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ABSTRACT: The present study presents an algorithm that models uncertainties at the 
structural component level to estimate the performance reliability of RC structures. The 
method calculates the performance reliability using a systemic approach and incorporates the 
improved response surface method based on sampling blocks using the first-order reliability 
method and conditional reliability indices. The results of the proposed method at different 
performance levels were compared to bound techniques and the overall approach. It was 
shown that the proposed algorithm appropriately estimates the reliability of the seismic 
performance of RC structures at different damage levels for the structural components. The 
results indicated that performance reliability indices increased when then on-performance 
scenarios were examined for high levels of components damage. 
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INTRODUCTION

 

Earthquakes are natural hazards that can 

inflict irreparable damage to civil structures 

and human societies. To mitigate loss from 

earthquakes, researchers have attempted to 

forecast structural behavior during 

earthquakes. Public expectation for the 

design of structures that perform adequately 

during an earthquake has increased. Since 

there are inherent uncertainties in ground 

motion intensity, material properties and 

external loads, a comprehensive evaluation 

of the seismic performance of RC structures 

that considers these uncertainties is 

necessary. 

One technique for modeling 

uncertainties in a structure is the Monte 

Carlo Simulation (MCS). Although the 

results of this technique are accurate, real 
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structures require significant computational 

effort. Response Surface Method (RSM) is 

a set of mathematical and statistical 

techniques that have been proposed to 

address this problem (Bucher and 

Bourgund, 1990). In RSM, an explicit 

approximation is formed for the implicit 

Limit State Function (LSF) using 

deterministic structural analysis to calculate 

the reliability of a structure by the First 

Order Reliability Method (FORM) or 

Second Order Reliability Method (SORM). 

Bucher and Bourgund (1990) proposed a 

Response Surface Function (RSF) to 

approximate the LSF as a second order 

polynomial without interaction terms. They 

used a fitted RSF for the primary estimation 

of a design point and then updated the RSF 

using the mean vectors of the random 

variables and design point.  

Rajashekhar and Ellingwood (1993) 

improved the method proposed by Bucher 
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and Bourgund by updating the cycles of 

the RSF coefficients. They found that 

sampling in the tails of the distributions 

does not significantly improve failure 

probability and that the accuracy of the 

approximation depends on LSF 

specifications. Guan and Melchers (2001) 

considered a second order polynomial RSF 

without interaction terms and studied 

sensitivity to failure probability rather than 

position of the experimental points. Their 

parametric study of explicit and implicit 

LSF showed that the position of the 

experimental points significantly affected 

RSF approximation and the corresponding 

failure probability.  

Kaymaz and MacMahon (2005) 

proposed a weighted regression to calculate 

RSF parameters and calculated weights 

according to LSF values for experimental 

points. Their research indicated that this 

improves approximation for experimental 

points close to LSF. Gavin and Yau (2008) 

proposed higher order polynomials to 

approximate LSF. They considered a non-

constant order polynomial for LSF and 

determined the order of this polynomial 

using statistical analysis of its coefficients. 

Their results indicated that the probability 

of failure was calculated accurately and 

there was no significant correlation with the 

size of domains of the experimental points. 

It should be noted that this technique may 

lead to ill-conditioned systems of equations. 

Nguyen et al. (2009) suggested an 

improved response surface calculated using 

a cumulative method. They employed a 

linear RSF at the first repetition, and a 

parabolic RSF for subsequent repetitions. 

They selected the experimental points using 

RSF partial derivatives toward random 

variables and RSF coefficients calculated 

using the weighted regression technique. 

Their results indicated that the algorithm 

improved convergence speed, and that 

sensitivity to the size of the experimental 

points decreased. Kang et al. (2010) 

proposed an improved response surface 

using moving least squares approximation 

to consider higher weights for experimental 

points close to the design points. By using 

numerical examples, they showed that this 

technique can estimate failure probability 

accurately.  

Vamvatsikos and Cornell (2002) and 

Dolsek and Fajfar (2007) proposed a 

probabilistic framework to relate ground 

motion intensity to structural response and 

performance. In this method, the 

displacement capacity and transition point 

of a structure are calculated using a set of 

ground motion records. The output curves 

indicate the cumulative probability of 

structural collapse in terms of ground 

motion intensity. Liel et al. (2009) 

presented these curves for flexural RC 

structures by contributing uncertainties in 

the ground motion and the modeling 

parameters. Buratti et al. (2010) used first- 

and second-order RSFs to evaluate these 

curves for RC structures. They considered 

the uncertainties of the material properties, 

external loads and ground motion in the 

RSM explicitly using random factors. 

They indicated that this RSF is sensitive to 

sampling design and the results of second-

order RSF are more accurate than those of 

first-order RSF. 

The fact that uncertainties should be 

incorporated at the component level of a 

structure to assess reliability of seismic 

performance has been less studied. The 

seismic performance reliability of a RC 

structure against earthquake should be 

evaluated by systemic analysis that 

includes uncertainties at the component 

level. The present study proposes an 

integrated algorithm for this purpose based 

on nonlinear dynamic analysis, improved 

RSM, FORM, conditional reliability 

indices and linear safety margins for 

different levels of components damage.  

