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Abstract

Let A and B be Banach algebras, o, fe Hom(A,B),

| <1 and| g <1. We

define an (a, f) -product on Ax B which is a strongly splitting extension of 4 by
B . We show that these products form a large class of Banach algebras which
contains all module extensions and triangular Banach algebras. Then we consider
spectrum, Arens regularity, amenability and weak amenability of these products.
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Introduction
Let A and B be Banach algebras and & be a
multiplicative linear functional on A . The Lau product
AX, B was first introduced by Lau [10] for the special

case that A is the predual of a von Neumann algebra

and « is the identity of A" (Our notation varies from
that of [10, 11] due to some reasons which will be seen
later). Lau used this product as a tool in the study of
certain Banach algebras associated with locally compact
groups and semigroups. Monfared [11] extended the
notion of Lau product 4X, B to arbitrary Banach

algebras and studied various properties of such
products. In particular 4x B is a strongly splitting

Banach algebra extension of B by A . Motivated by
Wedderburn’s principal theorem, splitting of Banach
algebra extensions has been a major question in the
theory of Banach algebras; See [13, 1] for a through
study of this question and its relation to automatic
continuity and cohomology of Banach algebras.

Module extensions as generalizations of Banach
algebra extensions were introduced by Gourdeau [§]

and were used to show that amenability of A" implies
amenability of A4 . Zhang [15] used module extensions
to answer an open question regarding weak amenability,
raised by Dales, Ghahramani, and Gronbaek [3].
Monfared [11, page 279] has pointed out that an effort
to generalize the product in the following way,
involving two characters &, f€ A(A),

(a,b)(a@’,b") = (ad’,a(a)b’+ B(a’)b+bb")

would lead to a non-associative product, unless
o= ﬂ . However dropping the term bb’ in the above
identity and taking & and ﬁ to be arbitrary would

lead to an associative multiplication which generalizes
product of module extensions. Inspired by this

modification, (at, B) -product by the

o B

we define

following identity, where and are

homomorphisms from A into B .

(a,b)-(a’,b) = (ad’,a(a)b’+bfS(a))).

As we will see in example 2.3, triangular Banach
algebras can be represented in terms of an (&, f)-
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product. Besides the above mentioned group of
examples, in contrast to direct products, (&, f)-

products provide a wealth of counter-examples, as there
are properties such as commutativity, which are

satisfied by two of 4, B, Axa,ﬁ B, but not by the
third one.
These facts suggest that (¢, [8) -products are worth

to study. In the present paper we will consider basic
algebraic properties, spectrum, Arens regularity,

amenability, and weak amenability of (&, ,B) -products.
In the forthcoming paper we will study (e, ,3) -
amenability and (¢, [§) -weak amenability of arbitrary

Banach algebras, with a new approach, which brings
several notions of amenability under one roof. See also
[4] for some related results in this direction.

Before proceeding further, let us recall some
terminology.

Throughout A4 and B are Banach algebras,
Hom(A,B) denotes the set of all homomorphisms

from A into B and by A(A) we mean Hom(A,C)

. Recall that an extension of 4 by B is a short exact
sequence

i q
2 0-B—>U—>4—-0

of Banach algebras and continuous algebra
homomorphisms. The extension X splits strongly if
there is a continuous homomorphism &: A —U such
that go@ =1 ,.

Results and Discussion

1. The Banach algebra Axa,ﬂ B

In this section we study some properties of the
(a, B) -product. We begin with a more general
definition, namely A4X, ; X where X is a Banach
B -bimodule, as it was appeared in the forthcoming
paper.

Definition 1.1 Let X be a Banach B -bimodule,
a, e Hom(A,B) , |of <1 and |B|<1. The
Banach algebra Axw X is defined as the ' direct
product AX X with multiplication
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(a,x)(ay,x,) = (a,a,,0(a,)x, +x,5(a,))
((a),x)),(ay,x,)€ AX,, 5 X).

Example 1.2 In the above definition if we assume

A=X and a=pB=id, then AX, 5 X is the

module extension of A as it was defined by Gourdeau

in [8].

