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Abstract 

Let A  and B  be Banach algebras, ),(, BAHom∈βα , 1≤α  and 1≤β . We 

define an ),( βα -product on BA×  which is a strongly splitting extension of A  by 
B . We show that these products form a large class of Banach algebras which 
contains all module extensions and triangular Banach algebras. Then we consider 
spectrum, Arens regularity, amenability and weak amenability of these products. 
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Introduction 
Let A  and B  be Banach algebras and α  be a 

multiplicative linear functional on A . The Lau product 
BA α×  was first introduced by Lau [10] for the special 

case that A  is the predual of a von Neumann algebra 

and α  is the identity of 
*A . (Our notation varies from 

that of [10, 11] due to some reasons which will be seen 
later). Lau used this product as a tool in the study of 
certain Banach algebras associated with locally compact 
groups and semigroups. Monfared [11] extended the 
notion of Lau product BA α×  to arbitrary Banach 

algebras and studied various properties of such 
products. In particular BA α×  is a strongly splitting 

Banach algebra extension of B  by A . Motivated by 
Wedderburn’s principal theorem, splitting of Banach 
algebra extensions has been a major question in the 
theory of Banach algebras; See [13, 1] for a through 
study of this question and its relation to automatic 
continuity and cohomology of Banach algebras. 

Module extensions as generalizations of Banach 
algebra extensions were introduced by Gourdeau [8] 

and were used to show that amenability of 
**A  implies 

amenability of A . Zhang [15] used module extensions 
to answer an open question regarding weak amenability, 
raised by Dales, Ghahramani, and Gronbaek [3]. 
Monfared [11, page 279] has pointed out that an effort 
to generalize the product in the following way, 
involving two characters )(, AΔ∈βα ,  

))()(,(=),)(,( bbbabaaababa ′+′+′′′′ βα  

would lead to a non-associative product, unless 
βα = . However dropping the term bb ′  in the above 

identity and taking α  and β  to be arbitrary would 

lead to an associative multiplication which generalizes 
product of module extensions. Inspired by this 
modification, we define ),( βα -product by the 

following identity, where α  and β  are 

homomorphisms from A  into B .  
)).()(,(=),(),( abbaaababa ′+′′′′⋅ βα  

As we will see in example 2.3, triangular Banach 
algebras can be represented in terms of an ),( βα -



Vol. 25  No. 3  Summer 2014 G. H. Esslamzadeh, et al. J. Sci. I. R. Iran 

266 

product. Besides the above mentioned group of 
examples, in contrast to direct products, ),( βα -

products provide a wealth of counter-examples, as there 
are properties such as commutativity, which are 

satisfied by two of A , B , BA βα ,× , but not by the 

third one. 
These facts suggest that ),( βα -products are worth 

to study. In the present paper we will consider basic 
algebraic properties, spectrum, Arens regularity, 
amenability, and weak amenability of ),( βα -products. 

In the forthcoming paper we will study ),( βα -

amenability  and ),( βα -weak amenability of arbitrary 

Banach algebras, with a new approach, which brings 
several notions of amenability under one roof. See also 
[4] for some related results in this direction. 

Before proceeding further, let us recall some 
terminology. 

Throughout A  and B  are Banach algebras, 
),( BAHom  denotes the set of all homomorphisms 

from A  into B  and by )(AΔ  we mean ),( C/AHom
. Recall that an extension of A  by B  is a short exact 
sequence  

00: →→→→Σ AUB
qi

 
 
of Banach algebras and continuous algebra 

homomorphisms. The extension Σ  splits strongly if 
there is a continuous homomorphism UA →:θ  such 

that AIqo =θ . 

Results and Discussion 

1. The Banach algebra BA βα ,×  

In this section we study some properties of the 
),( βα -product. We begin with a more general 

definition, namely XA βα ,×  where X  is a Banach 

B -bimodule, as it was appeared in the forthcoming 
paper. 

