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Abstract  

The nonlocal nonlinear buckling of a double layer graphene sheet (DLGS) covered by zinc oxide 

(ZnO) piezoelectric layers is investigated in this study. The surrounding circumstances of the system 

are considered as a Pasternak foundation including spring constants and a shear layer. Graphene sheets 

are subjected to longitudinal magnetic field and biaxial forces. On the other hand, the ZnO 

piezoelectric layer is subjected to an electric field. Eringen’s nonlocal theory is used for considering 

small-scale effects. Classical plate theory (CPT) is employed to model the plates. Nonlinear Von-

Karman theory, the energy method and Hamilton’s principle are utilized to derive the size dependent 

governing equations. The known numerical differential quadrature method (DQM) is applied to obtain 

a nonlocal nonlinear buckling load. The detailed parametric study is conducted focusing on the effects 

of magnetic field strength, the dimensions of plates, small-scale effects and the intensity of the 

stiffness matrix on the nonlocal nonlinear buckling load of system. Results indicate that intensifying 

magnetic field makes the system more stable. Furthermore, increase in thickness of both piezoelectric 

and graphene layers makes the system stiffer, and consequently the buckling load becomes larger. The 

results of this study might be useful for the designing and manufacturing of graphene-based structures 

in micro or nanoelectromechanical systems. 

Keywords: DLGS, DQM, nonlinear buckling, ZnO piezoelectric layer. 

 
1. Introduction

 
 

Graphene sheets are one of the most famous and 

beloved types of carbon structures among 

researchers. The study of the mechanical 

behaviour of graphene sheets under different 

types of boundary conditions and subjected to 
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various kinds of loading configurations has been 

receiving considerable interest from many 

researchers. This is because of their valuable 

properties. The primary and most popular 

definition of a single-layer graphene sheet 

(SLGS) accepted by the scientific communities is 

presented as: a flat monolayer of carbon atoms 

tightly packed into a two dimensional 

honeycomb lattice in which carbon atoms bond 
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covalently with their neighbours [1]. Graphene 

sheets (GS) have extraordinary properties of 

physical, chemical and electrical types. Here are 

some of these properties which are mentioned in 

references [2-4]: strong mechanical strength 

(Young’s modulus=1.0 TPa), large thermal 

conductivity (thermal conductivity=3000 W/km), 

excellent electric conductivity (electric 

conductivity up to 6000 S/cm), high surface area 

and unusual optical properties. Because of these 

stupendous and heralded properties, GSs can be 

used in many nanostructures such as 

nanosensors, nanooptomechanical systems, super 

capacitors, nanocomposites and so on [5,6].  

The mechanical aspects of GSs and nanoplates 

have been investigated in the papers available in 

the literature. Pradhan and Kumar [7] studied the 

vibration of GSs using nonlocal elasticity and the 

DQM approach. They have investigated the 

effects of parameters such as graphene 

dimensions, nonlocal parameters, material 

properties and different boundary conditions on 

the dimensionless frequency of an orthotropic 

SLGS. Pradhan and Murmu [8] explored the 

small-scale effect on the buckling analysis of a 

SLGS resting on an elastic medium based on 

nonlocal plate theory. The results of their study 

show that the buckling load of GS depends 

strongly on the small-scale effects and stiffness of 

the elastic foundation. The thermal buckling 

properties of a nanoplate with small-scale effects 

were studied by Wang et al. [9] based on the 

nonlocal continuum theory. From this work, it can 

be observed that the small-scale effects are 

significant for the thermal buckling properties. 

Pradhan and Phadikar [10] investigated the small-

scale effects on the vibration of multi-layer 

graphene sheets (MLGSs) using nonlocal 

continuum mechanics. Narendar and [11] 

investigated buckling analysis of orthotropic 

nanoplates such as graphene using the two-

variable refined plate theory and nonlocal small-

scale effects. It has been proven that the 

nondimensional buckling load of the orthotropic 

nanoplate is always smaller than that of the 

isotropic nanoplate. Liew et al. [12] explored 

nanovibration of GSs resting on an elastic 

medium. The presence of Van der walls (Vdw) 

force between graphene layers influences their 

natural frequency. GSs react to applied magnetic 

fields. This problem was considered by Murmu et 

al. [13] in their study. Based on their results, 

applying an in-plane magnetic field to SLGS 

enhances its natural frequency. Mohammadi et al. 