Example 1.3 Suppose A and B are Banach
algebras and X is a Banach (A, B )-module. The

triangular algebra T Z( ] with usual matrix
0 B

operations and norm

a x

o 3

is a Banach algebra. For more information on 7' see

= lall, + [ +[el,

[6].
We may trun X into an 4@, B -bimodule (D,

denotes the /'-direct sum) with module actions

(a,b)x=ax, x.(a,b)=xb,
(ae A,be B,xe X).

Also we may define

a, B Home((A®, B),(A®, B)), a(a,b)=
(a,0), B(a,b) = (0,b).

Then one can easily see that the map

0:(A®, B)x, , X —>T,0((a,b),x) = (g z]

is a surjective isometric algebra isomorphism.

Remark 1.4 (i) Let A and B be Banach
algebras. AX(L ﬁB is a strongly splitting Banach

algebra extension of A by B . In other words, B is a
closed ideal of AX, 5B and (AX,;B)/B is
isometrically isomorphic to A .
(i0) AX, 5 B is commutative if and only if 4 is
commutative and (a)b=bf(a) (a€ A,be B).
(i) o, B, 1€ Hom(A,B).
Ax, ;B=Ax,, B if

@, € Hom(A) such that & = @, B=noy , if

For

if and only there exist



Structure of Certain Banach Algebra Products

and only if there exist ¢, € Hom(B) such that
a=goy. f=yor.
(iv) The dual of the space AX, ;B can be

identified with A4 XB’ naturally as in the direct
products.

(V) Suppose [ is an ideal of A and J is an ideal

of B . Then
(@) If I C KeraanKerf3, then IXJ is an ideal

in AX, ; B.
M) If I € KeraanKerf3, then IX.J is an ideal
in A%, 5 B ifand onlyif J=5.

Example 2.3, the preceding remark and the next
proposition reveal resemblance of (&, f3) -products to
matrix products.

Proposition 1.5 Let M be an ideal of AX, 5 B

and

I={ae A:(a,b)e M forsome be B},
J=1{be B:(a,p)e M forsome aec A}.

Then
(i) / isanidealin A .

(ii) If @ and ﬂ are onto, then J is an ideal of B .

Furthermore if 4 has an approximate identity and M
is closed, then M =1XJ .
Proof.(i) Straightforward.

(i) Let je€J and be B. Then there are
a,a’€ A such that a(a) = f(a’)=b. Since M is
an ideal of AX, 5 B, then (a,b)(0,j) =(0,a(a)j)
and (0, j)(a,b) = (0, jB(a’)) are both in M and
hence jb,bje J.

Let (a;), be a bounded approximate identity for
A, ayel and bye J. Choose acl and beJ
such that (a,b,)€ M and (a,,b)€ M . Then

”(al ,O)(ao ,0)— (ao ,O)" -

|a/1a0 —aO” —0

and hence (a,,0)€ M . Similarly (a,0)e M .

Therefore

(a,,b,)=(a,,0)+(a,by)—(a,0)e M.

267

Proof of the next theorem was inspired by [11,
proposition 2.4.]

Theorem 1.6 Let A and B be Banach algebras
with the non-empty spectrum, o, 3€ Hom(A,B) ,

lof <1 and |B] <1.
Let E:={(12o(a+ B),y):we A(B)} and
F={(@0):pe A(A)}. Then E and F are
disjoint, closed subsets of (A(A Xo.p B),Weak*) and
A(4%, , B)=EUF.
Proof. It is easy to see that E U F < A(AX,, 5 B)

and EnF = ¢. Conversely, let (¢,)e A(4 Xop B).
Then the identities

(@,¥)((a,b)(a’,b") = (9, y)(a,b)(@.y)(a’,D),
(a,b),(a’,b") € Ax, ; B

imply that

pad’)+y(a(a)b"+bp(a") = p(a)p(a’) +
Py () +p(a )y (b) +y (D) (D).

Taking b=0"=0, we get @(aa’) = p(a)p(a’),
and taking a=a’ =0, we get W(b)y(b)=0. Thus
y(a(a)y ) +y bW (@) = play () +
oa )y (b).