 
Definition 1.1 Let X  be a Banach B -bimodule, 

),(, BAHom∈βα  , 1≤α  and 1≤β . The 

Banach algebra XA βα ,×  is defined as the 1l -direct 

product XA×  with multiplication  
 

).),(),,((

))()(,(=),(),(

,2211

2121212211

XAxaxa

axxaaaxaxa

βα

βα
×∈

+⋅
 

 
Example 1.2 In the above definition if we assume 

A = X  and id== βα , then XA βα ,×  is the 

module extension of A  as it was defined by Gourdeau 
in [8].  

 
Example 1.3 Suppose A  and B  are Banach 

algebras and X  is a Banach ( A , B )-module. The 

triangular algebra 







B

XA
T

0
=  with usual matrix 

operations and norm  

BXA
bxa

b

xa
++








=

0
 

is a Banach algebra. For more information on T  see 
[6]. 

We may trun X  into an BA 1⊕ -bimodule ( 1⊕  

denotes the 1l -direct sum) with module actions  
 

).,,(

,=),.(,=).,(

XxBbAa

xbbaxaxxba

∈∈∈
 

Also we may define  
 

).(0,=),(,0),(

=),()),(),((, 11

bbaa

baBABAHome

β
αβα ⊕⊕∈

 

Then one can easily see that the map  









→×⊕

b

xa
xbaTXBA

0
=)),,((,)(: ,1 θθ βα  

is a surjective isometric algebra isomorphism.  
 
Remark 1.4 )(i  Let A  and B  be Banach 

algebras. BA βα ,×  is a strongly splitting Banach 

algebra extension of A  by B . In other words, B  is a 

closed ideal of BA βα ,×  and BBA )/( ,βα×  is 

isometrically isomorphic to A . 

)(ii BA βα ,×  is commutative if and only if A  is 

commutative and ),()(=)( BbAaabba ∈∈βα . 

)(iii  For ),(,,, BAHom∈ηγβα , 

BABA ηγβα ,, ×≅×  if and only if there exist 

)(, AHom∈ψϕ  such that ϕγα o= , ψηβ o= , if 
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and only if there exist )(, BHom∈ψϕ  such that 

γϕα o= , .= ηψβ o  

)(iv  The dual of the space BA βα ,×  can be 

identified with 
** BA ×  naturally as in the direct 

products. 
)(v  Suppose I  is an ideal of A  and J  is an ideal 

of B . Then 
(a) If βα KerKerI ∩⊆ , then JI ×  is an ideal 

in BA βα ,× . 

(b) If βα KerKerI ∩⊆/ , then JI ×  is an ideal 

in BA βα ,×  if and only if BJ = .  

 
Example 2.3, the preceding remark and the next 

proposition reveal resemblance of ),( βα -products to 

matrix products. 
 

Proposition 1.5  Let M  be an ideal of BA βα ,×  

and  
},somefor ),(:{= BbMbaAaI ∈∈∈  

}.somefor ),(:{= AaMbaBbJ ∈∈∈  
Then  

(i) I  is an ideal in A . 
 
(ii) If α  and β  are onto, then J  is an ideal of B . 

Furthermore if A  has an approximate identity and M  
is closed, then JIM ×= .   

Proof.(i) Straightforward. 
 
(ii) Let Jj ∈  and Bb∈ . Then there are 

Aaa ∈′,  such that baa =)(=)( ′βα . Since M  is 

an ideal of BA βα ,× , then ))((0,=))(0,,( jajba α  

and ))((0,=),)((0, ajbaj ′β  are both in M  and 

hence Jbjjb ∈, . 

Let λλ )(a  be a bounded approximate identity for 

A , Ia ∈0  and Jb ∈0 . Choose Ia∈  and Jb∈  

such that Mba ∈),( 0  and Mba ∈),( 0 . Then  

0=,0)(,0),0)(( 0000 →−− aaaaaa λλ  

 

and hence Ma ∈,0)( 0 . Similarly Ma ∈,0)( . 

Therefore 

.,0)(),(,0)(=),( 0000 Mabaaba ∈−+  

 
Proof of the next theorem was inspired by [11, 

proposition 2.4.]  
 
Theorem 1.6 Let A  and B  be Banach algebras 

with the non-empty spectrum,  ),(, BAHom∈βα  , 

1≤α  and 1≤β .  