 

STRUCTURAL MODEL 

 

Realistic estimation of the performance 

levels of a structure in an earthquake 

requires a structural model that accurately 
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calculates its maximum response. There 

are two categories for the nonlinear 

dynamic analysis of RC structures. The 

first is to present the overall behavior of 

each structural component in terms of a 

macro-model. The second is to discretize 

each structural component into smaller 

units and then capture the overall behavior 

of a component from the behavior of the 

smaller units (micro-models). Micro-

modeling schemes are usually unsuitable 

for nonlinear dynamic analysis of 

structural systems because of their huge 

computational requirements.  

An alternative model is based on fiber 

formulation. In a fiber model, the 

structural element is divided into a discrete 

number of segments. This model assumes 

constant fiber properties over each 

segment length based on the properties of 

the monitored slice at the center of each 

segment. The nonlinear behavior of the 

element is monitored in the control 

sections, which are in turn discretized into 

longitudinal fibers of plane concrete and 

reinforcing steel. The nonlinear behavior 

of the section is then captured from the 

integration of the nonlinear stress-strain 

relationship of the fibers. This feature 

allows modeling of any type of RC 

structural element more accurately. 

Structural members of the RC frame are 

subdivided into a discrete number of Sub-

Elements (SEs). Flexural, shear and axial 

deformations are considered in the SE of 

the columns, although axial deformations 

are ignored in the SE of the beams. 

Flexural and shear components of the 

deformation are coupled in the spread 

plasticity formulation and the axial 

deformations are modeled using a linear 

elastic spring element. The flexibility 

distribution in the SE is assumed to follow 

the distribution shown in Figure 1, where 

EIi and EIj are the current flexural stiffness 

of the sections at end i and j, respectively; 

EI0 is the elastic stiffness at the center of 

the SE; δi and δj are the yield penetration 

coefficients; Lij is the length of the SE; and 

Mcr is the section cracking moment. The 

yield penetration coefficients are first 

calculated for the current moment 

distribution, and then checked with the 

previous maximum penetration lengths 

(δimax and δjmax). These coefficients cannot 

be smaller than the previous maximum 

values, regardless of the current moment 

distribution. Based on the moment 

distribution, four cases are considered: 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Spread plasticity model based on flexibility distribution in sub-element. 
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where Mcri and Mcrj: are the cracking 

moments of the section corresponding to 

the sign of the applied moments; EIi0 and 

EIj0: are the elastic stiffness of the sections 

at the ends of the SE. Flexural stiffness EIi 

and EIj: are determined from the hysteretic 

model. Special provisions are made in the 

model to adjust the flexibility distribution 

of the SE where yield penetration has 

taken place on the entire SE and δi+δj>1. 

In such cases, EI0 is modified to capture 

the actual distribution considering a new 

set of yield penetration coefficients that 

will satisfy δi+δj≤1 (Valles et al., 2005). 

The moment-curvature envelope 

describes the changes in the force capacity 

from deformation during nonlinear 

analysis. In this study, the model proposed 

by Kunnath et al. (1992) has been used. 

This model is based on a tri-linear 

moment-curvature envelope (Figure 2) 

where Mcr: is the cracking moment, My is 

the yield moment, Mu: is the ultimate 

moment, ψcr is the cracking curvature, ψy is 

the yield curvature, and ψu is the ultimate 

curvature of the RC section. 

Another aspect of nonlinear dynamic 

analysis is modeling the hysteretic 

behavior of the structural elements. The 3-

parameter Park hysteretic model was used 

in this study. This hysteretic model 

incorporates stiffness degradation, strength 

deterioration, non-symmetric response, 

slip-lock, and a tri- linear monotonic 

envelope. It traces the hysteretic behavior 

of an element as it changes from one linear 

stage to another based upon the history of 

the deformations. This model is depicted 

schematically in Figure3; a more complete 

description of the hysteretic model is 

provided in Park et al. (1987). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 2. Moment curvature envelope for reinforced concrete sections. 
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Fig. 3. Hysteretic model used in this study (Park et al., 1987). 
 

Concrete material properties are defined 

by points in the stress-strain curve shown 

in Figure 4a. Five points define the stress-

strain relationship under compression and 

one point for defines the stress-strain 

relationship under tension. The curve 

proposed by Kent and Park (1971) was 

adopted for concrete under compression in 

this study. Since confinement does not 

significantly affect maximum compressive 

stress, the model only considers the effect 

of confinement on the downward slope of 

the concrete stress-strain curve (Figure 4a). 

Factor ZF defines the shape of the 

descending branch, as expressed by Kent 

and Park (1971). The material model for 

the steel reinforcing bars is shown in 

Figure 4b which considers the yielding of 

steel and strain hardening. 

The moment distribution along a 

structural element subjected to lateral 

loading is linear (Figure 1a) and the 

presence of gravity loads will alter the 

distribution. The structural model takes 

these variations into account using several 

SEs at the structural members. The 

structure is first subjected to gravity 

loading, followed by dynamic analysis for 

ground motion. Nonlinear dynamic analysis 

uses a combination of the Newmark-Beta 

integration method and the pseudo-force 

method. This formulation was implemented 

in IDARC (Valles et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

a) Concrete material.                                               b) Steel material. 
 