[14] analysed the transverse free vibration of 

circular GSs under different boundary conditions 

using nonlocal continuum mechanics. In an 

investigation, Ghorbanpour Arani et al. [15] 

presented a buckling analysis and smart control of 

SLGS using polyvinylidene fluoride (PVDF) 

based on nonlocal Mindlin plate theory. 

Furthermore, Ghorbanpour Arani et al. [16] 

investigated the elastic foundation effect on the 

nonlinear thermal vibration of an orthotropic 

DLGS. 

On the other hand, creating composite or 

hybrid structures to achieve new materials with 

modified properties has a particular importance. 

By doing so, desirable properties are at hand. At 

the macro-scale, Hosseini Hashemi et al. [17] 

worked on finding an exact solution for the 

vibration of thick circular plates made of 

functionally graded material (FGM) covered by 

piezoelectric layers. In their study, the plates have 

been modelled using third order plate theory. 

Furthermore, the same author, in another study 

[18] examined a three dimensional Ritz solution 

for the free vibrations of annular plates made of 

FGM covered by piezoelectric layers. At the 

nano-scale, a buckling analysis of a carbon 

nanotube (CNT) as a core covered by ZnO layer 

subjected to both electrical field and mechanical 

strain was done by Zhang et al. [19]. Jiang and 

Gao [20] in an investigation proposed the 

fabrication and characterization of ZnO-coated 

multi-walled carbon nanotubes with enhanced 

photocatalytic activity. Huang et al. [21] explored 

a stable super hydrophobic surface using CNTs 

coated with a ZnO thin film.  

The use of graphene-based structures has 

received considerable attention due to their 

thaumaturgic properties. The design and 

manufacture of stable systems are of common 

concern to researchers. Thus, using the results 

of this study, the buckling of the system can be 

postponed by changing parameters such as 

magnetic field intensity, length of plates and, 

particularly, the thickness of the ZnO layer. 

With a literature search, it can be found that 

there is no paper which conducts a buckling 

analysis of a DLGS covered by ZnO layers. 

Motivated by these considerations, in order to 

optimize the design of nanostructures, our aim 

is to investigate the stability control of DLGS 

http://link.springer.com/search?facet-author=%22S.+Narendar%22
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based on CPT. Herein, DLGS is covered by a 

ZnO piezoelectric layer, surrounded by a 

Pasternak medium, and subjected to both 

magnetic and electric fields. The influence of 

small-scale parameters, the elastic medium, the 

length of the plates and the magnetic field 

intensity on the buckling behaviour of DLGS 

have been taken into account. 

2. A review of nonlocal theory 

According to nonlocal piezoelasticity theory, 

the stress and electric displacement filed of a 

particular point depend not only on strain and 

electric filed components at the same point but 

also on all other points of the body. This 

statement of nonlocal theory can be formulated 

as nonlocal constitutive behaviour as follows 

[22,23]. 

 

 

2

2

1

1

  

  

nl l

ij ij

nl l

ij ijD D

  



 
(1) 

where nl
ij and l

ij  are nonlocal stress tensor and 

local stress tensors, respectively. nl
ijD  and nl

ijD  

denote components of nonlocal and local electric 

displacement, respectively. =(e0a)
2
 represents the 

small-scale effect on the response of structures at 

nanosize and 2 is the Laplacian operator.  

3. Modelling of the problem 

3.1. Geometrical description of the problem 

A schematic configuration of the problem has 

been illustrated in Figure 1. As can be seen in 

Figure 1, a double layer graphene sheet is 

covered by two ZnO piezoelectric layers. The 

thicknesses of the graphene and piezoelectric 

layer are distinct, and are denoted by hg and  

hp, respectively. The interaction between 

graphene layers is modelled by Vdw force. The 

whole system is surrounded by a Pasternak 

foundation. Magnetic and electric fields are 

applied to the graphene and piezoelectric 

layers, respectively. Furthermore, a biaxial 

force is applied to the graphene sheets. Before 

continuing, it must be noted that the system 

shown in Figure 1 is divided into two systems. 

System 1 is considered as the upper 

piezoelectric and graphene layers, and system 

2 is considered as the lower ones. 

