
Journal of Sciences, Islamic Republic of Iran 26(1): 49 - 55 (2015) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 
 

49 

Cyclic Orbit Codes with the Normalizer of a Singer 

Subgroup 

 
F. Bardestani and A. Iranmanesh

*
 

 
Department of pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University,  

Tehran, Islamic Republic of Iran 

 

Received: 16 November 2014  / Revised: 3 January 2015  / Accepted: 17 February 2015   

 

Abstract 

An algebraic construction for constant dimension subspace codes is called orbit code. 

It arises as the orbits under the action of a subgroup of the general linear group on 

subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the 

general linear group has investigated recently. In this paper, we consider the normalizer 

of a Singer subgroup of the general linear group and its orbit codes. Several properties of 

these codes are considered. 
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Introduction 

  Random linear network coding introduced in [1], is 

used to increase the information throughput by allowing 

the random linear combination of packets within a 

network i.e., the middle nodes combine packets linearly, 

where they choose the coefficients for linear 

combinations randomly within a finite field. Due the 

encoding method the receivers are able to reconstruct 

the original packets that have been injected into the 

network at its sources. Although this method is very 

effective but it is highly sensitive to the error 

propagation. In 2008, Kötter and Kschischang 

developed an algebraic approach to overcome this 

deficiency [9]. They suggested an error correcting 

network code as a family of subspaces of an ambient 

space 
nF . This pioneering article initiate intensive 

research effort on subspace codes, particularly for 

construction of large error-correcting codes with 

efficient encoding and decoding algorithms. In 2009, 

Etzion and Silberstein presented a construction of 

subspace codes with large distance and cardinality 

which is based on rank-metric codes [4]. 
 
In [5], Etzion 

and Vardy introduced the concept of a cyclic subspace 

code and present several optimal cyclic subspace codes. 

  In [13], Trautmann et al., used group action and 

present an algebraic construction for subspace codes 

named orbit code. Especially by considering the group 

action of a certain group (Singer subgroup), they 

presented an algebraic construction for cyclic subspace 

codes. 

  In [6], Gluesing-Luerssen et al., introduced the 

notion of Stabilizer subfield and investigate the 

cardinality and distance of the orbit codes of the Singer 

subgroup. 

  While the orbit codes of a Singer subgroup are not 

large but taking the unions of them is a nice idea to 

obtain large cyclic subspace codes for a given minimum 

distance. The normalizer of a Singer subgroup is a 

candidate to have an algebraic structure for some certain 

unions of the orbits of the Singer subgroup. 

  In 2013, Braun et al., presented a nontrivial q -

analog of Steiner systems, which also form an optimal 

cyclic code. This code has the normalizer of the Singer 

subgroup as its automorphism group [2]. 

  In this paper, we will study the orbits of the 

normalizer of a Singer subgroup, which are a class of 

cyclic subspace codes. The structure of the orbits of this 

normalizer is closely related to the orbits of the Singer 

subgroup. 

 

Notation and preliminary results 

A subspace code of length  is defined as a 

collection of subspaces in 
n

qF  , where 
qF  is a finite 

field. If all the subspaces have the same dimension  

the code is called constant dimension code. The 

subspace distance between two subspaces is defined as 

follows [9]:  

 

 

 

Therefore, the minimum distance of a code C  is 

defined as: 

 

 
 

As a consequence, if C  is a constant dimension 

code, then mind  ) 2kC . 

  The dual of the subspace code C  is denoted by  C  

and is defined as . Since 

, 

then 
min min)(  d d C C  [13]. 

  The set of all -dimensional subspaces of 
n

qF  is 

called Grassmannian, denoted by . It is well 

known that:

  

  Let  be the general linear group , an orbit 

code, is defined as the orbit of the natural action of a 

subgroup  of  on the Grassmannian [13]. 

More precisely let ( )k n qU Mat  F  be a full-rank 

matrix such that  and  be an 

element of . We can define, , 

then an orbit code by G and starting point U  is 

denoted by 
G ( )Orbit U , so . 
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. 

 

  Let 
1C  and 

2C  be two subspace codes of length  

such that 
1 2 ) (C C  where

 
GL( , )n q , then 

1C  

and 
2C  are called linearly isometric or simply isometric. 

