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Abstract 

The uniaxial compressive strength (UCS) of intact rocks is an important geotechnical parameter 

required for designing geotechnical and mining engineering projects. Obtaining accurate estimates of 

the rock mass UCS parameter throughout a 3D geological model of the deposit is vital for determining 

optimum rock slope stability, designing new exploratory and blast boreholes, mine planning, 

optimizing the production schedule and even designing the crusher’s feed size. The main objective of 

this paper is to select the preferred estimator of the UCS parameter based on accuracy performance 

using all the available geological-geotechnical data at the Sarcheshmeh copper deposit, located 160 

km southwest of Kerman City, in south-eastern Iran. In this paper, an attempt is made to estimate the 

spatial distribution of the UCS parameter using commonly-used statistical-structural and geostatistical 

methods. In order to achieve the aim of the current study, the UCS parameter was measured along 

with other qualitative geological properties, including the rock type, weathering, alteration type and 

intensity of core samples taken from 647 boreholes. The 3D distribution of the UCS parameter is 

obtained using different algorithms including statistical-structural (the nearest-neighbour technique), 

linear (ordinary Kriging) and nonlinear (indicator Kriging) geostatistical methods. After estimating the 

UCS parameter at block centres using the above-mentioned methods, the performance of each method 

is compared and validated through 21 set aside borehole data. The assessment of selecting best 

estimator of UCS parameter is based on scatter plots of the observed versus estimated data plus the 

root mean square error (RMSE) statistics of the differences between observed and estimated values for 

21 set aside borehole data. Finally, due to the special characteristics of the UCS spatial variability, it is 

concluded that the nearest-neighbour method is the most appropriate method for estimating the UCS 

parameter in porphyry copper deposits. 

Keywords: indicator Kriging, nearest-neighbour, ordinary Kriging, sarcheshmeh copper deposit, 

uniaxial compressive strength (UCS). 
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1. Introduction 

Generally, site characterization starts with the 

process of refining the engineering geology 

properties throughout the spatial domain of any 

facility installation. It involves assessing data 

adequacy and accuracy, data interpretation and 

integration, and setting up a conceptual model. 

In areas where the geological setting is well 

known, site characterization may be a 

straightforward procedure. However, where 

weathering and alterations have intensively 

degraded rock strength, site development and 

design may require extra attention in 

establishing rock slope stabilities. Studying the 

spatial influence of weathering or alteration on 

rock masses through certain rock parameters is, 

therefore, useful in developing a standard rock 

mass description. This would enable us to have 

an even more refined rock classification based 

on the actual geology under investigation [1]. 

The uniaxial compressive strength (UCS) is one 

of the most important intact rock parameters 

used for the purpose of design in a variety of 

engineering applications, such as tunnel 

excavation, rock slopes, foundations, etc. Since 

it has a significant relationship with the rock 

type, the alteration and weathering type and 

intensity, it is used as an input parameter in 

some rock mass classification systems. 

Obtaining accurate rock mass UCS estimates 

throughout a 3D geological model of deposit is 

vital for determining the optimum rock slope 

stability, designing new exploratory and blast 

boreholes, mine planning, optimizing the 

production schedule and even designing the 

crusher’s feed size. 

In order to increase the accuracy of 

estimating geotechnical parameters, a number 

of methods, such as simple and multiple 

regression and geostatistics have already been 

employed. These methods have been applied 

for estimating geotechnical parameters such as 

the UCS with some success [1-13]. For 

example, Diamantis et al. (2009) investigated 

the relationships among the physical, 

dynamical and mechanical properties of intact 

rocks, and attempted to derive reliable, 

empirical approaches for estimating the UCS 

parameter. The results were statistically 

described and analysed using the method of 

least squares regression [9]. Basu and Kamran 

(2010) used a linear regression model to 

obtain a correlation between the UCS and 

point load index (  ) measurements [11]. 

Ayalew et al. (2002) employed 

geostatistics first to determine the spatial 

variability of the rock quality designation 

(RQD), which has a direct relationship with 

weathering; next, they used geostatistics to 

carry out the estimation of RQD values based 

on the ordinary Kriging method [1]. Raspa et 

al. (2008) combined techniques of multivariate 

statistics and geostatistics and compared them 

to evaluate the estimation methods of the 

geotechnical parameters, with special 

reference to the drained friction angle from the 

direct shear test (φ′) [12]. 