Fig. 1a. Schematic of double-layer graphene sheet covered by ZnO piezoelectric layer 

 

Fig. 1b. Direction of applied magnetic field to graphene sheets 
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3.2. Governing equations of motion 

In this section, the aim is to obtain governing 

equations of motion by means of Hamilton’s 

principle. In this study, all the layers have been 

simulated by CPT. The displacement field for 

CPT is presented as [24]: 

0
0( , , , ) ( , , )


 



w
u x y z t u x y t z

x  
0

0( , , , ) ( , , )


 


w
v x y z t v x y t z

y  
0( , , , ) ( , , )w x y z t w x y t  

(2) 

where  000 ,, wvu  is an arbitrary point on the 

middle surface of the plate. The nonlinear von-

Karman strains are given by [24]: 
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(4) 

Constitutive equations for ZnO material can 

be defined as follows [25]. 

(5) 
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where C11, C12, C13, C33, C44 are linear elastic 

constants and e31, e33, e15 are linear 

piezoelectric constants. Superscript P refers to 

the piezoelectric material. Ei (i=x,y,z)  shows 

electric filed intensity and can be obtained 

from [26].  
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where   is the electric potential applied to the 

piezoelectric layers. On the other hand, the 

electric displacement of this particular material 

is presented as [25]: 
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In this equation, K11, K33 are dielectric 

constants. In this investigation, electric field is 

applied along x  direction and along two other 

directions considered zero. For our particular 

problem, constitutive and electric displacement 

equations are summarized as follows. 
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(8) 

On the other hand, constitutive equations 

for orthotropic graphene sheets modelled by 

CPT are [24]: 
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where Qij (i,j =1,2,6) are the stress-reduced 

plane and their values can be obtained using 

the following formulae.  
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where E1  and E2 are elastic modulus along 1 

and 2 directions, respectively. v12 and v21 are 

Poisson constants. G12 is a shear modulus. As 

mentioned earlier, the governing equations are 

obtained using Hamilton’s principle. Hamilton’s 

principle in its familiar form is expressed as: 

 
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in which Utot and Vtot are the total potential 

energy and work done by external forces, 

respectively. 

3.2.1. Virtual potential energy and virtual 

external works 

Virtual potential energy and virtual work done 

by external forces of both graphene and 

piezoelectric layers have been calculated 

separately and are added together at the end. 

The virtual potential energy and virtual 

work for the piezoelectric layer are: 
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in which subscript p refers to the piezoelectric 

and qp are all the transverse forces acting on 

the piezoelectric layer. Because of the 

Pasternak foundation, transverse forces are: 

2
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In the above equation, wK and PG  are the 

Winkler and shear layer of the Pasternak 

foundation coefficients, respectively. 

Similarly, the virtual potential energy and 

virtual work due to external forces for 

graphene are as follows. 
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(16) 

Subscript G denotes parameters corresponding 

to graphene. In this equation, fmz and fmy are 

Lorentz forces along the z and y axes, 

respectively. They can be calculated as [26]: 
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Since displacement components are 

independent of the thickness of the plate, the 

final form of the Lorentz force used in this 

investigation is: 
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Using the internal integral of Eq. (16) and 

by Eq. (17), their values along the thickness 

can be obtained. 
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The total virtual potential and virtual work 

of the external forces for system 1 are: 
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Substituting Equations. (13), (16) and (21) 

into Equation (11) and integrating them, the 

following time integration is obtained. 
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Considering the above equation, the 

following equations are defined. 
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where in this equation, the stress and moment 

resultants are calculated as: 
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(24) 

Considering Equation (22) and using 

integration by parts, the results after the 

separation of the coefficients of the same 

variables has the local form of equations of 

motion in terms of displacement, in which 

nonlocal Eringen theory has yet not been 

applied to them. To this end, using this theory, 

the nonlocal form of Equations (22) after the 

separation of the same variables for system 1 

are as follows: 
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In the above equations, the following definitions have been utilized. 
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The coefficients corresponding to the piezoelectric layer are: 
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where  

 66 11 12
1
2

 C C C  (28) 

and the coefficients corresponding to the graphene layer are: 
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(29) 

In order to generalize the results of this 

investigation to any system consistent with our 

work, we have to utilize the dimensionless 

nonlocal form of Equations (25a-d). To this 

end, dimensionless parameters have been 

introduced as: 
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(30) 

Then, using these dimensionless parameters, Equations (25a-d) will change into the following form: 
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in which index i can adopt 1 and 2 for system 

1 and 2, respectively. X  is +1 for system 1 and 

is -1 for system 2.  

