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Abstract

The nonlocal nonlinear buckling of a double layer graphene sheet (DLGS) covered by zinc oxide
(Zn0O) piezoelectric layers is investigated in this study. The surrounding circumstances of the system
are considered as a Pasternak foundation including spring constants and a shear layer. Graphene sheets
are subjected to longitudinal magnetic field and biaxial forces. On the other hand, the ZnO
piezoelectric layer is subjected to an electric field. Eringen’s nonlocal theory is used for considering
small-scale effects. Classical plate theory (CPT) is employed to model the plates. Nonlinear Von-
Karman theory, the energy method and Hamilton’s principle are utilized to derive the size dependent
governing equations. The known numerical differential quadrature method (DQM) is applied to obtain
a nonlocal nonlinear buckling load. The detailed parametric study is conducted focusing on the effects
of magnetic field strength, the dimensions of plates, small-scale effects and the intensity of the
stiffness matrix on the nonlocal nonlinear buckling load of system. Results indicate that intensifying
magnetic field makes the system more stable. Furthermore, increase in thickness of both piezoelectric
and graphene layers makes the system stiffer, and consequently the buckling load becomes larger. The
results of this study might be useful for the designing and manufacturing of graphene-based structures
in micro or nanoelectromechanical systems.
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1. Introduction

Graphene sheets are one of the most famous and
beloved types of carbon structures among
researchers. The study of the mechanical
behaviour of graphene sheets under different
types of boundary conditions and subjected to
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various kinds of loading configurations has been
receiving considerable interest from many
researchers. This is because of their valuable
properties. The primary and most popular
definition of a single-layer graphene sheet
(SLGS) accepted by the scientific communities is
presented as: a flat monolayer of carbon atoms
tightly packed into a two dimensional
honeycomb lattice in which carbon atoms bond
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covalently with their neighbours [1]. Graphene
sheets (GS) have extraordinary properties of
physical, chemical and electrical types. Here are
some of these properties which are mentioned in
references [2-4]: strong mechanical strength
(Young’s modulus=1.0 TPa), large thermal
conductivity (thermal conductivity=3000 W/km),
excellent  electric  conductivity  (electric
conductivity up to 6000 S/cm), high surface area
and unusual optical properties. Because of these
stupendous and heralded properties, GSs can be
used in  many nanostructures such as
nanosensors, nanooptomechanical systems, super
capacitors, nanocomposites and so on [5,6].

The mechanical aspects of GSs and nanoplates
have been investigated in the papers available in
the literature. Pradhan and Kumar [7] studied the
vibration of GSs using nonlocal elasticity and the
DQM approach. They have investigated the
effects of parameters such as graphene
dimensions, nonlocal parameters, material
properties and different boundary conditions on
the dimensionless frequency of an orthotropic
SLGS. Pradhan and Murmu [8] explored the
small-scale effect on the buckling analysis of a
SLGS resting on an elastic medium based on
nonlocal plate theory. The results of their study
show that the buckling load of GS depends
strongly on the small-scale effects and stiffness of
the elastic foundation. The thermal buckling
properties of a nanoplate with small-scale effects
were studied by Wang et al. [9] based on the
nonlocal continuum theory. From this work; it can
be observed that the small-scale effects are
significant for the thermal buckling properties.
Pradhan and Phadikar [10] investigated the small-
scale effects on the vibration of multi-layer
graphene sheets (MLGSs) using nonlocal
continuum mechanics. Narendar and [11]
investigated buckling analysis of orthotropic
nanoplates such as graphene using the two-
variable refined plate theory and nonlocal small-
scale effects. It has been proven that the
nondimensional buckling load of the orthotropic
nanoplate is always smaller than that of the
isotropic nanoplate. Liew et al. [12] explored
nanovibration of GSs resting on an elastic
medium. The presence of Van der walls (Vdw)
force between graphene layers influences their
natural frequency. GSs react to applied magnetic
fields. This problem was considered by Murmu et
al. [13] in their study. Based on their results,
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applying an in-plane magnetic field to SLGS
enhances its natural frequency. Mohammadi et al.
[14] analysed the transverse free vibration of
circular GSs under different boundary conditions
using nonlocal continuum mechanics. In an
investigation, Ghorbanpour Arani et al. [15]
presented a buckling analysis and smart control of
SLGS using polyvinylidene fluoride (PVDF)
based on nonlocal Mindlin plate theory.
Furthermore, Ghorbanpour Arani et al. [16]
investigated the elastic foundation effect on the
nonlinear thermal vibration of an orthotropic
DLGS.