 

Fig. 4. Properties of materials (Valles et al., 2005). 
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IMPROVED RSM FOR 
APPROXIMATING LSF   

LSF is defined implicitly in real structures. 

RSM replaces the exact implicit LSF, g(X), 

with a simple and approximate one as: 

 

‌‌‌g( X ) (C ;X )  (1) 

 

where : is the RSF, X: is the random 

variable vector, C: is the parameter vector 

of the RSF calculated by regression 

analysis using responses at specific data 

points (experimental points). Polynomials 

are used in structural random analysis as 

the RSF to provide simplicity and 

continuity of random variables 

(Rajashekhar and Ellingwood, 1993).  

The two factors that affect the accuracy 

are polynomial order and selection of the 

experimental points. The polynomial order 

should be a compromise between accuracy 

and efficiency of analysis. By focusing on 

accuracy, higher order polynomials can be 

used to acquire the LSF exactly; however, 

high-order polynomials increase the 

computational effort required to fit the 

RSF and may create an ill-conditioned 

system of equations (Rajashekhar and 

Ellingwood, 1993). Polynomial order 

should be selected to significantly decrease 

computational efforts for efficiency. In 

other words, using RSF with fewer 

parameters can decrease the number of the 

LSF assessments, which is important in 

problems with large numbers of random 

variables. Consequently, a second-order 

polynomial with interaction terms is 

employed in this study as: 

 

  2

0
1 1

1

1 1

N N

‌‌‌‌i i ii i
i i

N N

ij i j
i j i

X c c X c X

c X X

 


  

     

 
 (2) 

 

where c0, ci, cii, and ijc :  are the 

polynomial coefficients with numbers 

1
1 2

2
N ( N )

N


  and 1iX ;i , ,N :  are the 

random variables. The polynomial 

coefficients are calculated using a set of 

experimental points on the exact LSF. 

Since selection of these experimental 

points is required to estimate LSF 

accurately, an iterative scheme is applied 

to fit the RSF appropriately.  

At the first iteration, experimental 

points with numbers 10×[1+2N+N(N-

1)/2)] are generated around the means of 

the random variables. The responses of the 

structure are calculated using nonlinear 

dynamic analysis at the experimental 

points and RSF is fitted as Eq. (2).  

Using the RSF and FORM, the 

reliability index, corresponding design 

point, and the relative importance of the 

random variables are acquired. Identifying 

the relative importance of the random 

variables is accomplished using the 

importance measures of FORM (Der 

Kiureghian, 2004). The sampling blocks 

are based on the relative importance of 

random variables and, in next iterations, 

the new experimental points are generated 

in the sampling blocks. The experimental 

points are: (i) ascending, (ii) descending, 

(iii) maximum in the middle and 

descending on the sides, and (iv) minimum 

in the middle and ascending on the sides of 

each block.  

The number of experimental points in 

the next iterations is 4
NB

×NV, where NB 

and NV: are the number of the sampling 

blocks and number of random variables, 

respectively. This sampling scheme is 

shown in Figure 5 for 10 random variables 

where the number after IV indicates the 

ranking of the random variable for 

importance. In this approach, more 

experimental points are generated for the 

significant random variables and LSF can 

estimate appropriately. In this study, 

location of the center point of the 

experimental points improved using a 

linear strategy in subsequent iterations. An 
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improved linear interpolation strategy is 

used (Huh and Haldar, 2002) as:  

 

   

 1

if DP j C j

C j

C j C j DP j C j
C j DP j

g X g X :

g( X )
X X X X

g( X ) g( X )



  


 (3a) 

   
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CDP j

C j DP j C j DP j
DP j C j

g X g X :

g( X )
X X X X

g( X ) g( X )


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(3b) 

 

where 
C j

X  and 
DPj

X :  are the coordinates 

of the center point and the design point for 

iteration j, respectively; 
C j

g( X )  and  

 DPj
g X :  are the actual responses of the 

exact LSF using nonlinear dynamic 

analysis at C j
X  and DPj

X : , respectively; 

and 
1C j

X :


 is the new center point for the 

next iteration. This iterative scheme will 

continue until it converges at 

predetermined tolerance criteria. The 

convergence criteria are considered to be 

1
0 05C C Cj j j

( X X ) / X .

  , and 

1 1
0 01DP DP DPj j j

( X X ) / X .
 

  . In the 

final iteration, information on the most 

recent center is used to estimate the final 

RSF. FORM is then applied to calculate 

the reliability index and the coordinates of 

the most probable failure point. The 

graphical representation of the proposed 

strategy is shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The block sampling design based on relative importance of random variables. 
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Fig. 6. Flowchart of the proposed algorithm for fitting LSF and calculating performance reliability 

indices. 
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The quality and accuracy of RSF at 

each iteration is checked using the 

descriptive statistical measure, 𝑅𝑎𝑑𝑗
2 , which 

shows the correlation between the 

estimated and exact values of LSF 

(Nguyen et al., 2009): 
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where O: is the number of experimental 

points, and v: is the number of RSF 

parameters. 2  adjR value close to 1 is 

indicative of the accuracy of the RSF. If 

this criterion is‌less than 0.9, the quality of 

RSF should be increased (Liel et al., 

2009). The criterion 2 0.95adjR   has been 

used in this study. 