Let )}(:)),({(1/2(:= BoE Δ∈+ ψψβαψ  and 

)}.(:,0){(:= AF Δ∈ϕϕ   Then E  and F  are 

disjoint, closed subsets of ( )*
, ),( weakBA βα×Δ  and 

.=)( , FEBA ∪×Δ βα  

Proof. It is easy to see that )( , BAFE βα×Δ⊆∪  

and φ=FE ∩ . Conversely, let ).(),( , BA βαψϕ ×Δ∈  

Then the identities  
 

BAbaba

babababa

βα

ψϕψϕψϕ

,),(),,(

),,)(,)(,)(,(=)),)(,)((,(

×∈′′
′′′′

 

 
imply that  
 

).()()()()()(

)()(=))()(()(

bbbaba

aaabbaaa

′+′+′
+′′+′+′

ψψψϕψϕ
ϕϕβαψϕ

 

 
Taking 0== bb ′ , we get )()(=)( aaaa ′′ ϕϕϕ , 

and taking 0== aa ′ , we get 0=)()( bb ′ψψ . Thus  

).()(

)()(=))(()()())((

ba

baabba

ψϕ
ψϕβψψψαψ

′
+′′+′

 

 
Taking aa ′= , bb ′= , we get 

)()(2=))()(()(( baaab ψϕβαψψ + . So if 0≠ψ  

and Bb∈  is chosen so that 0)( ≠bψ  then, 

)(1/2(= βαψϕ +o . Therefore E∈),( ψϕ . 

 
Now if 0=ψ , then F∈,0)(ϕ . Therefore 

FEBA ∪×Δ =)( ,βα . 

 

Let Eo ∈+ )),((1/2( 00 ψβαψ  and choose 

Bb∈  such that 0)(0 ≠bψ . Let |)(|1/2= 0 bψε  

and consider the following relative weak*-

neighborhood of )),((1/2( 00 ψβαψ +o  

}.<|)()(|:)(),{(= 0, εψψψϕ βα bbBAU −×Δ∈
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If FU ∩∈,0)(ϕ , then εψ <|)(| 0 b , which is a 

contradiction. Thus EU ⊆ . This shows that E  is 

open in ( )*
, ),( weakBA βα×Δ  and hence F  is 

closed. 

Suppose 
*

,0)(
w

EF ∩∈ϕ  and choose a net 

)})({(1/2( λλ ψβαψ +o  in E  which is weak*-

convergent to ,0)(ϕ , that is,  

.),(

)()())((1/2(

, BAba

abao

βα

λλ ϕψβαψ
×∈

→++
 

Taking 0=a , we conclude that 

Bbb ∈→ 0,)(λψ . In particular 0)(
*w

o →+ βαψ λ . 

Letting 0=b  we see that 

)())((1/2( aao ϕβαψ λ →+  and hence 0=ϕ  

which is a contradiction. Therefore E  is closed in 

( )*
, ),( weakBA βα×Δ .  

 

Corollary 1.7 Let  ),(, BAHom∈βα  , 1≤α  

and 1≤β . Then BA βα ,×  is semisimple if and only 

if A  and B  are semisimple.  

              Proof. Suppose BA βα ,×  is semisimple, 

and Bb∈  is such that for )(BΔ∈ψ , 0=)(bψ . 

Then 0=))(0,),((1/2( bo ψβαψ +  and 

))((0=),0)(0,( Ab Δ∈ϕϕ . Thus 0=))(0,,( bψϕ  

for all BA βαψϕ ,(),( ×Δ∈  and hence 0=b . 

Therefore B  is semisimple. Similarly A  is 
semisimple. 

Conversely if BAba βα ,),( ×∈  is so that for 

)(),( , BA βαψϕ ×Δ∈  , 0=),)(,( baψϕ , then 

0=),,0)((=)( baa ϕϕ ))(( AΔ∈ϕ . Since A  is 

semisimple, it follows that 0=a . Consequently 

0=)(bψ , ))(( BΔ∈ψ , and hence 0=b  as B  is 

semisimple. Therefore BA βα ,×  is semisimple.  

 
Remark 1.8 Suppose A  is commutative and for 

every Aa∈  and Bb∈ , )(=)( abba βα . Since B  

is a closed ideal of BA βα ,×  and BBA )/( ,βα×  is 

isometrically isomorphic to A , it follows from [9, 
theorems 4.2.6 and 4.3.8] and part (iii) of 2.4 that 

BA βα ,×  is regular if and only if A  and B  are 

regular.  