On the other hand, creating composite or
hybrid structures to achieve new materials with
modified properties has a particular importance.
By doing so, desirable properties are at hand. At
the macro-scale, Hosseini Hashemi et al. [17]
worked on finding an exact solution for the
vibration of thick circular plates made of
functionally graded material (FGM) covered by
piezoelectric layers. In their study, the plates have
been modelled using third order plate theory.
Furthermore, the same author, in another study
[18] examined a three dimensional Ritz solution
for the free vibrations of annular plates made of
FGM covered by piezoelectric layers. At the
nano-scale, a buckling analysis of a carbon
nanotube (CNT) as a core covered by ZnO layer
subjected to both electrical field and mechanical
strain was done by Zhang et al. [19]. Jiang and
Gao [20] in an investigation proposed the
fabrication and characterization of ZnO-coated
multi-walled carbon nanotubes with enhanced
photocatalytic activity. Huang et al. [21] explored
a stable super hydrophobic surface using CNTs
coated with a ZnO thin film.

The use of graphene-based structures has
received considerable attention due to their
thaumaturgic properties. The design and
manufacture of stable systems are of common
concern to researchers. Thus, using the results
of this study, the buckling of the system can be
postponed by changing parameters such as
magnetic field intensity, length of plates and,
particularly, the thickness of the ZnO layer.
With a literature search, it can be found that
there is no paper which conducts a buckling
analysis of a DLGS covered by ZnO layers.
Motivated by these considerations, in order to
optimize the design of nanostructures, our aim
is to investigate the stability control of DLGS
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based on CPT. Herein, DLGS is covered by a
ZnO piezoelectric layer, surrounded by a
Pasternak medium, and subjected to both
magnetic and electric fields. The influence of
small-scale parameters, the elastic medium, the
length of the plates and the magnetic field
intensity on the buckling behaviour of DLGS
have been taken into account.

2. A review of nonlocal theory

According to nonlocal piezoelasticity theory,
the stress and electric displacement filed of a
particular point depend not only on strain and
electric filed components at the same point but
also on all other points of the body. This
statement of nonlocal theory can be formulated
as nonlocal constitutive behaviour as follows
[22,23].
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,'J are nonlocal stress tensor and

local stress tensors, respectively. Di?' and Di'j1I
denote components of nonlocal and local electric

where a“' and o

displacement, respectively. =(eqa)’ represents the
small-scale effect on the response of structures at

nanosize and v? is the Laplacian operator.

3. Modelling of the problem

3.1. Geometrical description of the problem
A schematic configuration of the problem has
been illustrated in Figure 1. As can be seen in
Figure 1, a double layer graphene sheet is
covered by two ZnO piezoelectric layers. The
thicknesses of the graphene and piezoelectric
layer are distinct, and are denoted by hy and
h,, respectively. The interaction between
graphene layers is modelled by VVdw force. The
whole system is surrounded by a Pasternak
foundation. Magnetic and electric fields are
applied to the graphene and piezoelectric
layers, respectively. Furthermore, a biaxial
force is applied to the graphene sheets. Before
continuing, it must be noted that the system
shown in Figure 1 is divided into two systems.
System 1 is considered as the upper
piezoelectric and graphene layers, and system
2 is considered as the lower ones.
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Fig. 1a. Schematic of double-layer graphene sheet covered by ZnO piezoelectric layer
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Fig. 1b. Direction of applied magnetic field to graphene sheets
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3.2. Governing equations of motion

In this section, the aim is to obtain governing
equations of motion by means of Hamilton’s
principle. In this study, all the layers have been
simulated by CPT. The displacement field for
CPT is presented as [24]:

_ oW g
u(x,y,z,t)=upx,y,t)-z X

1 )15 1 1

W(X,y,z,t)=wq(x,y,t)

where (ug,vo,W,) is an arbitrary point on the

middle surface of the plate. The nonlinear von-
Karman strains are given by [24]:

0 1
Exx Exx

0 1
=l &y |+Z| &y (3)

0 1
”xy xy

Exx
yy
”xy

where

ox 2\ ox

au, +1(8W0j2
o 2
(8°)= gy |= 8\/0+1(awoj
(o)
xy

oy 2\ oy
ou, N OV, | oW, Ow,
oy OX oxX oy

] (@)
0w,
gl 8X2
_o%w,
' oy*
Yy 5 o%w,
OoxXoy
Constitutive equations for ZnO material can
be defined as follows [25].
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where Cyy, Cyp, Cis, Cas, Cyy are linear elastic
constants and es;, €33, €55 are linear
piezoelectric constants. Superscript P refers to
the piezoelectric material. E; (i=x,y,z) shows
electric filed intensity and can be obtained
from [26].