SYSTEMIC APPROACH FOR 
PERFORMANCE RELIABILITY 
ANALYSIS 

In reliability analysis of structures, failure by 

a LSF is denoted as g:χ →R where χ: is the n-

dimensional basic variable space. If   

 1 2, , , nZ Z Z Z   is the vector of standard 

normal variables with joint probability 

density function ,n g  should be defined such 

that the χ space can be divided into failure 

domain   : 0f Z g Z    and safe domain 

  : 0s Z g Z   ‌using‌     : 0LSF Z g Z  . The 

failure probability of 
fP  can defined as: 
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If g in a point called “design point” is 

linearized in distance β from the origin of 

coordinates (Figure7),  
fP  can be estimated 

as:  
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where  1, , n    : is the vector of the 

directional cosines of linearized LSF, 𝛽: is 

the Hasofer-Lind reliability index (1974) 

and Φ: is the standard normal cumulative 

distribution function. It can be said that: 

 

1 1 n nM Z Z      (8) 

 

is the linearized safety margin of a 

structure. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Reliability analysis for two structural elements with linear safety margins. 
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Since a real structure contains many 

components, a systemic approach should 

be applied to calculate its reliability index. 

In the systemic approach, the structure can 

be modeled as a series system, a parallel 

system, or combination of these. In a series 

system with m elements (Figure8), the 

safety margins of the elements are: 

 

  ; 1,2, ,i iM g X i m    (9) 

 

where  1  , , :nX X X   is the vector of basic 

variables,       1,2, , :ig i m   is the nonlinear 

LSF. Using  Z T X , basic variables can 

transform into standard normal variables 

so that the failure probability of element i 

can be calculated as: 

 

    

      1

0 0

0 0

fi i i

i i

P P M P g X

P g T Z P h Z

    

  
 (10) 

 

By linearizing hi 
at the design point,  

fiP  

can be estimated as: 

 

  

   

0  

0 Φ

fi i

T

i i i

P P h Z

P Z  

  

   
 (11) 

 

where 𝛼 𝑖: is the unit normal vector in the 

design point. 
  
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8. Series and parallel systems of structural 

elements. 

By returning to the series system in 

Figure 8, the probability of failure of this 

system can be calculated as (Hohenbichler 

and Rackwitz, 1983): 
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 (12) 

 

where  1, , m    , :ij 


     is the 

correlation coefficient matrix for the 

linearized safety margins, and Φ :m
 is the 

multi-normal distribution function. Failure 

probability for a parallel system with m 

elements (Figure8) can be estimated using 

the same method (Hohenbichler and 

Rackwitz, 1983): 
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 (13) 

 

Different performance scenarios for the 

structural components are essential to 

estimate the performance reliability of a 

structure. In this study, a systematic 

approach is proposed which is general in 

concept to allow use for different levels of 

component damage. In this approach, the 

performance reliability index of the 

structural system at level 0 is calculated 

based on a single element as: 

 

0
min

1, ,

i

sys
i m


 

 
 (14) 

 

 

E1 E2 Em 

Parallel system 

E
1
 

E
2
 

E
m

 



Civil Engineering Infrastructures Journal, 48(1): 47-68, June 2015 

57 

At level 0, each component is 

considered separately from other 

components and interactions between 

components are ignored in the reliability 

analysis. This provides a very optimistic 

estimation of performance reliability.  

At level 1, performance reliability index 

of the structure was estimated using a 

series system of structural components, as 

shown in Figure 9. Since calculation of the 

multi-normal distribution function in Eq. 

(12) is not possible for a large number of 

components, the non-performance 

probability of the structure can be 

estimated using components of this series 

system (Thoft-Christensen and Sørensen, 

1984). Based on the β values of these 
components in  1  ,min min   , 

min : is the 

smallest reliability index, and 
1 : is the 

defined positive value, are selected. The 

components are called critical components. 

Performance reliability at level 2 is 

estimated using a series system in which the 

components are parallel subsystems (critical 

pairs), as shown in Figure 9. At level 2, it is 

assumed that component l with the smallest 

reliability index, does not satisfy the 

specific performance level. New reliability 

indices for all components (except 

component l) are calculated and the 

smallest value of β is considered to be 
min .  

Components with a conditional reliability 

index in interval  2  ,min min    (where 

2 :  is a positive value) are combined as 

parallel by component l. Consequently, the 

performance reliability of structural system 

at level 2 can be estimated as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Modeling of the performance reliability of structural system at level 1 to level 3. 
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i) Calculate the conditional reliability 

indexes for all components except l. 

ii) Evaluate the linearized safety margin 

for components in  2  ,min min   . 

iii) Estimate the non-performance 

probability and the equivalent linearized 

safety margin for parallel subsystems. 

iv) Assess correlation between parallel 

subsystems. 

v) Calculate the non-performance 

probability of the series system. 