4. Solution procedure 

Because of nonlinear nature of the equations, 

the closed-form solution is out of scope, and 

then we must explore the solution to the 

problem using numerical methods. One of the 

most famous and applicable methods is DQM. 

In this method equations will be discretized 

and will be rearranged in a matrix form.  

4.1. An introduction to DQ method 

For two dimensional problems, the partial 

differential is approximated as [28]: 

(32) 
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in which f(x,y) is a function of two variables, 

Nx and Ny  are a number of points along x  and 

y directions, respectively, Ax,ik is the weighting 

coefficient. The meshing of plates was done 

using the Chebyshev distribution formula. 

Weighting coefficients are calculated as [28]: 

(33) 
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(34) 
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For a higher order of derivatives, we have 

employed the following formula: 

(35) 
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In this study, we have considered boundary 

conditions for all the edges of plates as simply 

supported. These boundary conditions can be 

expressed as: 

(36) 
2

2

2

2

0 @ 0, & 0,

0 @ 0,

0 @ 0,

    

  


  


u v w x a y b

w x a
x

w y b
y

 

4.2. Buckling analysis of the problem 

Applying the DQ method to all the governing 

equations of motion and boundary conditions 

including system 1 and 2, the following 

eigenvalue problem can be obtained. 

(37)    0 0    L NL gK K N K d  

In which [KL] and [KNL] are linear and 

nonlinear portions of stiffness matrix. [Kg]  

also is a force coefficient matrix. 0N  expresses 

the critical buckling load and {d} denotes the 

displacement matrix and is defined as: 

(38)           .,,,
TTTT

wvud   

The eigenvalue problem (Equation 37) must 

be solved using an iteration process until a 

convergence criterion satisfied. At first, the 

nonlinear portion of the stiffness matrix is 

ignored, the eigenvalue problem is solved, and 

the eigenvalues and eigenvectors of Equation 

(37) are obtained. These eigenvectors are used 

to achieve eigenvectors of a nonlinear problem. 

This process iterates until the following 

convergence criterion is satisfied. 

(39) %.01.0
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1 
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i

ii


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in which   is an eigenvector corresponding to 

a linear eigenvalue problem.  

5. Numerical results and discussion 

The nonlinear instability of double layer graphene 

sheets covered by piezoelectric layers and 

subjected to biaxial forces, magnetic and electric 
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fields and surrounded by a Pasternak foundation, 

is investigated in this paper. In the following 

figures, the effects of the parameters such as 

stiffness of circumstance, magnetic intensity, 

nonlocal-scale number, thicknesses of graphene 

and piezoelectric layer, and Vander walls on the 

instability of the system are investigated. The 

properties of graphene and ZnO piezoelectric 

material are presented in Table 1 [25]. 

Table 1.  Material properties of ZnO and DLGS. 
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In all the figures presented in this section, 

the vertical axis denotes the buckling load 

and the horizontal axis denotes small-scale 

parameters. 

At first, we investigated the effect of the 

nonlinearity of equations on the instability of 

the system. Figure 2 shows the effects of 

considering and omitting nonlinearity terms in 

equations on the instability of the system. As 

can be seen from Figure 2, omitting nonlinear 

terms results in a decrease in the stability of the 

system. In other words, designing based on a 

linear state is to some extent conservative. 