2. Arens regularity 

Let A  be a Banach algebra. The first and second 

Arens multiplications on 
**A  that we denote by ∇ and 

  respectively, are defined in three steps. For 
*,, AAba ∈∈ φ  and **, A∈ΨΦ , the elements 

ΦΦ .,.,.,. φφφφ aa  of 
*A  and ΨΦΦ∇Ψ ,  of 

**A  are defined in the following way:  

.>.,>=<,<>.,>=<,<

>.,>=<,.<>.,>=<,.<

>,>=<,.<>,>=<,.<

ΦΨΨΦΨΦΨ∇Φ
ΦΦΦΦ

φφφφ
φφφφ

φφφφ
aabb

babaabba
 

 

When we refer to 
**A  without explicit reference to 

any of Arens products, we mean 
**A  with the first 

Arens product. For fixed 
**A∈Ψ  the map 

Ψ∇ΦΦ   [resp. ΦΨΦ ] is 
** weakweak −  continuous, but the map 

Φ∇ΨΦ   [resp. ΨΦΦ ] is not necessarily 
** weakweak − continuous, unless Ψ  is in A . The 

left and right topological centers of 
**A  are defined by:  

},,=:{=)( ******)( AAAZ l
t ∈ΨΨΦΨ∇Φ∈Φ

 
}.,=:{=)( ******)( AAAZ r

t ∈ΨΦΨΦ∇Ψ∈Φ  

 
We say that A  is left Arens regular [resp. strongly 

Arens irregular] if ****)( =)( AAZ l
t  [resp. 

AAZ l
t =)( **)( ], right Arens regular [resp. strongly 

Arens irregular] if ****)( =)( AAZ r
t  [resp. 

AAZ r
t =)( **)( ], and Arens regular [resp. strongly 

Arens irregular] if it is both left and right Arens regular 
[resp. strongly Arens irregular]. 

 
Let ),(, BAHom∈βα . Then both of 

),(),(: ****** WW BA →α  and ),(),(: ****** → BAα  

are continuous homomorphisms [2, page 251]. 

Moreover if 1≤α , then 1** ≤α . A similar 

argument applies to β . 

Proof of the next theorem was inspired by [11, 
proposition 2.12.]  
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Theorem 2.1 Suppose  ),(, BAHom∈βα  , 

1≤α , 1≤β , and B  is Arens regular. 

)(i  If 
**A , 

**B , and 
**

, )( BA βα×  are equipped 

with their first [resp. second] Arens products, then 
**

, )( BA βα×  is isometrically algebra isomorphic to 

**
**,**

** BA
βα

× . 

)(ii  Let tZ  be either of left or right topological 

centers. Then .)(=))(( **
**,**

****
, BAZBAZ tt βαβα ××

 
In particular BA βα ,×  is Arens regular if and only 

if A  is Arens regular.  
Proof. )(i   Throughout, we do not distinguish the 

two Banach spaces 
**)( BA×  and 

**** BA ×  as they 

can be identified in a natural way. Since the underlying 
Banach space of both of **

, )( BA βα×  and 

**
**,**

** BA
βα

×  are 
**** BA × , then it is enough to 

show that the identity map between these two algebras 
keeps the product. The first Arens product on 

**
**,**

** BA
βα

×  is identified by the equations  

.),(),,(

))()(,(=),)(,(
****

****

BA ×∈Ψ′Φ′ΨΦ

Φ′∇Ψ+Ψ′∇ΦΦ′∇ΦΨ′Φ′ΨΦ βα

  

(1) 

 
 We calculate the first Arens product on **

, )( BA βα×  . 