At level 2, safety margin 
lM  for 

component l and conditional safety margin 

nspEi|ElM  for component i are calculated. 

Subscript nsp indicates that the specific 

performance level has not been satisfied. 

Using correlation coefficients  ,    | nspEl Ei El  

and reliability indices 
El  and | nspEi El , the 

non-performance probability of this 

parallel subsystem (Pnpp) is calculated as: 

 

 2 |  ,   |Φ  ,  ;
nsp nspnpp El Ei El El Ei ElP       (15) 

 

This method is repeated for all critical 

pairs of elements. A linear safety margin 

 pM  is then estimated for each parallel 

subsystem and the performance reliability 

index of the series system consisting of the 

parallel subsystems is calculated. | nspEi ElM

and :pM  are computed where reliability 

index :e  is equal to | nspEi El and p , 

meaning they have similar sensitivity to 

variations in the basic variables. In this 

study, equivalent linear safety margin 

 eM  is considered as (Gollwitzer and 

Rackwitz, 1983): 
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where  1 , , :e e e

n     is a unit vector 

calculated with a slight increase (𝜀 ̅ in basic 

variables using a numerical derivative: 
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System reliability at level 3 is estimated 

based on critical triples of components. At 

level 3, the critical component pair l and k 

is identified as having the smallest 

reliability indices of all elements. It is 

assumed that the specific performance level 

is not satisfied for components l and k. New 

reliability indices are calculated for all 

components (except l and k) where the 

smallest value of β is 
min . Components in 

the range of 
3[ , ]min min    (where 

3 :  is 

a positive value) are combined with 

components l and k to form parallel 

subsystems, as shown in Figure9. When the 

performance reliability of a structural 

system is accomplished at level 3, safety 

margin  ,
nsp

El Ek
M  for components l and k, 

and safety margin  | ,
nsp

Ei El Ek
M for component 

i are calculated. Using these safety margins, 

reliability indices |, 
nspEl Ek El  and  | ,

nsp
Ei El Ek



and correlation matrix ρ, the non-

performance probability for the parallel 

subsystems can be estimated as: 

 

 3 | |( , )Φ  ,  ,    ;
nsp nspnpp El Ek El Ei El EkP         (18) 

 

The equivalent linear safety margins 

  eM are then calculated for critical triples 

of components and the performance 

reliability of the structure at level 3 is 

estimated using a series system that 

includes the parallel subsystems. The 

performance reliability of the structure can 

be estimated using this algorithm at level  

3N  . If two critical components fully 
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correlate, only one is selected in the 

proposed algorithm. 

 

NUMERICAL CASE STUDY AND 

DISCUSSION  

 

The seismic performance reliability of a 

RC frame structure (Figure 10) is 

evaluated in this section. The target 

structure was part of a residential building 

located in a zone of very high seismic 

hazard that was designed according to 

Iranian standard 2800 and the Iranian 

concrete code. The basic variables 

affecting seismic performance were:  

i) Ground motion intensity. 

ii) Gravity loads. 

iii) Material properties   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Section Dimensions (mm) Longitudinal Reinforcement Stirrups 

C1 450×450 12𝛷20 𝛷10@100 mm 

C2 400×400 12𝛷16 𝛷10@100 mm 

B1 400×400 
T: 950 mm

2
 

B: 570 mm
2
 

𝛷10@100 mm 

B2 400×400 
T: 733 mm

2
 

B: 504 mm
2
 

𝛷10@100 mm 

 

Fig. 10. The RC moment frame structure. 
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A variety of ground-motion intensity 

measures are available. In this study, Peak 

Ground Acceleration (PGA) was selected 

because it correlates strongly with the 

performance variables of interest, such as 

the damage index or inter-story drift 

(Vamvatsikos and Cornell, 2002; Dolsek 

and Fajfar, 2007). Hazard information is 

available for this parameter on the 

probability of an earthquake of a given 

intensity measure. Other uncertainties are 

implicitly incorporated using the model 

proposed by Khademi (2004). Figure 11 

shows this model for soil type I in Iranian 

standard 2800. The values for the Khademi 

model were assessed using the chi-squared 

test for the PGA distribution. An extreme 

type II (Frechet) distribution gave the best 

approximation of PGA. The cumulative 

density function of this distribution is: 

 

  exp( ) k

A

u
F a

a

 
  

 
 (19) 

 

where k=2.31 is the shape parameter and u= 

0.133 is the scale parameter. The 

probability density function of this 

distribution is shown in Figure 12. Based on 

this model and three assumptions for a 

magnitude equal to 7.0, an epicenter 

distance of 9 km, and soil type I from 

Iranian standard 2800, the PGA was 

calculated to be 0.35g. This value has a 

10% probability of being exceeded in 50 

years, giving mean and standard deviations 

of this variable of 0.21g and 0.29g, 

respectively. The Tabas time 

 history (Tabas Station, 1978; Figure 13) 

was used for nonlinear dynamic analysis. It 

has a significant duration of 16.21 s, which 

is greater than the 10 s and 3T = 1.38s 

values recommended in Iranian standard 

2800. 
 

