||
3کارشناس، بخش بیوتکنولوژی، پژوهشکدة اکولوژی دریای خزر، ساری، ایران | ||
چکیده | ||
تنوع ژنتیکی جمعیتهای ماهی کپور معمولی (Cyprinus carpio) در حوزة جنوبی دریای خزر با نمونهبرداری 120 قطعه ماهی کپور معمولی از سواحل استان گلستان، مازندران و گیلان با استفاده از ده جفت پرایمر ریزماهواره بررسی شد. نتایج نشان داد که هشت جایگاه ریزماهوارهای از ده جایگاه مورد بررسی، چندشکل بودند. میانگین تعداد آللهای مشاهدهشده و مؤثر به ترتیب 08/7 و 29/4 بود و حداکثر ناخالصی مشاهدهشده و مورد انتظار به ترتیب 95/0 و 92/0 محاسبه شد. در بررسی تعادل هاردی- واینبرگ مناطق گلستان، گیلان و مازندران در تمامی جایگاههای مورد بررسی، به استثنای جایگاه Syp8، خارج از تعادل هاردی- واینبرگ بود (05/0P<). بر پایة محاسبات انجامشده حداکثر FST (028/0) بین نمونههای گلستان و مازندران بود که دارای کمترین میزان جریان ژنی (4/1) است و حداقل FST (004/0) بین نمونههای مازندران و گیلان با بیشترین میزان جریان ژنی (43/3) مشاهده شد. بیشترین فاصلة ژنتیکی بین نمونههای منطقة گلستان و مازندران 084/0 و کمترین آن 033/0 بین نمونههای منطقة مازندران و گیلان بوده است. با توجه به نتایج آزمون AMOVA و محاسبة FST، همچنین تفاوت ژنتیکی معنادار بین نمونهها (01/0P<)، میتوان بیان کرد که جمعیت واحدی از کپور معمولی در مناطق مورد بررسی وجود ندارد و حداقل سه گروه ژنتیکی متفاوت از این گونه یافت میشود. | ||
کلیدواژهها | ||
ایران؛ تنوع ژنتیکی؛ دریای خزر؛ ریزماهواره؛ Cyprinus carpio | ||
مراجع | ||
[1]. Alarcon, J.A., Magoulas, A., Alvarez, M.C., 2004. Genetic comparison of wild and collative European population of the gill head sea bream. Aquaculture 230, 65-80. [2]. Bartfai, R., Egedi, S., Yue, G.H., Kovacs, B., Urbanyi, B., Tamas, G., Horvath, L., Orban, L., 2003. Genetic analysis of two common carp brood stocks by RAPD and microsatellite markers. Aquaculture 219, 157-167. [3]. Brighitte, J., Hansen, M., Loeschcker, V., 2005. Microsatellite DNA analysis of northern pike (Esox lucius) populations: Insights into the genetic structure and demographic history of a genetically depauperate specious. Biology Journal of Linnaean Society 84, 1-11. [4]. Cataudella, S., Sola, L., Corti, M., Arcangeli, R., La Rosa, G., Mattoccia, M., Coboldi Sbordoni, M., Sbordoni, V., 1987. Cytogenetic, genic and morphometric characterization of groups of common carp. Cyprinus carpio. In: Tiews, K. (Ed), Proc. World Symp. On Selection, Hybridization, and Genetic Engineering in Aquaculture, Bordeaux 27-30 May 1986. Schriften der Bundesnstalt fur Fisheries Hamburg 1, 113-129. [5]. Csizmadia, C., Jeney, Z., Szerencses, I., Gorda, S., 1995. Transferrin polymorphism of some race in a live gene bank of common carp. Aquaculture 129, 193-198. [6]. Dahle, G., Jorstad, K.E., Rusaas, H.E., Ottera, H., 2006. Genetic characteristics of brood stock collected from four Norwegian coastal cod (Gadus morpha) populations. Journal of Fish Biology 63, 209-215. [7]. Daryanabard, G., Abdolmaleki, S., Bandani, A., Kor, D., 2007. Stock assessment of bony fish in the Caspian Sea. Fisheries research organization of Iran, 89 pp. [8]. Desvignes, J.F., Laroche, J., Durand, J.D., Bouvet, Y., 2001. Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture 194, 291-301. [9]. Dimsoski, P., Toth, G.P., Bagley, M.J., 2000. Microsatellite characterization in central stoneroller Camp stoma anomalous (Pisces: Cyprinidae). Molecular Ecology 9, 2187–2189. [10]. Froufe, E., Magyary, L., Lehocky, I., Weiss, S., 2002. mtDNA sequence data supports an Asian ancestry and single introduction of the common carp into the Danube Basin. Journal of Fish Biology 61, 301-304. [11]. Fevolden, S.E., Pogson, G.H., 1997. Genetic divergence at the synaptophysin locus among Norwegian coastal and north–east Arctic population of Atlantic Cod. Journal of Fish Biology 51, 895-908. [12]. Ghaninejad, D., Sayadborani, M., Pourgholami, A., Fazli, H., Abasi, K., Bandani, A., 2002. Stock assessment of bony