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Abstract  

The closed nature of geochemical data has been proven in many studies. Compositional data have 
special properties that mean that standard statistical methods cannot be used to analyse them. These 
data imply a particular geometry called Aitchison geometry in the simplex space. For analysis, the 
dataset must first be opened by the various transformations provided. One of the most popular of the 
applied transformations is the log-ratio transform. The main purpose of this research is to identify the 
anomalous area in the Khusf 1:100000 sheet which is located in the western part of Birjand, South 
Khorasan province. To achieve the goal, a dataset of 652 stream sediments geochemically analysed for 
20 elements was collected. In practice, the geochemical data were first opened by CLR transformation 
and then the range correlation coefficient (RCC) ratio was calculated and mapped. In consequence, the 
robust factor analysis for compositional data was used to separate the elements, mostly in the high-
value regions obtained by the method of RCC. Finally, the priority of anomalies was specified using 
weighted catchment analysis. The above procedures led to the recognition of some anomaly zones for 
elements of Cu, Bi, Sb, Ni and Cr in the study area. Such results can be useful for designing an 
appropriate exploratory plan for semi-detailed and detailed exploration steps. 
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1. Introduction 
The processing of geochemical data for 
detecting multivariate geochemical patterns or 
signals associated with mineralization in 
support of mineral resource exploration is 
challenging [1]. Factor analysis, which was 
popularized by Charles Spearman in the early 
1900s, has become one of the most widely 

used statistical techniques in geosciences 
research [2]. The main purpose of factor 
analysis is to extract a number of directions in 
the data space, called the factors or latent 
variables, which are not directly measurable 
but which represent certain features inherent 
in the data. Thus factor analysis reduces the 
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dimensionality of the data to these few 
representative factors, and therefore aims to 
summarize the multivariate information in a 
compact form [3]. In general terms, when 
using factor analysis as an exploratory 
method, the results will show properties 
inherent in the multivariate data, which 
should, however, be carefully checked with 
other methods, preferably those with less 
complicated visualization tools [4]. A stream 
sediment geochemical dataset is an example of 
a closed number system because it contains 
compositional variables that are parts of a 
whole [5]. In the last five decades, several 
researchers have discussed the problems in 
statistical analysis of closed number systems 
such as compositional datasets [6-18]. In 
practice, log-ratio transformations are 
commonly employed in geochemical data 
processing to open closed systems for better 
understanding of realistic relationships among 
compositions [5, 15, 19-21]. Log-ratio 
transformations process compositional data 
through two treatments: defining ratios of 
compositional parts and taking logarithms of 
the ratios. The former is used to decompose 
the closure effect by selecting proper divisors, 
while the latter is used to make the 
transformed compositional data log normally 
distributed [22]. When applying factor 

analysis to compositional data, it is crucial to 
apply an appropriate transformation. A log-
transformation will often reduce data 
skewness, but it does not accommodate the 
compositional nature of the data [23]. In 
general, three main log-ratio transformations 
are frequently applied to compositional data: 
(1) additive log-ratio (ALR) transformation [6, 
7, 9, 22]; (2) centred log-ratio (CLR) 
transformation [6, 7, 9, 22]; and (3) isometric 
log-ratio (ILR) transformations [15, 22].  

2. Study area and geochemical data 
The study area, with a surface of 2500km

2
 

covering Khusf district on 1:100,000 scale 
quadrangle maps, is located in the western part 
of South Khorasan Province, East Iran. Due to 
its location in the northern part of the Central 
Lut Block, this area has inherited 
characteristic arid conditions [24]. There are 
widespread exposures of Late Cretaceous-
Early Tertiary sedimentary rocks and 
Cenozoic volcanism. Elevated areas and 
mountain ranges are arranged in the north and 
north-eastern part, while in the other parts, the 
topography is dominated by abundant irregular 
hills and intervening alluvial plains within 
which scattered, higher and isolated volcanic 
bodies may be seen (Fig. 1).  