 
Fig. 11. PGA variations for different magnitudes 

based on Khademi model (Khademi, 2004). 

 

 
Fig. 12. Probability density function of PGA. 
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Fig. 13. Tabas earthquake time history. 
 

Gravity loads are another source of 

uncertainty. Actual building details can 

vary from those used in the original design 

(for example, layers of roofing are often 

added during the life of a building) and 

unit weights are imperfect. The gravity 

loads of stories (qs) 
and roof (qr) were 

considered distinctly to be a combination 

of dead load and 20% live load; their 

nominal (design) values were specified 

based on Section 6 of the Iranian building 

national regulations for a loading width of 

4 m. It was assumed that the gravity loads 

(bias factor =1.05 and C.O.V=0.15) had a 

normal distribution (Table 1) (Ellingwood 

et al., 1980; Nowak and Collin, 2000). 

Uncertainty in the force-deformation 

relationships of the structural elements 

derives from a variety of sources. Material 

properties differ from those assumed in the 

analysis, and real stress-strain behavior at 

the element-fiber level differs from 

engineering idealizations. Uncertainties in 

material properties should be incorporated 

into the performance reliability analysis of 

a structure. For this purpose, the 

compressive strength of concrete (fc), 

concrete strain at compressive strength 

(c0), ultimate strain of concrete (cu), yield 

strength of steel bars (Fsy), ultimate 

strength of steel bars (Fsu), elasticity 

modulus of steel bars (Es), and strain at 

start of hardening of steel bars (SH) were 

considered as random variables. 

Ellingwood et al. (1980) and SAKO (1999) 

indicated that a lognormal distribution is 

appropriate for the parameters of concrete 

and reinforcing steel materials (Table 1). 

Risk is always estimated based on 

LSFs, which can be broadly divided into 

serviceability and strength limit state 

functions. For seismic loading, the design 

may be controlled using the serviceability 

criteria (Wen et al., 2003). LSF 

corresponding to these criteria was 

formulated using the recommendations 

given in design codes. The general form of 

a serviceability limit state was defined as: 
 

   PLg X X   (20) 

 

where pl: is the limit value of the 

acceptance criterion of  (X)  at the 

specific performance level. In the systemic 

approach, the maximum plastic rotation 

criteria of the elements were used and 

LSFs for Immediate Occupancy (IO), Life 

Safety (LS), and Collapse Prevention (CP) 

have been defined as follows: 
 

     0 005 0 1IOCE PRC PRCg X . , . X   (21) 

     0 01 0 1IOBE PRB PRBg X . , . X   (22) 

     0 015 0 1LSCE PRC PRCg X . , . X   (23) 

     0 02 0 1LSBE PRB PRBg X . , . X   (24) 

     0 02 0 1CPCE PRC PRCg X . , . X   (25) 
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where PRC and PRB :  are the maximum 

plastic rotation in column and beam 

elements of the structure, respectively. 

Threshold values of maximum plastic 

rotation are considered with a lognormal 

distribution and numbers in parentheses 

are means and coefficients of variation for 

the given performance levels (FEMA 356, 

2000; ATC-40, 1996). 

 
Table 1. Parameters of the probability 

distribution of random variables. 

R. V. Mean S.D. 
Distribution 

Type 

fc 30 MPa 4.5 MPa Lognormal 

εc0 2×10
-3
 3×10

-4
 Lognormal 

εcu 35×10
-4
 5.25×10

-4
 Lognormal 

fy 400 MPa 20 MPa Lognormal 

fu 600 MPa 30 MPa Lognormal 

ES 2 × 10
5
MPa 10 

4
MPa Lognormal 

𝜀𝑆𝐻 3×10
-2
 3×10

-3
 Lognormal 

qS 39.43 KN/m 5.92 KN/m Normal 

qr 33.78 KN/m 5.07 KN/m Normal 

PGA 0.21 g 0.29 g 
Extreme 

type II 

 

Figure 14 shows the performance 

reliability indices for structural elements.  

At performance levels IO, LS and CP, EB8 

element had the smallest performance 

reliability index between structural 

members; accordingly, reliability of the 

structural system was estimated at level 0 

by this component. Figure14 indicates that 

elements EB8, EB7, EC9, EC10, EC14, ..., 

EC5, and EC6 surpassed IO, LS and CP 

The results of performance reliability 

are shown in Table 2 at level 1, where the 

structural system was modeled as a series 

system (Figure 15). The bivariate and 

trivariate normal cumulative distribution 

functions were calculated using Drezner 

(1990, 1994), and the method suggested by 

Genz and Bretz (1999, 2002) was applied 

for 4 or more dimensions. Since the 

calculated values for the multivariate 

normal cumulative distribution function 

were accurate to  4 1,   was selected such 

that the number of critical elements is 4. 

The Boole and KHD bounds (Song and 

Der Kiureghian, 2003) at level 1 were 

calculated at different performance levels. 

Table 2 confirmed the accuracy of the 

performance reliability analysis at level 1. 

At level 2, it was assumed that the 

maximum plastic rotation in EB8 exceeded 

threshold values IO, LS and CP, and the 

structural system was modeled as a series 

system of parallel subsystems (Figure 15). 