Eiz—a—.(” i=x,y,z (6)

where ¢ is the electric potential applied to the
piezoelectric layers. On the other hand, the
electric displacement of this particular material
is presented as [25]:
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In this equation, Ky, Kz are dielectric
constants. In this investigation, electric field is
applied along x direction and along two other
directions considered zero. For our particular
problem, constitutive and electric displacement
equations are summarized as follows.
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On the other hand, constitutive equations
for orthotropic graphene sheets modelled by
CPT are [24]:
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where Q; (i,j =1,2,6) are the stress-reduced
plane and their values can be obtained using
the following formulae.
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where E; and E, are elastic modulus along 1
and 2 directions, respectively. v, and v,; are
Poisson constants. Gy, is a shear modulus. As
mentioned earlier, the governing equations are
obtained using Hamilton’s principle. Hamilton’s
principle in its familiar form is expressed as:

T

£(5Utot +é\/t0t )dt :0 (11)

in which Uy and Vi, are the total potential
energy and work done by external forces,
respectively.

3.2.1. Virtual potential energy and virtual
external works

Virtual potential energy and virtual work done

by external forces of both graphene and

piezoelectric layers have been calculated

separately and are added together at the end.
The virtual potential energy and virtual

work for the piezoelectric layer are:
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in which subscript p refers to the piezoelectric
and g, are all the transverse forces acting on
the piezoelectric layer. Because of the
Pasternak foundation, transverse forces are:

dp (X,y) =KW1 +Gp Vv, (14)
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In the above equation, K,and G, are the

Winkler and shear layer of the Pasternak
foundation coefficients, respectively.

Similarly, the virtual potential energy and
virtual work due to external forces for
graphene are as follows.
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Subscript G denotes parameters corresponding
to graphene. In this equation, f,, and f, are
Lorentz forces along thezand  y axes,

respectively. They can be calculated as [26]:
fox =0
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Since  displacement components are

independent of the thickness of the plate, the
final form of the Lorentz force used in this

investigation is:
ov o o'w  o*w
_ v v v 2 VW YW
f —[O,UHX(aXZ + ayzj,ﬂHx(axz + ayz jJ (18)

Using the internal integral of Eqg. (16) and
by Eqg. (17), their values along the thickness
can be obtained.
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The total virtual potential and virtual work
of the external forces for system 1 are:
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Substituting Equations. (13), (16) and (21) M oy ¢ (O
into Equation (11) and integrating them, the fN P
following time integration is obtained. xx hp | Fxx (24)
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Considering the above equation, the Considering Equation (22) and using
following equations are defined. integration by parts, the results after the
Ny :fo NS Ny, :foy +N;’y separation of the coefficients of the same
variables has the local form of equations of
G P
Nyy =N +nylMxx =My + My (23) motion in terms of displacement, in which
My :M +Myy M, :M)<Gy+M>I(D nonlocal Eringen theory has yet not been

applied to them. To this end, using this theory,
the nonlocal form of Equations (22) after the
separation of the same variables for system 1
are as follows:

where in this equation, the stress and moment
resultants are calculated as:
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In the above equations, the following definitions have been utilized.
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The coefficients corresponding to the piezoelectric layer are:
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and the coefficients corresponding to the graphene layer are:
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In order to generalize the results of this
investigation to any system consistent with our
work, we have to utilize the dimensionless
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nonlocal form of Equations (25a-d). To this
end, dimensionless parameters have been
introduced as:
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Then, using these dimensionless parameters, Equations (25a-d) will change into the following form:
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in which index i can adopt 1 and 2 for system
1 and 2, respectively. X is +1 for system 1 and
is -1 for system 2.

4. Solution procedure

Because of nonlinear nature of the equations,
the closed-form solution is out of scope, and
then we must explore the solution to the
problem using numerical methods. One of the
most famous and applicable methods is DQM.
In this method equations will be discretized
and will be rearranged in a matrix form.