It is easy to see that isometric codes have the same 

minimum distance and cardinality [13]. Since orbit 

codes are a class of subspace codes, the isometry 

between them is defined in the same way. In [10], it is 

proved that two conjugate subgroups lead isometric 

orbit codes. For more information about isometry in 

subspace codes, the reader is refered to [12]. 

 

  If , we say C  is a code with 

parameters , we may omit , 

where the cardinality is not the point. With these 

parameters it is easy to see that the dual code  is an 

 orbit code. The related orbit 

code to a cyclic subgroup of  is called a 

cyclic orbit code. 

  An element of order  in  is called 

a Singer cycle. Since the multiplicative group of the 

field nq
F  is cyclic of order  and we can take its 

generator as an element of  , so for every  

and every 
 
there is a Singer cycle in . A 

cyclic group generated by a Singer cycle called a Singer 

subgroup. There are several ways to describe a Singer 

subgroup, for example, let  be a primitive 

polynomial of degree  over 
qF , and  be its 

companion matrix, then is a Singer subgroup of 

 [13].  

We recall that if , 

then  

. 

 

  Since the extension field 
nq

F  is a vector space of 

dimension  over 
qF , we may consider 

nq
F . as the 

vector space. Fix  as a primitive element of 
nq

F , then 

*

nq

C   F  is a Singer subgroup of . 

Since all Singer subgroups are conjugate, in order to 

investigate orbits of a Singer subgroup, without loosing 

generality we investigate the orbits of  

  A collection of subspaces with this property that if 

 is a codeword, then 

 is also a codeword which is 

called a cyclic subspace code [5]. Whence one of the 

several interesting properties for , is that 

every is a cyclic subspace code. 

  According to the definition of isometric subspace 

codes, the auotomorphism group of  is 

contained  Recall that the Frobenius automorphism 

: n nq q
 F F  is defined by  for all 

.nq
xF  We mention, the following example which 

shows, in general  

Example 1.1 Consider primitive polynomial 

. Let 72
 F  be a root of ( )p x  

and  be a 

subspace of 72
F , then , so 

, while . 

 

In the next section, we will focus on the normalizer 

of a Singer subgroup and the related orbits.  

 

Results and Discussion 

Let be a subgroup of , the normalizer 

of in  is the set of all elements in 

 such that commute with . That is: 

. 

Let , then it is well known that 

 is a subgroup of . It is 

straightforward to see that : 

 

By this method, if we consider  then we 

obtain a union of cyclic subspace codes as an orbit code. 
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Singer subgroup  in  by . Galois 

group ( / )n qq
Gal F F  is a cyclic group which is 

generated by the Frobenius automorphism  of order 

. We mention a well known construction for  as a 

semidirect product [7]. We recall the definition of a 

semidirect product as the following: 

 

Definition 2.1. Let  and  be two arbitrary 

groups and  be a homomorphism (denote 

the image of every h under   by h ). On the 

Cartesian product define, the following 

operation: 

. 

 

The set  with this operation is a group, which 

is called the semidirect product of  and , denoted 

by . 

 

Theorem 2.2. [7]
 

 has order  and is 

isomorphic to the semidirect product of the Galois 

group ( / )n qq
Gal F F  and C . 

  As a consequence of Theorem 2.2,  

and  where  is the 

smallest integer such that . 

It turns that the orbit of  is the union of cyclic 

subspace codes and so is cyclic too. 

 

We mention two other important results which can be 

found in [2] and [3]. 

 

Lemma 2.3. [2; Lemma 4] The normalizer  of a 

Singer subgroup is self-normalizing in  , that 

is 
 

 

The following theorem mentions when the 

normalizer of a Singer subgroup is a maximal subgroup  

 

Theorem 2.4. [3] Let  be an odd prime. Then the 

normalizer of a Singer subgroup is a maximal subgroup 

of . 

 

As a consequence of Theorem 2.4, if  is a 

prime, then  and we have the 

following result: 

 

Theorem 2.5. Suppose that  is a prime. Let 

 be the normalizer of a Singer subgroup in 

. Then distinct orbit codes by  are 

nonisomorphic. 

Proof. Let  and  be two 

distinct orbit codes, and there is  such that 

 Then for every 

, we have: 

 

that is  and hence 

It follows that , which is a 

contradiction.  