Taking a=d, b=V, we get
y(b)(y(a(a)+ f(a)) = 2¢(a)y (D). So if Y #0
and b€ B is chosen so that W(b)#0 then,
@ =12(wo(a+ ). Therefore (@,)€ E .

Now if ¥ =0, then (¢,0)e F'. Therefore
A(AX, ;s B)=EVUF.

and choose

Let (12(w,o(a+p),y,)eE
be B such that W, (b)#0. Let £=1/2|y,(b)]
and consider the following relative
neighborhood of (1/2(y,0(a + B),¥,)

U=1Up.p)e AAx, 5 B) [y (b))~ () |< &}

weak *-
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If (p,0)eUNF, then |y, (b)|<&, which is a
contradiction. Thus U C E . This shows that E is
open in (A(Axaﬁ B),Weak*) and hence F is
closed.

Suppose  (¢,0)e F ﬂEW* and choose a net
{(12(y0(a+P)w,)} in E which is weak*-
convergent to (¢0,0), that is,

12(y jo(a + f)(a) +y (D) = ¢(a)

(a,b)e AX, ; B.
a=0, conclude that

Taking we

w,(b) = 0,be B. In particular 1//10(0{+,B)1*>0 :
Letting b=0 we that
12(w0(a+ B)(a) = ¢(a) ¢=0
which is a contradiction. Therefore £ is closed in

A(AX , B),weak ).
( a,p )

see
and hence

Corollary 1.7 Let @, f€ Hom(4,B) , |of <1
and ”ﬂ” <1. Then AX, 5 B is semisimple if and only

if A and B are semisimple.

Proof. Suppose AX B B is semisimple,
and b€ B is such that for e A(B), w(b)=0.
Then (12(wo(a+ B),w)(0,b)=0 and
(¢,0)(0,0) =0 (pe A(4)). Thus (¢,¥)(0,0) =0
for all (¢,p)e A(AX, ;B and hence b=0.
Therefore B is A s
semisimple.

Conversely if (a,b)€ AX, 5B is so that for
(P.y)e A(AX,;B) . (p.¥)a,b)=0, then
o(a)=(,0)(a,b)=0 (pe A(A)). Since A is
semisimple, it follows that a=0. Consequently

w(b)=0, (we A(B)), and hence b=0 as B is

semisimple. Therefore 4 X op B is semisimple.

semisimple. Similarly

Remark 1.8 Suppose A is commutative and for

every a€ A and be B, a(a)b=>bp(a). Since B
is a closed ideal of AX, 5 B and (AX, ; B)/B is

isometrically isomorphic to A, it follows from [9,
theorems 4.2.6 and 4.3.8] and part (iii) of 2.4 that
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AX, 5 B is regular if and only if A and B are

regular.

2. Arens regularity

Let A be a Banach algebra. The first and second

Arens multiplications on A" that we denote by V and
O respectively, are defined in three steps. For

a,be 4, ¢e A" and ®,We A", the elements
da,ap, ®p,¢® of A and PV, DOY of

A are defined in the following way:
<da,b>=<¢,ab> <a@,b>=<¢,ba>

<DP,b>=<P,pb> <P, a>=<D,ap>
<OW, p>=<P,VYgp> <DV, p>=<¥,pD>.

*k
When we refer to A without explicit reference to
*k
any of Arens products, we mean A  with the first

fixed We A the map
O OVY O U ON| is

weak —weak continuous, but the map
O WYV [resp. D> DOV ] is not necessarily

* *
weak —weak continuous, unless W is in A4 . The

Arens product. For

[resp.

left and right topological centers of A” are defined by:
ZO(A")={Pe A" :dVY =DOY, Ye 4},

ZO(AT)={®e A" :PVDP=P0D, Ye 4 }.

We say that A is left Arens regular [resp. strongly
it ZO(AT)=A4"  [resp.
Zt(/)(A**)Z A7, right Arens regular [resp.
204"y = 4"
Zt(")(A**) = A], and Arens regular [resp.

Arens irregular] if it is both left and right Arens regular
[resp. strongly Arens irregular].

