تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,524,402 |
تعداد دریافت فایل اصل مقاله | 98,784,795 |
Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach | ||
Geopersia | ||
مقاله 9، دوره 4، شماره 2، دی 2014، صفحه 227-236 اصل مقاله (579.96 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jgeope.2014.52721 | ||
نویسندگان | ||
Hossein Shahi* 1؛ Reza Ghavami1؛ Abolghasem Kamkar Rouhani1؛ Hoshang Asadi Haroni2 | ||
1Faculty of Mining, Petroleum and Geophysics, University of Shahrood, Shahrood, Iran | ||
2Mining Faculty, Isfahan University of Technology, Isfahan, Iran | ||
چکیده | ||
The analysis of geochemical data in frequency domain, as indicated in this research study, can provide new exploratory information that may not be exposed in spatial domain. To identify deep geochemical anomalies, sulfide zone and geochemical noises in Dalli Cu– Au porphyry deposit, a new approach based on coupling Fourier transform (FT) and principal component analysis (PCA) has been used. The relationship between frequency attributes of surface geochemical data and mineralizing depth has been discussed. To determine the exploratory features in different frequencies, high- and low-pass filters have been performed on frequency domain; PCA method has been employed on these frequency bands separately. The results of this study have identified the mineralizing elements and showed the relationship between high- and low-frequencies and depths of anomalies. The geochemical halos of mineral deposits at different depths affected frequency distribution of elements in the surface. The information obtained from geophysical studies and exploration drillings, such as, trenches and boreholes, confirm the results of FT–PCA method. This new approach is very effective tool to identify the promising anomalies and deep mineralization without drilling. | ||
کلیدواژهها | ||
Principal Component Analysis (PCA)؛ Frequency domain؛ geochemical noises؛ two dimensional Fourier transformation | ||
مراجع | ||
Afzal, P., Fadakar Alghalandis, Y., Moarefvand, P., Rashidnejad Omran, N., Asadi Haroni, H., 2012. Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit,Central Iran, Journal of Geochemical Exploration, 112: 131-138. Asadi Haroni, H., 2008. First stage drilling report on Dalli porphyry Cu– Au prospect, Central Province of Iran, Technical Report. Bhattacharyya, B. K., 1966. Continuous spectrum of the total-magnetic-field anomaly due to a rectangular prismatic body. Geophysics, 31(1): 97-121. Cao, L., Cheng, Q., 2012. Quantification of anisotropic scale invariance of geochemical anomalies associated with Sn-Cu mineralization in Gejiu, Yunan Province, China, Geochemical Exploration, 122: 47- 54. Chandrajith, R., Dissanayake, C.B., Tobschall, H.J., 2001. Application of multi-element relationships in stream sediments to mineral exploration: a case study of Walawe Ganga Basin, Sri Lanka. Applied Geochemistry, 16 (3): 339- 350. Cheng, Q., 1999. Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65: 175- 194. Cheng, Q., 2006. Multifractal modelling and spectrum analysis of gamma ray spectrometer data from southwestern Nova Scotia, Canada, Science in China, 49(3): 283-294. Cheng, Q., Xu, Y., Grunsky, E., 1999. Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R. (Eds.), Proceedings of the Fifth Annual Conference of the International Association for Mathematical Geology, Trondheim, Norway 6–11th August, 1: 87- 92. Cheng, Q., Xu, Y., Grunsky, E., 2000. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation, Natural Resources Research, 9:1. Cheng, Q., Jing, L., Panahi, A., 2006. Principal component analysis with optimum order sample correlation coefficient for image enhancement. International Journal of Remote Sensing, 27 (16): 3387- 3401. Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, S., Li, W., Xia, Q., 2011. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computer & Geosciences, 37: 662- 669. Cheng, Q., Xu, Y., 1998. Geophysical data processing and interpreting and for mineral potential mapping in GIS environment. InProceedings of the Fourth Annual Conference of the International Association for Mathematical Geology, 2: 394-399. 234 Shahi et al. Geopersia, 4 (2), 2014 Cheng, Q., Zhao, P., 2011. Singularity theories and methods for characterizing mineralization processes and mapping geoanomalies for mineral deposit prediction. Geoscience Frontiers, 2(1): 67-79. Darabi-Golestan, F., Ghavami-Riabi, R., Asadi-Harooni, H., 2013. Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu–Au porphyry. Arabian Journal of Geosciences, 6(12): 4821-4831. Davis, J.C., 2002. Statistics and Data Analysis in Geology, 3rd ed., John Wiley & Sons Inc., NewYork, 550 pp. Dobrin, M. B., Savit, C. H., 1988. Geophysical propecting: McGraw-Hill Book Co., New York, 867 p. Garrett, R.G., Grunsky, E.C., 2001. Weighted sums- knowledge based empirical indices for use in exploration geochemistry. Geochemistry: Exploration Environment Analysis1, 135–141. Ge, Y., Cheng, Q., Zhang, S., 2005. Reduction of edge effects in spatial information extraction from regional geochemical data: a case study based on multifractal filtering technique , Computers & Geosciences 31: 545- 554. Gonzalez, R.C., Woods, R.E., 2002. Digital image processing. Prentice-Hall, Upper Saddle River, NJ, 793 pp. Hassani, H., Daya, A., Alinia, F., 2009. Application of a fractal method relating power spectrum and area for separation of geochemical anomalies from background. Aust J Basic Appl Sci, 3(4): 3307-3320. Hezarkhani, A., 2006a. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit. Iran: evidence from fluid inclusions. J Asian Earth Sci 28: 409- 422 Hezarkhani, A. 2006b. Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. J Asian Earth Sci., 27: 326–340 Hezarkhani, A., Williams-Jones, A. E., & Gammons, C. H., 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium deposita, 34(8): 770-783. Hou, Z., Yang, Z., Qu, X., Meng, X., Li, Z., Beaudoin, G., & Zaw, K., 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore geology reviews, 36(1): 25-51. Loughlin, W. P., 1991. Principal component analysis for alteration mapping.Photogrammetric Engineering and Remote Sensing, 57(9): 1163-1169. Zhao, J., Wang, W., Dong, L., Yang, W., & Cheng, Q., 2012. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. Journal of Geochemical Exploration, 122: 81-89. Zuo, R., 2011a. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn ineralization using principal component analysis and spectrum–area fractal the Gangdese Belt, Tibet (China). J. Geochemical Exploration. 111: 13- 22. Zuo, R., 2011b. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Applied Geochemistry, 26: S271-S273. | ||
آمار تعداد مشاهده مقاله: 2,506 تعداد دریافت فایل اصل مقاله: 1,684 |