تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,508 |
تعداد مشاهده مقاله | 124,128,198 |
تعداد دریافت فایل اصل مقاله | 97,235,609 |
اثر قارچ میکوریز آربسکولار (Glomus mosseae) و باکتری سودوموناس فلورسنس بر رشد رویشی دانهالهای پستۀ رقم قزوینی در چهار رژیم مختلف آبیاری | ||
علوم باغبانی ایران | ||
مقاله 8، دوره 45، شماره 3، آبان 1393، صفحه 297-307 اصل مقاله (527.46 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2014.52879 | ||
نویسندگان | ||
افسانه شول* 1؛ محمد حسین شمشیری2؛ عبدالرضا اخگری3؛ مجید اسماعیلی زاده3 | ||
1دانشجوی سابق کارشناسی ارشد ، دانشکدة کشاورزی دانشگاه ولی عصر(عج) رفسنجان | ||
2استادیار دانشکدة کشاورزی دانشگاه ولی عصر(عج) رفسنجان | ||
3استادیار، دانشکده کشاورزی، دانشگاه ولیعصر (عج)، رفسنجان | ||
چکیده | ||
بهمنظور بررسی اثر همزیستی قارچ میکوریز آربسکولار(Glomusmosseae) و باکتری سودوموناس فلورسنس[1] سویه P52 بر رشد رویشی دانهالهای پستۀ رقم قزوینی در شرایط تنش خشکی، آزمایشی با چهار سطح تنش خشکی (100درصد ظرفیت مزرعه بهمنزلۀ شاهد و سطوح 75، 50 و 25 درصد ظرفیت مزرعه) و چهار سطح از کود زیستی[2] (گیاهان بدون میکوریز و باکتری بهمنزلۀ گیاهان شاهد، تیمار میکوریز، تیمار باکتری و تیمار ترکیبی میکوریز و باکتری) اجرا شد. در این آزمایش کاربرد باکتری بهتنهایی و همچنین در سطوح مختلف خشکی نتوانست بر آلودگی ریشه تأثیرگذار باشد اما افزایش تنش خشکی بهتنهایی سبب افزایش آلودگی ریشه شد. بیشترین تعداد و سطح برگ، ارتفاع ساقه، وزن خشک برگ و ساقه در تنش خشکی 50درصد ظرفیت مزرعه نسبت به شاهد مشاهده شد. با افزایش تنش خشکی طول ریشه افزایش یافت. وزن خشک ساقه، طول ریشه و سطح برگ در تیمار میکوریز و تیمار ترکیبی باکتری و میکوریز نسبت به شاهد بیشتر بود که افزایش طول ریشه نسبت به شاهد تفاوت معنادار داشت. حداقل تعداد برگ، سطح برگ، قطر ساقه، طول ریشه و وزن خشک ساقه در تیمار باکتری نسبت به شاهد مشاهده شد. حجم ریشه و وزن خشک ریشه بیشترین میزان خود را در تیمار باکتری نشان دادند، که نسبت به شاهد اختلاف آن معنادار بود. درمجموع تیمار تلفیقی میکوریز و باکتری بیشترین تأثیر را بر افزایش رشد رویشی دانهالهای پسته بر جای گذاشت و از نظر رطوبتی گیاهان بهترین رشد را در شرایط 50درصد ظرفیت مزرعه داشتند. [1] .Pseudomonas fluorescens [2] .Biofertilizer | ||
کلیدواژهها | ||
پستۀ قزوینی؛ تنش خشکی؛ سودوموناس فلورسنس؛ میکوریز آربسکولار | ||
مراجع | ||
Al-Karaki, G. N. & Al-Ruddad, A. (1997). Effect of arbuscular myocrrhizal fungi and drought stress on grow and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7, 83-88.
2. Aliabadi Farahani, H. (2010). Effect of Triple super phosphate, water stress, Biological fertilize Glomus hoi on some of Qualitative and quantitative traits of Medicinal plant Coriandrum sativum L. Journal of Greenscience, 5 (1), 7-15.(In Farsi).
3. Anjum, Sh. A., Xie, X. Y., Wang, Ch. L., Saleem, M. F., Man Ch. & Lei. W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032.
4. Baghani, J. & Ghodsi, M. (2005). Effect of water stress on Wheat cultivars. Journalof KhorasanAgriculturalResearch Center, 109 (19), 12-20.(In Farsi).
5. Bagheri, V., Shamshiri, M. H., Shirani, H. & Roosta, H. R. (2011). Effect of mycorrhizal inoculation on ecophysiological responses of pistachio plants grown under different water regimes. Photosynthetica, 49, 531-538.
6. Bagheri, V., Shamshiri, M. H., Shirani, H. & Roosta, H. R. (2012a). Nutrient Uptake and Distribution in Mycorrhizal Pistachio Seedlings under Drought Stress. Journal of Agricultural Science and Technology, 14, 1591-1604.
7. Bagheri, V., Shamshiri, M. H., Shirani, H. & Roosta, H. R. (2012b). Effect of arbuscular mycorrhizae and drought stress on growth indexes, water relations and proline as well as soluble carbohydrate content in pistachio (pistacia vera ) rootstock seedlings. Iranian Journal of Horticultural Science, 42, 365-377.
8. Bar-ness, E., Hadar Y., Chen, Y., Shanzer, A. & Libman, J. (1992). Iron uptake by plants from microbial siderophores. Plant Physiology, 99, 1329-1335.