4.1. An introduction to DQ method
For two dimensional problems, the partial
differential is approximated as [28]:

O (xiyi) Ny
M:zAx,ikf (Xk:yj),n=1,...,NX—1

X k=1
™ (x;,y:) N
a(yxﬁﬂmzkz.yﬁv’ikf<Xi'yk>’m=l--~Ny—1 (32)
nme Xi\y N,
%:kZ:leyikf (kayj)

in which f(x,y) is a function of two variables,
N, and N, are a number of points along x and
y directions, respectively, Ay ik is the weighting
coefficient. The meshing of plates was done
using the Chebyshev distribution formula.
Weighting coefficients are calculated as [28]:

M (x; )

—_— i:#j, i,j=12.. Nx
Al (xi=xj )M (x;)
1 N
¥ Aigl) i=j, i,j=12..Ny
[Enpt
(33)
P(yi) iz, 1,j=12.,Ny
s _ (yi*Yj)P(yj)
ij ) N, A(l) o 12N
where
NX
M (xj)= Xj =X
( I j=}1—11¢|( ! J) Y
N, (34)
P(v:)= Ly
(yl) j:ll,_JI;ti(yl yj)

For a higher order of derivatives, we have
employed the following formula:
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In this study, we have considered boundary
conditions for all the edges of plates as simply
supported. These boundary conditions can be
expressed as:

(35)

u=sv=w=0 @ x=0a & y=0b
@:o @ x =0,a

X (36)
@:o @ y =0b

oy

4.2. Buckling analysis of the problem
Applying the DQ method to all the governing
equations of motion and boundary conditions
including system 1 and 2, the following
eigenvalue problem can be obtained.

([K.+Ky ]+ N, [K, ]){d} =0

In which [K.] and [Ky.] are linear and
nonlinear portions of stiffness matrix. [Kg]
also is a force coefficient matrix. N, expresses

the critical buckling load and {d} denotes the
displacement matrix and is defined as:

a={o). o W o))

The eigenvalue problem (Equation 37) must
be solved using an iteration process until a
convergence criterion satisfied. At first, the
nonlinear portion of the stiffness matrix is
ignored, the eigenvalue problem is solved, and
the eigenvalues and eigenvectors of Equation
(37) are obtained. These eigenvectors are used
to achieve eigenvectors of a nonlinear problem.
This process iterates until the following
convergence criterion is satisfied.

(37)

(38)

Qi —

% <0.01%. (39)

i,
in which « is an eigenvector corresponding to
a linear eigenvalue problem.

5. Numerical results and discussion

The nonlinear instability of double layer graphene
sheets covered by piezoelectric layers and
subjected to biaxial forces, magnetic and electric
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fields and surrounded by a Pasternak foundation,
is investigated in this paper. In the following
figures, the effects of the parameters such as
stiffness of circumstance, magnetic intensity,
nonlocal-scale number, thicknesses of graphene
and piezoelectric layer, and Vander walls on the
instability of the system are investigated. The
properties of graphene and ZnO piezoelectric
material are presented in Table 1 [25].

Table 1. Material properties of ZnO and DLGS.

Zn0O DLGS
c,, =207(GPa) E, =1765(GPa)
¢, =117.7(GPa) E, =1588(GPa)
e;, =—0.51 Vio =V, =0.3
Ky, = 7.77e(—11)

In all the figures presented in this section,
the vertical axis denotes the buckling load
and the horizontal axis denotes small-scale
parameters.

At first, we investigated the effect of the
nonlinearity of equations on the instability of
the system. Figure 2 shows the effects of
considering and omitting nonlinearity terms in
equations on the instability of the system. As
can be seen from Figure 2, omitting nonlinear
terms results in a decrease in the stability of the
system. In other words, designing based on a
linear state is to some extent conservative.
With an increase in nonlocal parameters, two
diagrams tend to converge.

13 T
120~ L}

1 = —— Nonlinear Buckling

~m Linear Buckling

Nonlinear Buckling Load, PNL

: : : : : : : : :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
Nonlocal Parameter, e (nm)

Fig. 2. A comparison for stability between linear and
nonlinear state

In order to explore the effects of the
different types of surrounding circumstances,
Figure 3 has been plotted. As can be expected,
without an elastic medium, the load required
for the system to fail in the buckling shape is
the least. With appending springs and
developing a Winkler foundation, the stability
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of the system increased considerably. On the
other hand, a Pasternak foundation makes the
system stiffer, and then the stability of system
will be the most sensitive. By increasing
nonlocal parameters, the difference between
the diagrams will be the same.

13

—¥— Without elastic medium M
o —O— With Winkler medium
—— With Pasternak medium

11

Nonlinear Buckling Load, PNL

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Nonlocal Parameter, e, (nm)

Fig. 3. Influence of different types of surrounding
circumstances

Figure 4 depicts the effects of changing the
length of the plates on the load required for
buckling. Obviously, with an increase in
dimensions of the plate, the instability of the
system decreases. This behaviour of the system is
expected as we know that there is an inverse
relation between buckling load and the length of
plate. Another point that can be comprehended
from this figure is that for smaller plates, e.g.,
a=10 or 20 nm, the effects of nonlocal parameters
are more obvious. The reason is that, as can be
interpreted from the name of small-scale
parameters, it is a criterion for the measurement of
the exiguity of a system, then for larger systems its
effect becomes less than for smaller ones.