In addition, several traditional and widely-

used estimation methods have been described 

by a number of researchers, including 

Patterson (1959), King et al. (1982), Annels 

(1991) and Stone and Dunn (1994) [14-17]. 

These procedures include polygonal (such as 

nearest-neighbour), triangular, regular and 

random stratified grid, inverse distance 

weighting and contouring methods. The 

nearest-neighbour method is a popular method 

routinely employed in many fields of the earth 

sciences, including geotechnical engineering. 

The aim of this study is to find the most 

efficient and geologically consistent method 

for estimating the UCS parameter at regular 

grid locations throughout a 3D geological 

model of a porphyry copper deposit using 

common estimation and interpolation 

methods. 

2. Methodology 

The UCS values available to the current study, 

along with other qualitative geological 

properties including rock type, the weathering 

and alteration type and intensity were 

measured on core samples taken from 647 

boreholes at the Sarcheshmeh copper deposit. 

In this study, the UCS parameter is estimated 

at the centre of each block in the 3D 

geological solid model with a block size of 

12.5 12.5 6.25 metres throughout the ore 

body’s extent. To find the best method for 

estimating the UCS parameter in terms of 

accuracy and consistent with the governing 

geology, the performance of different widely-

used estimators or interpolators is assessed. 

Primarily, the statistical-structural (nearest-
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neighbour technique) and linear (ordinary 

Kriging) and nonlinear (indicator Kriging) 

geostatistical methods are employed to 

determine the spatial variability of the UCS 

parameter, which often shows a direct 

relationship with rock type, weathering and 

alteration type and intensity. The results could 

discriminate the predefined 67 different 

classes based on rock type, weathering and 

alteration intensities with respect to their 

estimated UCS values throughout the 

Sarcheshmeh copper deposit. Following 

the estimation of the UCS parameter at 

block centres using the above-mentioned 

methods, the performance of each method 

is compared and validated by employing 

21 set aside borehole data. The assessment 

of selecting best estimator of UCS 

parameter is based on scatter plots of the 

observed versus estimated data plus the 

root mean square error (RMSE) statistics 

of the differences between observed and 

estimated values of 21 set aside borehole 

data. The methodology used in the present 

study is shown in Figure 1.  
 

 

Fig. 1. Proposed workflow for selecting the best method in estimating the 3D distribution of the UCS parameter. 

2.1. Ordinary Kriging and Indicator 

Kriging Methods  

Geostatistics includes several estimation 

techniques commonly known as ‘Kriging’ that 

can be used for estimating spatially distributed 

variables in certain unsampled locations. The 

most commonly-used Kriging methods are 

ordinary Kriging (OK) method and the 

Results verification 

Constructing the 3D geological block model  

 

End 

Selecting the best estimation method 

Estimating the UCS values 
throughout a 3D geological 

model of deposit  

Start 

Measuring the UCS values along with other 

qualitative geological properties 

Classification of the UCS samples into 67 different rock classes 

 

Statistical - structural method Geostatistical methods 

Nearest neighbour Ordinary Kriging 

Computing the RMSE values 

 
Scatter plots 

Indicator Kriging 



Pishbin & Fathianpour./ Int. J. Min. & Geo-Eng., Vol.48, No.1, June 2014 

14 

 

indicator Kriging (IK) method. The OK 

method is used to estimate the values of a 

variable of interest at an unsampled location 

using a variogram model interpreted from all 

the spatially distributed samples throughout a 

deposit and the data located in its local search 

ellipsoid. Under the assumption that the region 

is second-order stationary, ordinary block 

kriging implicitly evaluates the mean in a 

moving neighborhood in a manner that 

minimizes the estimation variance. However, 

if the block average values are to be estimated, 

then the OK method is adapted in such a way 

so as to average the discretized sub-block 

Kriging values [18, 19]. 

In geostatistics, nonlinear interpolation 

involves estimating the conditional expectation 

and conditional distribution of the variable 

distribution of interest at locations within the 

region of interest as opposed to estimating a 

single average variable. When the variable 

distributions of interest have a near-normal 

shape, a linear estimator is ideal. However, when 

the variable distribution of interest is highly 

skewed or else contains a mixture of 

populations, the underlying assumption of 

ordinary estimation methods can be invalidated. 

In these cases, a nonlinear estimation method 

can more appropriately handle these more 

complex distributions. There are many nonlinear 

geostatistical estimation methods which can be 

used to make local (panel-by-panel) estimates of 

distributions of interest. The IK method is one 

such nonlinear method routinely employed in 

many fields of the earth sciences, including 

geotechnical engineering. IK is performed on 

binary indicator transformed values of the 

variables for one or more thresholds of interest. 