Arens  irregular]
strongly
Arens

irregular]  if [resp.

strongly

Let oa,fe Hom(A,B). Then both  of
o (A7 W) - (B, W) and o :(47,0) = (B7,0)
are continuous homomorphisms [2, page 251].

Moreover if ||0{||S1, then “OJ**HSI. A similar

argument applies to ,B .

Proof of the next theorem was inspired by [11,
proposition 2.12.]
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o, f€ Hom(A, B)
”CZ” <l ”ﬂ” <1, and B is Arens regular.

Theorem 2.1 Suppose

(i) 1f A7, B”, and (A%, 4 B)" are equipped
with their first [resp. second] Arens products, then
(A%, 4 B)” is isometrically algebra isomorphic to

a B

ok

(i1) Let Z, be either of left or right topological

sk

centers. Then Z ((AX,, 4 B)Y)=Z(4")X . 5 B .

In particular A4 X o.p B is Arens regular if and only

if A is Arens regular.
Proof. (i) Throughout, we do not distinguish the

two Banach spaces (AXB)" and A" XB" as they

can be identified in a natural way. Since the underlying
Banach space of both of (4x,,B)” and

ek Kk *k *k . .
A X .. 5 B™ are A XB , then it is enough to
o,

show that the identity map between these two algebras
keeps the product. The first Arens product on

A" % ., pe B is identified by the equations
a,

(D,V)(@, V) = (VY (D)VY' + PV (D))
(D,P),(D,¥)e 4" xB".

(M

We calculate the first Arens product on (4 X5 B)" .
Let (a,b)a(a,,b,)e Axa’ﬁ B ) ((D,W)G A* XB* ) and
(P,¥),(P",P)e A" xB". Then:

< (¢al//) : (aab) > (a/ab’) >=< (¢al//) > (aab) : (a/ab’) >
=<(p,¥), (ad’,a(a)b’ +bp(a") >
=<@,ad’>+<y, ()b’ +bp(d)>

=<g@-a+f(y-b),d>+<y a(a),b'>

=<(p-a+f (y-b).y-a(a)),(d,b)>.
Thus

(o) (a,b)=(p-a+f (v -b),y-o(a)).

Also

< ((D,lP) ’ (¢,l//) > (aab) >=< ((I),\P) > (wal//) (avb) >
=<(®,¥),(p-a+ B (y b,y o(a))>
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=<®,p-a>+<Dof ,y-b>+<V¥,y aa)>
=<®-¢,a>+<f(®)-y,b>+<a (¥-y),a>

=<(@-p+a (¥-9), B (®)-y), (a,b)>.

So

(@,') (p.) = (P-p+a (¥ ), (D)-y).
Now

<(D,'P)W(D",F), (p,y) >=< (D,¥),
((D/,\P,) : (¢, l//) >
=<(D,¥), (V- g+ (V-y), 7 (@) y)>

<0, pra (V)<Y @)y >

=<0,V -p>+<a (D), ¥V -y>+<V¥, [ (@) y>
=< (VD" (®)VIY' +PVS™ (D), (p,p) >.

Therefore
(Q,¥)(P,¥) = (PVD, o (P)VY'+
YVET(D)).

2

The result for the first Arens product follows from
(1) and (2). A similar argument provides the result for
the second Arens product.

(i) B s
B** —_ Zt(l) (B**) _ Zl(y) (B**) . Let

Since Arens regular, then

(D, W)e Z" (A%, 5 B) ) =2"(4" X o o B").
Then for every (&', ¥")e 4™ X oo oo B™ we have
(D, P)V(®, ) = (D,¥)N(D", V)
or equivalently
(PVD, o (P)VY' + WPV L™ (D)) = (POD’,
a” (®)OF +WOB7 (D).

In particular @VP’ = POD” and hence de 2.

So
] sk Kk l ok Kk
z"(4 X oo B yezl(4 )Xa**,,g**B .
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ok

Conversely let (®,W)e Z"(4A7)x .. = B

Arens regularity of B implies that

(O, ¥)V(D',¥) = (D, ¥)0(D", ') (D, ¥)e
A Xa**’ﬂ** B )
and hence (®,¥)e Z" (4" X .. = B

sk

).
Therefore
2O o BT 27 B

ok

).