The results of performance reliability and 

the Boole and KHD bounds at level 2 are 

shown in Table 3. The performance 

reliability at level 3 was calculated using 

critical triples of the structural elements 

(Figure 15) and the results are shown in 

Table 4. The results of performance 

reliability analysis at level 4 are presented 

in Table 5. The performance reliability 

indices and the probabilities at different 

levels are compared in Figure 16, which 

indicates that the performance reliability 

indices increased from level 1 to level 4. 

At level 4, 3 structural components did not 

satisfy the specific performance level, 

meaning that the probability of such a 

scenario is less than level 1. 
 

Table 2. The performance reliability of the RC frame structure with systemic approach at level 1. 

Performance Level : IO 

βmin Δβ1 Critical Elements β
1
 P

1
nsp Boole Bound KHD Bound 

0.8521 0.12 EB8, EB7, EC9, EC10 0.48723 0.31305 0.19708 - 0.54664 0.24642-0.33076 

Performance Level : LS 

βmin Δβ1 Critical Elements β
1
 P

1
nsp Boole Bound KHD Bound 

1.5560 0.146 EB8, EB7, EC9, EC10 1.47327 0.07034 0.05985 - 0.19316 0.06364-0.07267 

Performance Level : CP 

βmin Δβ1 Critical Elements β
1
 P

1
nsp Boole Bound KHD Bound 

1.6895 0.15 EB8, EB7, EC9, EC10 1.6269 0.05188 0.04556 - 0.14847 0.04846-0.05221 
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Fig. 14. The performance reliability indexes of Structural elements and corresponding probabilities.  

 
 

 
Fig. 15. Performance reliability of the RC frame structure with systemic approach at level 1 to level 4. 
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Table 3. The performance reliability of the RC frame structure with systemic approach at level 2. 

Performance Level : IO 

βmin Δβ2 Critical Elements β
2
 P

2
nsp Boole Bound KHD Bound 

-0.52447 0.82 
EB8EB7, EB8EC9,  

EB8EC10, EB8EC14 
0.98178 0.1631 0.1596 - 0.4543 0.16155-0.16313 

Performance Level : LS 

βmin Δβ2 Critical Elements β
2
 P

2
nsp Boole Bound KHD Bound 

-1.2553 0.82 
EB8EB7, EB8EC9,  

EB8EC10, EB8EC14 
1.5505 0.06051 0.0585 - 0.1992 0.05973-0.06099 

Performance Level : CP 

βmin Δβ2 Critical Elements β
2
 P

2
nsp Boole Bound KHD Bound 

-1.3421 1.1 
EB8EB7, EB8EC9,  

EB8EC10, EB8EC14 
1.6797 0.04651 0.04483 - 0.15531 0.04589-0.04655 

 
Table 4. The performance reliability of the RC frame structure with systemic approach at level 3. 

Performance Level : IO 

βmin Δβ3 Critical Elements β
3
 P

3
nsp Boole Bound KHD Bound 

0.86058 0.35 
EB8EB7EC9, EB8EB7EC10, 

 EB8EB7EC14, EB8EB7EB5 
1.69717 0.04483 0.04475 - 0.17859 0.04480-0.04487 

Performance Level : LS 

βmin Δβ3 Critical Elements β
3
 P

3
nsp Boole Bound KHD Bound 

1.65082 0.2 
EB8EB7EC9, EB8EB7EC10, 

 EB8EB7EC14, EB8EB7EB5 
2.3945 0.00832 0.00832 - 0.03606 

0.00832-

0.008323 

Performance Level : CP 

βmin Δβ3 Critical Elements β
3
 P

3
nsp Boole Bound KHD Bound 

1.8054 0.2 
EB8EB7EC9, EB8EB7EC10, 

 EB8EB7EC14, EB8EB7EB5 
2.5561 0.00529 0.00529 - 0.02254 

0.00529-

0.005294 

 
Table 5. The performance reliability of the RC frame structure with systemic approach at level 4. 

Performance Level : IO 

βmin Δβ4 Critical Elements β
4
 P

4
nsp Boole Bound KHD Bound 

0.8635 0.45 

EB8EB7EC9EC14, 

 EB8EB7EC9EC10, 

 EB8EB7EC9EB5, 

 EB8EB7EC9EB4 

1.8766 0.03029 0.03016-0.1132 0.03019-0.03035 

Performance Level : LS 

βmin Δβ4 Critical Elements β
4
 P

4
nsp Boole Bound KHD Bound 

1.6949 0.23 

EB8EB7EC9EC14, 

 EB8EB7EC9EC10, 

 EB8EB7EC9EB5, 

 EB8EB7EC9EB4 

2.5005 0.0062 0.00618-0.0264 0.0062-0.00622 

Performance Level : CP 

βmin Δβ4 Critical Elements β
4
 P

4
nsp Boole Bound KHD Bound 

1.83503 0.21 

EB8EB7EC9EC14, 

 EB8EB7EC9EC10, 

 EB8EB7EC9EB5, 

 EB8EB7EC9EB4 

2.6563 0.003951 0.00395-0.01631 0.003950-0.003953 

 
To verify the results of the proposed 

systemic approach, the overall 

performance reliability of this structure 

was assessed. In the overall approach, the 

maximum drift and total damage index 

criteria (Valles et al., 2005) were applied 

and the LSFs have been defined as: 