The continuity of the indicators for each 

threshold is modelled as by an indicator 

variogram as the structural function. The 

indicators are then estimated using OK to give 

the probability estimate of exceeding or not 

exceeding the thresholds of interest. The IK 

estimate of each single indicator lies within the 

interval [0, 1] and can be interpreted as:  

1. The probability that the value of the 

variable exceeds the indicator threshold, or; 

2. The proportion of the block or panel 

above the specified cut-off of the data (point) 

support.        

Indicators methods are also useful for 

characterizing the spatial variability of 

categorical variables [18, 19]. 

2.2. The Nearest-neighbour Method 

In this section, the fundamental base of the 

popular interpolating method, namely the 

nearest-neighbour (NN), is discussed first. In 

the NN method, the centre of the block is 

assigned the value of the nearest sample, where 

the nearest distance is defined as a transformed 

or anisotropic distance which takes account of 

any anisotropy structure in the spatial 

distribution of the variable. The NN method 

does not make use of weighting sample values 

during the course of estimation [18, 20].  

3. Application to the Study Area 

3.1. Introducing the Sarcheshmeh Copper 

Deposit 

The Sarcheshmeh porphyry copper deposit is 

located 160 km southwest of Kerman City, in 

south-eastern Iran. The entire mineralization is 

embedded in a volcanic belt intruded by a 

number of intrusive stocks known as the 

‘Uromiyeh-Dokhtar zone’. The average 

elevation of the deposit is 2,600 meters above 

sea level and its centre is at a latitude of 

29°56΄N and a longitude of 55°52΄E. The 

geographical position of Sarcheshmeh copper 

mine is shown in Fig. 2. The ore body is oval-

shaped with a long dimension of about 2,300 

metres and a width of about 1,200 metres. 

3.2. Geological Setting 

The porphyry copper mineralization at 

Sarcheshmeh is associated with a granodioritic 

stock intruded into a folded and faulted early 

tertiary volcano-sedimentary series. The 

volcanic rocks in the Sarcheshmeh area are 

principally fine-grained andesite porphyries. The 

magmatism at the Sarcheshmeh deposit is 

believed to be a multi-stage intrusion process. 

The main intrusion - the Sarcheshmeh porphyry 

- is cut by a sub-volcanic body, the so-called 

‘late fine porphyry’, and by several felsic dikes. 

The mineralogy of these dikes and their time 

relationship to mineralization allow them to be 

grouped into intra-mineralization (early 

hornblende porphyry), late-mineralization (late 

hornblende porphyry) and post-mineralization 

(feldspar porphyry and biotite porphyry) dikes. 

In the andesitic wall rocks, three different zones 
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are observed which are concentric to the potassic 

and phyllic altered Sarcheshmeh porphyry (the 

stock). The internal zone closest to the stock is 

characterized by strong biotitic and weak phyllic 

alteration, with a thickness from 50 to 400 m (at 

2,400 m elevation). This zone passes 

progressively into the next zone, whose external 

boundary closely follows the line of the 0.4% Cu 

cut-off grade. This intermediate zone is 

characterized by weak biotitic and strong phyllic 

alterations. Its thickness at 2,400 m elevation 

varies from 50 to 150 m. The thickness of an 

external altered andesitic zone (propylitic) is 

very large, extending towards unaltered rocks in 

all directions [21]. Three classes of alteration 

and weathering intensities are defined for the 

different rock types designated by 1 to 3, 

denoting slight (S), moderate (M) and high (H) 

intensities, respectively. The lithology and 

alteration plans of the Sarcheshmeh copper 

deposit at 2,200 m elevation are shown in 

Figures 3 and 4. 

 
Fig. 2. Geographical position of the Sarcheshmeh copper mine [modified after 21]. 

 

Fig. 3. Plan of the lithology distribution at 2,200 m elevation in the Sarcheshmeh copper deposit (AN: Andesite, SP: 

the Sarcheshmeh porphyry, LF: Late the fine porphyry, GR: granodiorite, QE: the quartz eye porphyry, DIG: dacite 

ignimbrite) [22]. 
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Fig. 4. Plan of rock alterations at 2,200 m elevation in the Sarcheshmeh copper deposit (PO: potassic, QS: 

quartz sericite, SQ: sericite quartz, SI: silicified, BI: biotite, PR: propylitic, S: slightly altered, M: 

moderately altered, H: highly altered) [22]. 