fish in the Caspian Sea. Fisheries research organization of Iran, 95 pp. [13]. Ghelichpour, M., Shabani, A., Shabanpourm B., 2008. Genetic diversity of two populations of Common carp in Gharasu and regions using microsatellite markers. Taxonomy and Biosystematics 5, 41-48. [14]. Helfman, GS., Collet, B.B., Facey, D.E., 1997. The diversity of fishes. Blackwell Science , Malden, MS, 258 pp. [15]. Jaime, C., Ania, P., Miguel, H., , Carmen, B., 2005. A microsatellite marker tool for parentage analysis in Senegal sole (Solea senegalensis): Genotyping errors, null alleles and conformance to theoretical assumptions. Aquaculture 261,1194 –1203. [16]. Kitanishi, S., Yamamoto, T., Higashi, S., 2008. Microsatellite variation reveals fine-scale genetic structure of masu salmon, Oncorhynchus masou, within the Atsuta River. Ecology of Freshwater Fish 32,1-7. [17]. Kirpichnikov, V.S., 1999. Methods and Effectiveness of Rop-sha Carp Breeding. ommunication I. Breding Aims, Original Forms and Cross System, Russian journal of genetic 8, 65–72. [18]. Kohlmann, K., Gross, R., Murakaeva, A., Kersten, P., 2003. Genetic variation and structure of common carp populations throughout the distribution range inferred from allozyme, microsatellite and mtDNA marker. Aquatic Living Resource 16,421-431. [19]. Laloei, F., Rezvani gilkolaei, S., Fatemi, S.M.R., Taghavi, M.J., 2008. Investigation of population genetic structure of Common carp in the south Caspian Sea using mtDNA method (PCR-RFLP). Iranian Scientific Fisheries Journal 17, 89-102. [20]. Macaranas, J. M., Sato, J., Fujio, Y., 1986. Genetic characterization of culture populations of Japanese common carp. Tohoku Journal of Agricultural Research 37, 21-29. [21]. Nei, M., 1972. Genetic distance between populations. American Naturalist 106, 283-292. [22]. Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals Genetics. American Naturalist 89,583-590. [23]. Norris, A.T., Bradley, D.G., Cunning ham, E.D., 1999. Microsatellite genetic variation between and within farmed and wild Atlantic salmon populations. Department of Genetics, Trinity College Dublin, Ireland 247-264. [24]. Peakall, M., Smouse, P.E., 2006. Gene Alex 6: Genetic analysis in Excel .Population genetic software for teaching and research. Molecular Ecology Resources 6, 288-295. [25]. Skaala, Q., Hoyheim, B., Glovera, K., Dahle, G., 2005. Microsatellite analysis in domesticated and Wild Atlantic salmon (Salmo salar L.): Allelic diversity and identification of individuals. Aquaculture 240, 131-143. [26]. Sumantadinata, K., Taniguchi, N., 1990. Comparison of electrophoretic allele frequencies and genetic variability of common carp stocks from Indonesia and Japan. Aquaculture 88, 263-271. Tanck, M.W.T., Baars, H.C.A., Kohlmann, K., Van der Poel, J.J., Komen, J., 2001. Genetic characterization of wild Dutch common carp (Cyprinus carpio L.). Agriculture Resource 31, 779-783. [27]. Thai, B,T., Pham, T.A., Austin, G.M., 2006. Genetic diversity of common carp in Vietnam using direct sequencing and SSCP analysis of the mitochondrial DNA control region. Aquaculture 258, 228-240. [28]. Thai, B.T., Burridge, C.P., Austin, C.M., 2007. Genetic diversity of common carp (Cyprinus carpio L.) in Vietnam using four microsatellite loci. Aquaculture 269, 174–186. [29]. Turner, F., Dowling, T.E., Broughton, R.E., gold, J.R., 2004. Variable microsatellite marker amplify across divergent lineages of Cyprinidae fishes. Conservation Genetic 5, 279-281. [30]. Zhou, J.F., Wu, Q.J., Ye, Y.Z., Tong, J.G., 2003. Genetic divergence between Cyprinus carpio carpio and Cyprinus carpio haematopterus as assessed by mitochondrial DNA analysis, with emphasis on origin of European domestic carp. Genetic 119, 93-97.
| ||
آمار تعداد مشاهده مقاله: 2,066 تعداد دریافت فایل اصل مقاله: 1,238 |