With an increase in nonlocal parameters, two 

diagrams tend to converge. 
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Fig. 2. A comparison for stability between linear and 

nonlinear state 

In order to explore the effects of the 

different types of surrounding circumstances, 

Figure 3 has been plotted. As can be expected, 

without an elastic medium, the load required 

for the system to fail in the buckling shape is 

the least. With appending springs and 

developing a Winkler foundation, the stability 

of the system increased considerably. On the 

other hand, a Pasternak foundation makes the 

system stiffer, and then the stability of system 

will be the most sensitive. By increasing 

nonlocal parameters, the difference between 

the diagrams will be the same. 
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Fig. 3. Influence of different types of surrounding 

circumstances 

Figure 4 depicts the effects of changing the 

length of the plates on the load required for 

buckling. Obviously, with an increase in 

dimensions of the plate, the instability of the 

system decreases. This behaviour of the system is 

expected as we know that there is an inverse 

relation between buckling load and the length of 

plate. Another point that can be comprehended 

from this figure is that for smaller plates, e.g., 

a=10 or 20  nm, the effects of nonlocal parameters 

are more obvious. The reason is that, as can be 

interpreted from the name of small-scale 

parameters, it is a criterion for the measurement of 

the exiguity of a system, then for larger systems its 

effect becomes less than for smaller ones. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

Nonlocal Parameter, e
0
a (nm)

N
o

n
li

n
ea

r 
B

u
ck

li
n

g
 L

o
ad

, P
  N

L

 

 

a=10 nm

a=20 nm

a=30 nm

a=40 nm

a=50 nm

 

Fig. 4. Nonlinear buckling load versus nonlocal 

parameter for various lengths of plates 

The influence of the thickness of graphene 

and piezoelectric layers on the stability of the 

systems is shown in Figure 5a and b, 

respectively. Clearly, an increase in the thickness 

of both piezoelectric and graphene layers makes 

the system stiffer, and consequently the buckling 
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load becomes larger. This is because from our 

primary knowledge of the strength of materials 

that the relation between buckling load and 

stiffness of a system is direct. The only difference 

is that, at the end of the spectrum of nonlocal 

parameters, the diagrams corresponding to the 

graphene layer are going to converge. 
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Fig. 5a. Effect of graphene thickness on stability of the 

system 
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Fig. 5b. Effect of piezoelectric thickness on stability of 

the system 

One of the most important parameters that 

can be changed to control the stability of a 

system is magnetic field intensity. To this end, 

Figure 6 was drawn. It is understood from this 

figure that increasing magnetic field intensity 

has a positive influence on the stability of the 

system. An increase in the small-scale has little 

effect on the difference between diagrams. 
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Fig. 6. Variation of nonlinear buckling load against 

nonlocal parameter with magnetic field intensity 

To explore the effect due to the presence of 

Vander walls force, Figure 7 was plotted. This 

figure illustrates that, because of presence of 

Vander walls force, the system becomes stiffer 

in comparison to an absence of it, and the 

result is a more stable system than expected. 

Another conclusion that can be seen is that the 

influence of an increase in nonlocal parameters 

on the difference between the two diagrams is 

slight and can be ignored. 
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Fig. 7. Effect of presence and absence of Vander walls 

force on stability of system 

Figure 8 presents a variation of the buckling 

load of the system with various values of spring 

coefficients corresponding to the Pasternak 

foundation. As illustrated in this figure, with an 

increase in the stiffness of the springs, the load 

required to buckle the system increases 

perceptibly. 
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Fig. 8. Variation of stability of system versus small 

scale parameter for different values of stiffness 

The final figure of this section is Figure 9 in 

which a comparison between two states is 

presented. In one diagram the graphene layers 

undergo only in-plane uniaxial forces while in the 

other they are subjected to in-plane biaxial forces. 

This figure shows that in a uniaxial state more 

powerful forces are needed to destabilize the 

system. The tendency of the two diagrams is 
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convergence at the end of the nonlocal parameter 

spectrum. 
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Fig. 9. A comparison for stability of the system 

between uniaxial and biaxial forces 

6. Conclusion 

In this paper, the nonlinear instability of a 

double layer graphene sheet covered by ZnO 

piezoelectric layers, subjected to biaxial forces, 

electric and magnetic fields, and surrounded by 

a Pasternak foundation was investigated. Using 

Figures 2-9, some major conclusions can be 

summarized as follows: 

1. Omitting nonlinear terms from the 

equations results in a conservative analysis. 

2. As the system becomes stiffer the load 

required to buckle it becomes larger. 

3. Increasing the nonlocal parameter leads 

to a decrease in system stability. 

4. There was an inverse relation between 

the dimensions of the plates and the stability of 

the system. 

5. Intensifying the magnetic field makes the 

system more stable. 

6. The presence of Vander walls force has a 

positive role on the stability of the system. 
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