9. Bisht, R., Chaturvedi, S., Srivastava, R., Sharma, A. K. & Johri, B. N. (2009). Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Rox. Tropical Ecology, 50, 231-242.
10. Brundrett, M., Melville, L. & Peterson, L. (1994). Practical methods in mycorrhiza research. Mycologue, Sydney.
11. Caracava, F., Alguacil, M. M., Hernandes, J. A. & Roldan, A. (2005). Involvment of antioxidant enzyme and nitrate reductase activities during water stress and recovery of Mycorrhizal myrtus communis and Phillyrea folia plants. Plant Science, 169, 191-197.
12. Clark, R. B, & Zeto, S. K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23, 867-902
13. Cleland, R. E. (1990). Auxin and cell elongation. In: Davies, P. J. (Ed.), Plant hormones and their role in plant growth and development. (pp. 132-148.) Kluwer Academic Publishers, The Netherlands.
14. Falahian, F. H., Abaspor, H., Fahimi, H. & Khavarinejad, R. (2006). Study effect of Endomycorrhiza on Nutrient uptake and Pistachio plant growth in under salty stress. Journal ofResearchanddevelopmentinagricultureandhorticulture, 82-86.(In Farsi).
15. Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109-117.
16. Kleopper, J. W., Leong, J., Teintze, M. & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature, 286, 885-886.
17. Kleopper, J. W., Lifshittz, R. & Zablotowicz, R. M. (1989). Free-living bacterial inocula for enchancing crop productivity. Trends in Biotechnology, 7, 39-43.
18. Kim, K. Y., Jordan, D. & McDonald, G. A. (1998). Effect of phosphate-solubilizing bacteria and d vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils, 26, 79-87.
19. Li, X. L., George, E. & Marschner, H. (1991). Extension of phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil,135, 41–48.
20. James, B., Rodel, D., Lorettu, U., Reynaldo, E. & Tariq H. (2008). Effect of vesicular arbescular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistavce of Senna Spectabilis. Pakistan Journal of Botanicaly, 40, 2217-2224.
21. Maftoun, M., & A. R. Sepaskhah. (1981). Relative salt tolerance of eight wheat cultivars. Agrochemical, 33, 1-14.
22. Marschner, P., Crowley, D. E. & Higashi, R. M. (1997). Root exudation and physiological status of a root- colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.).Kluwer Academic Publisher. Plant and Soil, 189, 11-20.
23.Mirzai khalilabadi, H. (2004). Determination of amount eficiency water in production of pistacia. Journal ofResearchanddevelopmentinagricultureandhorticulture, 63, 43-49.(In Farsi).
24. Mizoguchi, T. (1992). Effects of inoculation of vesicular-arbuscular mycorrhizal fungi on growth and nutrient uptake of non-nodulated Acacia spp. seedlings in two soil water regimes. Japanese Journal of Socology, 74, 409–419.
25. Narayanan, A. (1992). Nutritional approaches for drought management in agricultur crops. A review. Plant Physiology, 19, 59-64.
26. Neilands, J. B. (1981). Iron absorption and trasport in microorganisms. Annual Review of Nutrition, 1, 27-46.
27. Newman, E. I. (1966). A metod of estimating the total length of root in a sample. Journal Application Ecology, 3, 139-145.
28. Nilsen, E. & Orcutt, D.(1996). Physiology of plants under stress. Abiotic Factors. Wiley Publication.
29. Nye, P. H., & Tinker, P. B. (1977).[r1] Solute movements in the root-soil systems. Blockwell. Oxford.
30. Phillips, J. & Hyman, D. (1970). Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhiza fungi for rapid assessment of infection. Transactions of the British Mycological Socology, 55, 158-161.
31. Qiangsheng, W., Renxue, X. & Zhengjia, H. (2006). Effect of arbuscular mycorrhizal on the drought tolerance of Poncirus Trifoliate seedling. Frontiers of Forestry in China, 1, 100-104.
32. Raju, R. A. & Reddy, M. N. (1999). Effect of rock phosphate amended with phosphate solubilizing bacteria and farmyard manure in wetland ( Oryza sativa). Indian Journal of Agriculture Science, 69, 451-453.
33. Ravnskov, S. & Jakobsen, I. (1999). Effects of Pseudomonas fluorescens DF57 on growth and p uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Orginal Paper. Mycorrhiza. 8, 329-334.
34. Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 897-906.
35. Sabannavar, S. J. & Lakshman, H. C. (2008). Interactions between azotobacter, pseudomonas and arbuscular mycorrhizal Fungi on two varieties of Sesamum indicum L. Journal Agronomy and Crop Science, 194, 470-478.
36. Schenck, N. C. & Perez, K. (1990). Manual for the identification of VA mycorrhizal fungi. SynergisticPublishing Gainesville, Florida, USA.
37. Shuman, L. M. (2000). Mineral nutrition, In: Wikinson, R. E. (Ed.), Plant-environment interactions. (pp. 65-111.) Marcel Dekker Inc, New York.
38. Wu, Y., Thorne, E. T., Sharp, R. E. & Cosgrove, D. J. (2001). Modification of Expansin Transcript Levels in the Maize Primary Root at Low Water Potentials. Plant Physiology, 126, 1471-1479.
39. Yordanov, I., Velikova, V. & Tsonev, T. (2003). Plan responses to dtought and stress tolerance. BulgarianJournal of Plant Physiology, 21, 187–206.
[r1]این منبع را در متن ندیدم؟؟؟ | ||
آمار تعداد مشاهده مقاله: 2,723 تعداد دریافت فایل اصل مقاله: 2,122 |