Nonlinear Buckling Load, P,

: : : : : : :
0.2 0.4 0.6 0.8 1 1.2 1.4
Nonlocal Parameter, e (nm)

Fig. 4. Nonlinear buckling load versus nonlocal
parameter for various lengths of plates

The influence of the thickness of graphene
and piezoelectric layers on the stability of the
systems is shown in Figure 5a and b,
respectively. Clearly, an increase in the thickness
of both piezoelectric and graphene layers makes
the system stiffer, and consequently the buckling
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load becomes larger. This is because from our
primary knowledge of the strength of materials
that the relation between buckling load and
stiffness of a system is direct. The only difference
is that, at the end of the spectrum of nonlocal
parameters, the diagrams corresponding to the
graphene layer are going to converge.

Nonlinear Buckling Load, P

. . . . . . .
o 0.2 0.4 0.6 0.8 1 12 14 16 1.8
Nonlocal Parameter, e (nm)

Fig. 5a. Effect of graphene thickness on stability of the
system

Nonlinear Buckling Load, Py,

r L

4 L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Nonlocal Parameter, e, (nm)

Fig. 5b. Effect of piezoelectric thickness on stability of
the system

One of the most important parameters that
can be changed to control the stability of a
system is magnetic field intensity. To this end,
Figure 6 was drawn. It is understood from this
figure that increasing magnetic field intensity
has a positive influence on the stability of the
system. An increase in the small-scale has little
effect on the difference between diagrams.
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—%— MPal= 0
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—&— MPa1=0.2
MPal1=0.3 M
—— MPal=0.4

B
o

4

I I
1S [N
T T4
|

4

1

®
T

Nonlinear Buckling Load, Py
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Nonlocal Parameter, el (nm)
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Fig. 6. Variation of nonlinear buckling load against
nonlocal parameter with magnetic field intensity
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To explore the effect due to the presence of
Vander walls force, Figure 7 was plotted. This
figure illustrates that, because of presence of
Vander walls force, the system becomes stiffer
in comparison to an absence of it, and the
result is a more stable system than expected.
Another conclusion that can be seen is that the
influence of an increase in nonlocal parameters
on the difference between the two diagrams is
slight and can be ignored.

13— : : v : : T T T
LN

12 o
= Without vdW force

—#— With vdW force

2R
o P
T T
I
1

©
T
1

Nonlinear Buckling Load, Py

4 r r r r r r r
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2

Nonlocal Parameter, e (nm)

Fig. 7. Effect of presence and absence of Vander walls
force on stability of system

Figure 8 presents a variation of the buckling
load of the system with various values of spring
coefficients corresponding to the Pasternak

foundation. As illustrated in this figure, with an
increase in the stiffness of the springs, the load
buckle

required to the increases

perceptibly.

system

—o— K,le17
e K 72017
—0—K,=3e17
5. v K, Fdel7

Nonlinear Buckling Load, Py,

4 r r r r r r r
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Nonlocal Parameter, e, (nm)

Fig. 8. Variation of stability of system versus small
scale parameter for different values of stiffness

The final figure of this section is Figure 9 in
which a comparison between two states is
presented. In one diagram the graphene layers
undergo only in-plane uniaxial forces while in the
other they are subjected to in-plane biaxial forces.
This figure shows that in a uniaxial state more
powerful forces are needed to destabilize the
system. The tendency of the two diagrams is
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convergence at the end of the nonlocal parameter
spectrum.

—©— Biaxial Buckling
~—®— Uniaxial Buckling
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[ ]
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Nonlinear Buckling Load, Py,
7
'l
.

4 r r r r r r r r r
0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2

Nonlocal Parameter, ed (nm)

Fig. 9. A comparison for stability of the system
between uniaxial and biaxial forces

6. Conclusion

In this paper, the nonlinear instability of a
double layer graphene sheet covered by ZnO
piezoelectric layers, subjected to biaxial forces,
electric and magnetic fields, and surrounded by
a Pasternak foundation was investigated. Using
Figures 2-9, some major conclusions can be
summarized as follows:

1. Omitting nonlinear terms from the
equations results in a conservative analysis.

2. As the system becomes stiffer the load
required to buckle it becomes larger.

3. Increasing the nonlocal parameter leads
to a decrease in system stability.

4. There was an inverse relation between
the dimensions of the plates and the stability of
the system.

5. Intensifying the magnetic field makes the
system more stable.

6. The presence of Vander walls force has a
positive role on the stability of the system.
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