 

 

Fig. 1. Geological map of the study area 
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The oldest rocks in the area are upper 
Palaeozoic which are restricted to small 
fractured and faulted fragments of the central 
Iranian Palaeozoic platform and are exposed 
as an anti-form in the north-west of the map. 
The lithology units of the study area are 
Flysch-type sediments, marl and limestone. 
During mid-Eocene, non-volcanic deposits 
including agglomerate, ignimbrite, marl and 
tuff have been found in the north-west and 
south-west corner of the sheet. Eocene-
Oligocene volcanic rocks including andesite, 
tuff and dacitic andesite have been spread in 
study area. Eocene-Oligocene dacite, silicified 
volcanic rocks and Oligo-Miocene rhyolites 
and dacites have been formed in sheet. To 
identify a promising area in the Khusf 
1:100000 sheet, a drainage geochemical 
survey was carried out and 652 geochemical 
samples were taken. Fig. 2 shows the stream 
sediment samples’ location in the study area. 
The minus 80-mesh fraction of the stream 
sediments was analysed for 20 elements 
include Au, W, Mo, Zn, Pb, Ag, Cr, Ni, Bi, 
Sc, Cu, As, Sb, Cd, Co, Sn, Ba, V, Sr and Hg, 
and three oxides, MnO, TiO2 and Fe2O3. 

 

Fig. 2. Stream sediment samples’ location in Khusf 

1:100000 sheets 

3. Methods 

3.1. Log-ratio transformation 
The closed nature of geochemical data has 
been proven in many studies [12, 22]. 
Compositional data have special properties 
that mean that standard statistical methods 
cannot be used to analyse them [5]. Euclidean 

space is not suitable for compositional data or 
the limitations of a fixed sum. These data 
imply a particular geometry called Aitchison 
geometry in simplex space [23]. To analyse 
them, the dataset must first be opened by the 
various transformations provided. 

Transforms such as this LR transform are 
of a family that was first presented by 
Aitchison (1986). Statistical methods applied 
to the transformed data and the results back-
transform them to the original space [23]. 

The sample space of compositional data is 

the simplex that for D-part  1 DX x ,...x  

composition is defined as [9]: 

(1)   1 1
0 1 2

DD

D i ii
S X x ,... , x x ,i , ,... ,D ; x k


      

The positive constant κ with respect to 
measurement of the data unit differs from 1 in 
the case of proportions, 100 (percentages) or 
10

6
 (mg/kg).  
To transform the data to the Euclidean 

space, the family of log-ratio transformations 
from the simplex S

D
 to the Euclidean real 

space was proposed [25]: 

 
 Additive log-ratio (ALR) transformations, 

where for a D-part composition x the ALR 
transformation is defined as [9]: 

(2)    1 2 1i
i

D

x
alr x y ln i , ,... ,D

x
     

 Centred log-ratio (CLR) transformations, 
where for a D-part composition x the CLR 
is defined as [9]: 

(3)    1

1

1 2 1i D

ii

x
clr x y ln i , ,... ,D

x


   


 

 Isometric log-ratio (ILR) transformations, 
where for a D-part composition x an ILR 
transformation is defined as [15]: 

(4)    
1

1 2 1
1

i
i DD i

jj i

xD iilr x y ln i , ,... ,D
D i x



 

   
  

 

Because of the isometric properties of the 
ILR transformation and its reliable results in 
most of the data mining methods, such as 
factor analysis and principal components 
analysis, it was used in this research as a tool 
for opening the data. 
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3.2. Range correlation coefficient 
Analysis of the dataset using the range 
correlation coefficient (RCC) method was first 
introduced and applied by Valls (2008). This 
method is based on the compositional nature 
of geochemical stream sediment data. The use 
of this method before performing other 
analysis in order to obtain an overview of the 
situation based on the correlation of a set of 
elements has been suggested [26]. The stages 
of the procedure are as follows: 

 Open the dataset by log-ratio transforms 

 Calculate the correlation matrix of 
elements 

 Calculate the critical value of the dataset 
to determine the significance of the 
obtained correlations using equation (5): 

(5) 2
2

1
c

rt * n
r

 


 

where, tc is the critical value of dataset, r is 
correlation and n is amount of data 

 Identify the significant amounts of critical 
value. It is common practice in geology 
to specify that for n > 30 and a 
probability of 0.05 (95 %), if tc> 3, then 
the correlation is significant [26]  

 Calculate fraction of RCC based on the 
significant critical values 

 Plot the RCC map. 