3. Amenability

In this section we show stability of several notions
of amenability with respect to the product X, - Let X
be a Banach A -bimodule. We denote the set of all
bounded derivations from A into X by Z'(4,X)
and the set of inner derivations from A into X by
B'(4,X). Let

H'(4,X)=2Z"'(4,X)/B'(4,X)

be the first cohomology group of A with
coefficients in X . We say that A is amenable if
H'(A,X")=1{0} for every Banach A -bimodule X
and it is weakly amenable if H'(A4, 4" )={0}.

For a comprehensive account on amenability and
weak amenability the reader is referred to the books [2,
14].

A derivation D : A — X is approximately inner if
(x))cX that
D(a)=Ilim,(a-x; —x,-a)(ae A). The algebra
A is approximately amenable if for each Banach A -

bimodule X every derivation D:A— X s
approximately inner and A is approximately weakly

amenable if every derivation D:A—>A s
approximately inner.

there exists a net such

Theorem 3.1 Ler @, f€ Hom(A,B) , ||a|| <1
and ”,B” <1. Then

(i) AX, 5 B is amenable [resp. contractible] if and

only if both 4 and B
contractible].

are amenable [resp.

(i7) If moreover B has a bounded approximate

identity and A4 X o.p B is approximately amenable then
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soare A and B .
Proof. (i) This part follows from the fact that the
short exact sequence

30— B> A%, 5 B— A0

splits strongly [1].

(i) This is a consequence of Remark 2.4 and [7,
Corollary 2.1].

The next theorem is one of the results which show

the assymetry of the product AX, ; B.

Theorem 3.2 Ler @, J€ Hom(A,B) , ”0{” <1

and ||,B|| <I.

(i) If A and B are weakly amenable then so is
AX, 5 B.

(ii) If AX, ;B is weakly amenable then A is

weakly amenable.
Moreover suppose that B is commutative.
(iii) If A and B
amenable thensois 4%, 5 B.

are approximately weakly

(iv) If AX, 5 B is approximately weakly amenable

then A is approximately weakly amenable.
Proof. (i) Since B is a weakly amenable closed
ideal of AX, ;B and A= AX, ;B/B is weakly

amenable then A4 X B B is weakly amenable.

(ii) Let d:A— A" be a bounded derivation and
D: A%, ;B— A XB by
D(a,b)=(d(a),0). Then D is a bounded linear
map and

D((a,b)(d’,b")) = D(ad’,a(a)b’+bB(a’))

define

= (d(aa),0)=(d(a)d’ +ad(a’),0)
= (d(a),0)(a’,b")+(a,b)(d(a’),0)
= D(a,b)(a’,b")+ (a,b)D(d’,b).

So D is a bounded derivation and hence there is a

(§I9§Z)E A" X B such that

D(a,b)=(§,,¢,)a,b)—(a,b)({,,{>),
((a,b)€ A%, ; B).
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So
(d(a),0)= D(a,0) = (¢}, {,)(@,0) = (a,0)({}, §5) =
(é,la - a{l,O).

Therefore, d(a)={,a—al, (ae A).

(iii) Since for commutative Banach algebras the two
concepts of weak amenability and approximate weak
amenability coincide, then B is weakly amenable. But

B is a closed ideal of Axaﬁ B, and
A=AX, 5 B/B is approximately weakly amenable.

So by [5, Proposition 2.2] AX B B is approximately
weakly amenable.

(iviLet d: A— A" be a bounded derivation and as
in part (ii)) define a Dbounded derivation

D: A%, ,B— A xBby D(a,b)=(d(a),0).
By assumption there exists a net (@,,¥;), in

A XB’ such that

D(a,b) = lim,((a,b)(¢,.¥,) — (¢,,¥,)(a, b))
(a,b)€ A%, 4 B.

Now
<d(a),a’ >=<D(a,0),(a’,0)>
=<lim,((a,0)(¢,,v,)—(¢,.¥,)(a,0)),(a’,0) >
=<lim,(agp, - ¢,a),a">

and hence

d(a)=Ilim,(ap,—@,a) ac A.
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