 

Remark 2.6. Let  be an arbitrary -dimensional 

subspace of nq
F  according to [6], there exist a -

dimensional subspace  such that  and 

 Then 
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So . Therefore we 

can restrict ourselves to the subspaces  that contain 

the identity 1 nq
F . 

  According to the above remark, if , then 

since ,  

 

A spread code in  is a set of subspaces of 

dimension k such that they pairwise intersect only 

trivially and they cover the whole vector space n

qF . 

Spread code is optimal since its minimum distance is 

2k and its cardinality is 
1

1
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orbits  with parameters , 

where  

 

Example 2.7. Let  be a subspace of 

2nF  where  Then  is a 

code with parameters . 

 

Example 2.8. 

1) Let  then  is a 

code. 

2) Let  then  is a 

-code. 

3) Let , then  is a 

-code. 

4) Let , then  is a 

-code.  

 

Remark 2.9. Let  divides  and rq
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F  such that  is a vector space 
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F . In [6], the authors called rq
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for . Consider 
1

0
r

t
il

qi





  FU= , then 

 [6]. In fact this result is based 

on this property that for every ,  is a vector 

sapcae over rq
F  too. It is obvious that this is not true 

for every element of . However, since 

1 1
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   F F , for every ,  

is a vector space over rq
F  therefore we have proved the 

following theorem: 
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Lemma 2.12. If  is a prime, then 

N ( ) ( )CO Orbrbit it
 

U U . or . 

 

Let 
2q F F , if  and  then 
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consequence of the above lemma, in the following 
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. In general it is an 

interesting question that when the Frobenius 

automorphism is a shift on the elements of ? In 

the other words, when  is not equal to 

 In the following theorem, we give an 

answer to this question: 

 

Theorem 2.14. Let  be a prime,  and 

, such that , and , 

then . 

 

Proof. Since  is a prime, then  is a prime, 

therefore by Lemma 2.12, if we suppose 

, then . 

Since , we have,  for some . 

Suppose  and denote the 

powers of the elements of  0U� by X U :  

. 

It is obvious that  and all the operations 

over the elements are done module . We have  

 

 

Let , if , then 3 0J  . Since 

 and is  a prime number, then , a 

contradiction. Suppose , so . If 

, then , which is a contradiction. 

Therefore  so . In general 

suppose , then 

 

Since  , then  and we 

have the following two cases which we obtain a 

contradiction in both of them: 

 

Case 1. If , then there is not an element  

such that  and it is a contradiction. 

 

Case 2. If , then for all , 

. Since n  is a prime, then 2 2kn    , 

hence there is at least two elemets in the following equal 

sets: 

{ | ,...,2 2} {2 | ,...2 2}.k k

i ix J i n x i n       

If 2n nx J x 
 

, then  and for all 

 , . Let , 

then we have 
 

 

Therefore it is easy to see that  which is a 

contradiction. If we suppose that there is not any i such 

that , then we have  and 

in the same way we have,  which is a 

contradiction and the proof is completed.  

By Example 2.7 ( ), we can see that the converse of 

the above theorem is not true. 

 

Remark 2.15. In the proof of Theorem 2.14, if 

, then  where 

for  we have 
 
. This gives 

the structure of the subspace , which 

. 

 

  We know that if  is a prime number, then  

is a prime, so , also if , 

then for every  we have , therefore 

we can prove the following theorem: 

 

Theorem 2.16. Let  be a prime number, 

 and . Then  

Proof. Since the proof is similar to Theorem 2.14, we 

omit it. 

 

Conclusion 

We considered orbit codes of the normalizer of a 

Singer subgroup. The structure of this normalizer leads 

a close relation between its orbits and the orbits of the 

Singer subgroup. Since these orbits are union of the 

cyclic subspace codes, they are cyclic subspace codes as 

well. Despite the orbits of the normalizer of a Singer 

subgroup are not large, taking the union of these orbits 

is suitable to form large cyclic subspace codes. For 

further work the main aid is to use the normalizer of the 
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Singer subgroup to construct optimal subspace codes. 

Also we will consider the normalizer of an irreducible 

cyclic subgroup of the general linear group and 

investigate its orbits. 
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