3.3. Robust factor analysis 
Factor analysis (FA) is one of the most 
important multivariate statistical methods [27] 
that is widely used for pre-processing and data 
dimension reduction, and the resulting 
components are used for multivariate 
statistical analysis [28, 29]. Factor analysis is 
traditionally used to discover a number of 
factors (new variables) that cannot be 
observed directly [3]. For the random vector y 
to the D-dimensional real space, the factor 
analysis model is defined as: 

(6) y f e    

with the factors f of dimension k<D, the error 

term e, and the loadings matrix . Multiple 
related variables can be converted into 
uncorrelated factors based on a covariance or 
correlation coefficient matrix [30, 33]. FA 
relies on the estimation of the correlation 

matrix and this estimator is sensitive to outlier 
value. This classical approach is good if the 
data are multivariate normally distributed [2, 
25, 34]. But we know in reality data 
distribution deviates from this ideal distribution 
and the results achieved without eliminating 
these values are associated with error [16]. To 
resolve this problem, the use of robust 
statistical methods has been proposed [35]. 

For a P-dimensional multivariate sample, 
xi(x1,…,xn), the outliers [36] are detected based 
on Mahalanobis distance (MD): 

(7)        
1 2

1
1i i iMD X X T C X T i ,... ,n

      
 

where T and C are estimations of location (i.e., 
the multivariate arithmetic mean or centroid) 
and scatter (i.e., covariance matrix), 
respectively [19, 35, 37]. The choice of the 
estimators is crucial for the quality of 
multivariate outlier detection [19] and on the 
other hand, we know that classical estimators of 
the arithmetic mean and sample covariance 
matrix are sensitive to the distribution of 
outliers [19, 48]. For this reason, robust 
counterparts need to be taken. A popular choice 
is the MCD (minimum covariance determinant) 
estimator [38]. For the multivariate normally 
distributed data, the Mahalanobis distance is 
approximately chi-square distributed with P 

degrees of freedom ( 2

px ) [22, 39]. This 

distribution might also be considered for the 
robust case, and a quantile, e.g., 0.975, can be 
used as a cut-off value separating regular 
observations from outliers [34]. 

The log-ratio transformations dealing with 
the closure effect of compositional exploratory 
data [9, 19, 40, 47] can be used to investigate 
the geochemical data as well. In order to give 
an appropriate interpretation of the loadings 
and scores, the obtained results of the 
compositional factor analysis should be back-
transformed in CLR space [34]. 

3.4. Weighted catchment analysis  
Stream sediment samples at each point along the 
drainage system represent material derived from 
weathering and erosion by upstream sources 
[41]. An efficient method of displaying spatial 
data of geochemical stream sediment is to 
represent the designated catchment zone of 
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influence of each sample [42, 43]. This method 
provides a better representation of the data and is 
very useful in identifying local anomalies [44]. 
This approach is based on the association of an 
area of statistical representativeness with each 
sample, and on the assumption that the 
concentrations measured in the stream sediments 
can be considered as average reference values 
for this area [43]. To estimate the amount of 
local background in each catchment, the analysis 
of the weighted mean univariate-element 
concentrations due to lithology was presented by 
Carranza (2008). This method has been 
described by Equation (8). 

(8) 
1 1

n n

j i ij iji i
M Y X X

 
   

where Mj is concentration in each of the j 
(=1,2,…,m) lithological units of i (=1,2,…,n) 
sample catchment basins. Yj  represents 
univariate-element concentrations in the 
stream sediment sample and Xij is the area of 

each of the j lithological units [41]. Then, the 
local background concentration of element 

( ) due to lithology can be estimated as (9): 

(9) 
1 1

m m

j j ij iji j
Y M X X

 
    

Positive or negative geochemical residuals 

( ) can be interpreted as enrichment or 
depletion, respectively, of the element 
concentration in stream sediments. But only 
positive values are processed further for 
dilution effect correction because they are of 
interest in mineral exploration [45]. 