Let BAbaba βα ,),(),,( ×∈′′  , **),( BA ×∈ψϕ , and 

****),(),,( BA ×∈Ψ′Φ′ΨΦ . Then:  

                  
>),(),(,),(>=<),(,),(),(< babababa ′′⋅′′⋅ ψϕψϕ

        >)()(,(,),(=< abbaaa ′+′′ βαψϕ  

             >)()(,<>,=< abbaaa ′+′+′ βαψϕ  

                    
>,)(<>,)(=< * baaba ′⋅+′⋅+⋅ αψψβϕ  

                  .>),(,))(),((=< * baaba ′′⋅⋅+⋅ αψψβϕ  

 Thus  

)).(),((=),(),( * ababa αψψβϕψϕ ⋅⋅+⋅⋅  

 
Also  

      
>),(),(,),(>=<),(,),(),(< baba ⋅ΨΦ⋅ΨΦ ψϕψϕ

 
    >))(),((,),(=< * aba αψψβϕ ⋅⋅+⋅ΨΦ  

                      

>)(,<>,<>,=< * aba αψψβϕ ⋅Ψ+⋅Φ+⋅Φ   
               

>,)(<>,)(<>,=< *** aba ψαψβϕ ⋅Ψ+⋅Φ+⋅Φ  
          

.>),(,))(),((=< *** baψβψαϕ ⋅Φ⋅Ψ+⋅Φ  

 
 So  
 

).)(),((=),(),( *** ψβψαϕψϕ ⋅Φ⋅Ψ+⋅Φ⋅ΨΦ  
 
Now 
 

>),(),(

,),(>=<),(,),(),(<

ψϕ
ψϕ

⋅Ψ′Φ′
ΨΦΨ′Φ′ΨΦ W

 

    >))(),((,),(=< *** ψβψαϕ ⋅Φ′⋅Ψ′+⋅Φ′ΨΦ  

            
>)(,<>)(,=< *** ψβψαϕ ⋅Φ′Ψ+⋅Ψ′+⋅Φ′Φ  

               
>)(,<>,)(<>,=< **** ψβψαϕ ⋅Φ′Ψ+⋅Ψ′Φ+⋅Φ′Φ           

          .>),(,)()(,(=< **** ψϕβα Φ′∇Ψ+Ψ′∇ΦΦ′∇Φ  
  
Therefore 

)).(

)(,(=),)(,(
**

**

Φ′∇Ψ

+Ψ′∇ΦΦ′∇ΦΨ′Φ′ΨΦ

β
α

                  (2) 

  
The result for the first Arens product follows from 

(1) and (2). A similar argument provides the result for 
the second Arens product. 

)(ii  Since B  is Arens regular, then 

)(=)(= **)(**)(** BZBZB r
t

l
t

. Let  

 
).(=))((),( **

**,**
**)(**

,
)( BAZBAZ l

t
l

t βαβα ××∈ΨΦ
 

Then for every **
**,**

**),( BA
βα

×∈Ψ′Φ′  we have  

),(),(=),(),( Ψ′Φ′ΨΦΨ′Φ′∇ΨΦ  

 
or equivalently  

)).()(

,(=))()(,(
****

****

Φ′Ψ+Ψ′Φ
Φ′ΦΦ′∇Ψ+Ψ′∇ΦΦ′∇Φ

βα
βα

 

 
In particular Φ′ΦΦ′∇Φ =  and hence )(l

tZ∈Φ .  

 
So  

.)()( **
**,**

**)(**
**,**

**)( BAZBAZ l
t

l
t βαβα

×⊆×  
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Conversely let **
**,**

**)( )(),( BAZ l
t βα

×∈ΨΦ . 

Arens regularity of B  implies that  
 

)

),)((,(),(=),(),(
**

**,**
** BA

βα
×

∈Ψ′Φ′Ψ′Φ′ΨΦΨ′Φ′∇ΨΦ

 

and hence )(),( **
**,**

**)( BAZ l
t βα

×∈ΨΦ .  

Therefore 

).()( **
**,**

**)(**
**,**

**)( BAZBAZ l
t

l
t βαβα

×⊆×  

3.  Amenability 

 In this section we show stability of several notions 

of amenability with respect to the product βα ,× . Let X  

be a Banach A -bimodule. We denote the set of all 

bounded derivations from A  into X  by ),(1 XAZ  

and the set of inner derivations from A  into X  by 

),(1 XAB . Let  

),()/,(:=),( 111 XABXAZXAH  

be the first cohomology group of A  with 
coefficients in X . We say that A  is amenable if 

{0}=),( *1 XAH  for every Banach A -bimodule X  

and it is weakly amenable if {0}=),( *1 AAH . 