     0 01 0 1IO MD MDg X . , . X   (27) 

     1 0 02 0 1LS MD MDg X . , . X   (28) 

     2 0 4 0 1LS DI DIg X . , . X   (29) 

     1 0 04 0 1CP MD MDg X . , . X   (30) 

     2 0 8 0 1CP DI DIg X . , . X   (31) 
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β P 
nsp

 

where  MD  and  DI :  are the maximum 

drift and total damage index, respectively. 

The values in parentheses are the means 

(FEMA 356, 2000, ATC-40, 1996, Valles 

et al., 2005) and coefficients of variation. 

Variability of the maximum drift and total 

damage index are shown in lognormal and 

beta distributions, respectively (Moller et 

al., 2009). Performance reliability indices 

of the structure were calculated for LSFs 

as Eqs. (27) to (31) and the results are 

shown in Table 6. The results were 

compared with the performance reliability 

indices of MCS
 
using 10

5 
simulations. The 

results were appropriate and the relative 

error of the performance reliability indices 

(except for   IOg X ) were less than 0.01. 

Table 6 shows that the performance 

thresholds based on maximum drift were 

more conservative than thresholds based 

on the damage index. The results of the 

overall and systemic approaches are 

compared in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Performance reliability analysis of the RC frame structure with systemic approach in different levels. 

 

 

 

 
 
 
 
 
 

 
 
 
 
 

 

 

 Fig. 17. Comparison of the performance reliability of the RC frame structure in overall and systemic 

approaches. 
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Table 6. The performance reliability of the RC frame structure with overall approach. 

LSF Analysis β Pnsp 

gIO (X) 
FORM 1.2907 0.098402 

MCS 1.245 0.106484 

gLS1 (X) 
FORM 1.9794 0.02388 

MCS 1.9765 0.02405 

gLS2 (X) 
FORM 2.156 0.01554 

MCS 2.1425 0.01608 

gCP1 (X) 
FORM 2.4185 0.007792 

MCS 2.4162 0.007842 

gCP2 (X) 
FORM 2.4974 0.006255 

MCS 2.4955 0.006289 

 

The figure indicates that the overall 

approach corresponded to levels 2 and 3 of 

the proposed systemic approach. The non-

performance probabilities in the overall 

approach actually indicated that one 

structural component exceeded the given 

performance level in the proposed method. 

CONCLUSIONS 

The present paper proposes an integrated 

algorithm for reliability assessment of the 

seismic performance of RC structures. 

This algorithm incorporates uncertainty at 

the component level and is a combination 

of an improved RSM at the component 

level and a systemic approach for 

structural system analysis. 

In the improved RSM, an iterative 

scheme to approximate the exact LSF is 

applied. In this method, structural response 

parameter was calculated by nonlinear 

dynamical analyses at the sample points. 

LSF was estimated using a second-order 

polynomial with interaction terms and 

FORM was used for calculating 

performance reliability index and relative 

importance of random variables. In the next 

iterations, sampling center point was 

updated through a linear interpolation 

strategy which caused LSF to be properly 

evaluated in the design point. The main 

advantage of the improved RSM is that the 

experimental points are generated in 

sampling blocks based on the importance 

ranking of random variables. The sampling 

design generates more samples for 

significant variables to allow adequate 

estimate of the LSF. The sampling design 

decreases computational efforts and the 

computational time of the algorithm. The 

seismic performance reliability of the 

structural component is calculated using the 

final fitted RSF and FORM. 

Another benefit of the proposed 

algorithm is that the reliability analysis of 

the RC structure uses a systemic approach 

that employs the most probable non-

performance scenario at the structural 

component level to establish the series and 

parallel subsystems. This scenario consists 

of components with a smaller reliability 

index at different damage levels that are 

used to compute the final reliability index 

of the structural system. 

The proposed method was used for a 

RC frame structure. The LSFs were 

defined based on the maximum plastic 

rotation at the structural component level. 

Uncertainties in the material properties and 

gravity loads were incorporated and 

earthquake uncertainty was explicitly 

included in the PGA, which is dependent 

on the magnitude, epicenter distance and 

type of site soil. The results showed that 

the non-performance probabilities of the 

structure decreased when the non-

performance scenarios were formed at high 

levels of this algorithm.  

Seismic performance reliability of the 

structure was calculated using bound 

techniques at different levels of component 

damage and confirmed results of the 

proposed method. The systemic approach 

was compared with the overall approach 
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using the general acceptance criteria of 

maximum story drift and global damage 

index. The results showed that the 

performance reliability indices of the 

overall approach corresponded to the 

reliability indices at interval between 

levels 2 to 3 for the proposed method. It 

should be noted that the overall approach 

provided seismic performance reliability 

only with one index, while the proposed 

method provided seismic performance 

reliability at different levels of component 

damage. 
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