4. Summary and discussion 
To identify exploratory geochemical targets in 
Khusf 1:100000 sheet, the stream sediment 
data were first opened by CLR transformation 
and then the RCC ratio was calculated. The 
resulted fraction is: 

 

(10)          

 

22 20 2 3 19 17 16 15 9 2
Rcc

16 14 2 8

                


  

Bi Ni Cu Hg Fe O Zn As Sr MnO Sb Cr Co V Sc Cd W Ag Mo

Pb Ba TiO Sn
 

Later the RCC fraction (Eq. 10) was 
calculated for each observation to obtain a 
vector of RCCs in any coordinate of the 
samples. Finally, the vector was plotted as a 
map presented in Figure 3.  

 

Fig. 3. The RCC map of Khusf 1:100000 stream 
sediment 

The regions on the map that show high 
value of RCC are the elements gathered in the 
numerator and the regions with low values 
appear in the denominator. To determine the 

elements that are mostly in the high-value 
regions obtained by the method of RCC, the 
data were analysed using the robust factor 
analysis method for compositional data. After 
applying a robust factor analysis on the ILR-
transformed data with four varimax rotated 
factors and back-transforming the results in 
CLR space using rgr package [46], the factor 
scores together with the weighted catchment 
basins (WCB) were mapped. As shown in the 
factor loadings (Fig. 4), the elements 
associated in the first factor with about 41 % 
of explained variation, including Ni, Zn, Bi, 
Cu, Hg and Fe2O3, are chalcophile elements 
related to the lithological units dacite, dacitic-
tuff, dacitic volcanic dome and ignimbrite. 

The second factor comprising Cr, Sc, Sb, 
Co, Sn, V and TiO2 with about 20 % of 
explained variation is in accordance with the 
siderophile elements, and may be an indicator 
of iron concentration in carbonated and clay 
minerals of the region. These first two factor 
score maps, together with their WCB maps 
(Fig. 5), show a good correlation with some of 
the elements in the numerator of the RCC 
fraction. This implies that deploying RCC 
after opening the data gives a fast and reliable 
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insight into the multi-elemental correlations in 
the study area. The factor analysis carried out 
in this study confirms that RCC can be a way 
to explore the most important paragenesis of 

the region before performing any further 
complicated analysis. In order to evaluate the 
accuracy of the obtained results, anomaly 
checking was carried out by field trip.  

 

Fig. 4. PC loading values for compositional data analysis 

  
 

Fig. 5a. Distribution map of factor score F1: interpolated values (left) and WCB map (right) 

  

Fig. 5b. Distribution map of factor score F2: interpolated values (left) and WCB map (right) 
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Conclusions  
The previous studies show that the 
geochemical data generally do not have a 
normal distribution, resulting in problems for 
the application of classical techniques, 
because these are based on the assumption of 
normal distribution. However, the discussed 
methods are based on the Euclidean space. 
They could not be used directly for processing 
geochemical data because the geochemical 
data are typical compositional data. Therefore, 
geochemical data should be opened prior to 
analysis; otherwise, biased results could be 
obtained. In the present research, the 
abovementioned approach was applied to a 
stream sediment geochemical dataset which 
was collected from the Khusf 1:100000 sheet, 
Birjand, South Khorasan, Iran. To achieve the 
goal, in the first step, the stream sediment data 
were opened using CLR transformation, and 
then the RCC ratio was calculated. In the 
second step, the data were analysed using the 
robust factor analysis method for 
compositional data. In the results of this 
application, the main extracted factor, which 
included Ni, Zn, Bi, Cu, Hg and Fe2O3 
elements, explains more than 41 % of 
variation in the study area. As a main result, 
the factor analysis carried out in this study 
confirms that RCC can be a way to explore the 
most important paragenesis of the region 
before doing any further complicated analysis. 
In order to evaluate the accuracy of the 
obtained results, anomaly checking was 
carried out by field trip. 
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