For a comprehensive account on amenability and 
weak amenability the reader is referred to the books [2, 
14]. 

 A derivation XAD →:  is approximately inner if 

there exists a net Xx ⊆)( λ  such that 

).)((=)( AaaxxalimaD ∈⋅−⋅ λλλ  The algebra 

A  is approximately amenable if for each Banach A -

bimodule X  every derivation *: XAD →  is 
approximately inner and A  is approximately weakly 

amenable if every derivation *: AAD →  is 
approximately inner.  

 

Theorem 3.1 Let  ),(, BAHom∈βα  , 1≤α  

and 1≤β . Then 

)(i BA βα ,×  is amenable [resp. contractible] if and 

only if both A  and B  are amenable [resp. 
contractible].  

)(ii  If moreover B  has a bounded approximate 

identity and BA βα ,×  is approximately amenable then 

so are A  and B .  
Proof. (i) This part follows from the fact that the 

short exact sequence  

00: , →→×→→Σ ABAB
qi

βα  

splits strongly [1]. 
(ii) This is a consequence of Remark 2.4 and [7, 

Corollary 2.1].  
The next theorem is one of the results which show 

the assymetry of  the product  BA βα ,× .
 

 

Theorem 3.2 Let  ),(, BAHom∈βα  , 1≤α  

and 1≤β .  

(i) If A  and B  are weakly amenable then so is 

BA βα ,× .  

(ii) If BA βα ,×  is weakly amenable then A  is 

weakly amenable. 
Moreover suppose that B  is commutative.  
(iii) If A  and B  are approximately weakly 

amenable then so is BA βα ,× .  

(iv) If BA βα ,×  is approximately weakly amenable 

then A  is approximately weakly amenable.  
Proof. (i) Since B  is a weakly amenable closed 

ideal of BA βα ,×  and BBAA /,βα×≅  is weakly 

amenable then BA βα ,×  is weakly amenable. 

(ii) Let *: AAd →  be a bounded derivation and 

define 
**

,: BABAD ×→× βα  by 

),0)((=),( adbaD . Then D  is a bounded linear 

map and  
))()(,(=)),)(,(( abbaaaDbabaD ′+′′′′ βα  

                                     
),0)()((=),0)((= aadaadaad ′+′′  

                                     
),0)()(,(),),0)(((= adbabaad ′+′′  

                                    
).,(),(),)(,(= baDbababaD ′′+′′  

 
So D  is a bounded derivation and hence there is a 

**
21 ),( BA ×∈ζζ  such that  

 

).),((

),,)(,(),)(,(=),(

,

2121

BAba

bababaD

βα

ζζζζ
×∈

−
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So  

,0).(

=),,0)((,0))(,(=,0)(=),0)((

11

2121

ζζ
ζζζζ

aa

aaaDad

−
−

 
 
Therefore, )(=)( 11 Aaaaad ∈− ζζ . 

 
(iii) Since for commutative Banach algebras the two 

concepts of weak amenability and approximate weak 
amenability coincide, then B  is weakly amenable. But 

B  is a closed ideal of BA βα ,× , and 

BBAA /,βα×≅  is approximately weakly amenable. 

So by [5, Proposition 2.2] BA βα ,×  is approximately 

weakly amenable. 

(iv) Let *: AAd →  be a bounded derivation and as 
in part (ii) define a bounded derivation 

**
,: BABAD ×→× βα by ),0)((=),( adbaD . 

By assumption there exists a net λλλ ψϕ ),(  in 
** BA ×  such that  

 

.),(

)),)(,(),)(,((=),(

, BAba

babalimbaD

βα

λλλλλ ψϕψϕ
×∈

−

 
Now  
                                                   

>,0)(,0),(>=<),(< aaDaad ′′  

                                                  

>,0)(,0)),)(,(),,0)(((=< aaalim ′− λλλλλ ψϕψϕ
 

                                                                  

>),(=< aaalim ′− λλλ ϕϕ  

 and hence 
 

Aaaalimad ∈− )(=)( λλλ ϕϕ . 
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