 

3.3. Data Preparation 

In order to estimate the UCS parameter value 

at the centre of a regular grid of blocks, core 

samples taken along 647 boreholes 

encompassing 101,493 core sample data 

throughout the 3D extent of the deposit were 

employed. The procedure for measuring this 

rock strength parameter has been standardized 

by both the ISRM and ASTM [23 and 24], so 

it is not re-stated in this paper. 

Since the height of the actual working 

bench designed for the mining procedure is 

five metres, we have chosen the compositing 

size to be five metres as well. Finally, 23,988 

composited UCS values were used for 

interpolation and 1,632 composited core 

sample data taken from 21 set-aside boreholes 

covering both the 3D spatial estimation space 

and the full-range of the UCS variation were 

deployed for cross-validation. The histograms 

of the entirety and the testing data of the UCS 

are shown in Figures 5a and 5b, respectively. 

In the first step, it was necessary to 

establish the relationship between the rock 

mass UCS parameter with the rock type, 

alteration or weathering type and intensity 

throughout the deposit extent. Since it is 

expected that the observed UCS parameter 

values will show a strong association with the 

governing geology characterized by the 

lithology type, alteration and weathering type 

and intensities, it can be clearly seen that the 

stronger the alteration and weathering, the 

lower the UCS values (and vice versa), except 

for those cases where the alterations have been 

associated with silicification. Thus, the 

existing relationship between the UCS and 

engineering geology parameters, incorporating 

rock type, weathering and alteration type and 

intensity in the estimation process is expected 

to result in a better estimation of the rock mass 

UCS parameter throughout the deposit’s 3D 

extent. As a first step, the UCS values along 

with other qualitative geological parameters, 

including rock type, weathering and alteration 

type and intensity, were collected. The 

different rock types, weathering and alteration 

types and intensities observed throughout the 

3D extent of the deposit are given in Table 1.  

Through such classification, 67 categories 

of UCS values based on rock properties were 

diagnosed. The amount of data and average 

UCS values of the main rock units designated 

by the associated intensity and type of rock 

weathering and alteration are summarized in 

Table 2. 
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Fig. 5. Histograms of: a) the entirety, and b) the testing UCS datasets. 

Descriptive statistics 

Max: 71.44 

Min: 1 

Mean: 36.95 

Median: 33.94 

StdDev: 12.44 

 

a 

Descriptive statistics 

Max: 71.44 

Min: 3 

Mean: 37.56 

Median: 32.70 

StdDev: 11.86 

 

b 



Pishbin & Fathianpour./ Int. J. Min. & Geo-Eng., Vol.48, No.1, June 2014 

18 

 

Table 1. Observed rock types, weathering and alteration types and intensities in the Sarcheshmeh deposit. 

 

Table 2. Amount of data and average UCS values of the main rock units designated by the associated intensity and 

type of rock weathering and alteration in the study area. 

 
3.4. Generation of Estimation Methods 

3.4.1. Estimating the UCS Parameter Using the 

OK Method 

The most common geostatistical tool for 

modelling spatial dependencies is the semi-

variogram. The semi-variogram  (h) is a 

function describing the degree of spatial 

dependency of a spatial random field or 

stochastic process Z(x). The semi-variogram 

formulates the difference between any two 

sample values as a function of their distance 

[18]. An omnidirectional semi-variogram of 

the UCS variable for a segment size of 5 m is 

shown in Fig. 6. It is worth noting that the 

UCS classification in the pre-processing step 

was only used to estimate the core sample 

UCS parameter along boreholes based on an 

established linear relationship with the point 

load data, and it is not addressed in the 

current paper. In the presence of anisotropy, 

the continuity of the UCS spatial distribution 

varies with the direction. This is usually 

represented by a 3D ellipsoid where the 

lengths and directions of the three orthogonal 

axes of the ellipsoid describe the spatial 

continuity and orientation. In the present 

study, the geometric anisotropy parameters 

were estimated using the principal 

component analysis (PCA) method. 

Directional semi-variograms of the UCS 

variable for a segment size of 5 m are shown 

in Figs. 7a, 7b and 7c. 

Weathering or alteration intensity Rock type Alteration type 

((SW or SA)Slightly Weathering or Alteration )1 Andesite (AN)Propylitic (PR)

((MW or MA)Moderately Weathering or Alteration ) 2 Granodiorite (GR)Quartz Sericite (QS)

((HW or HA)Highly Weathering or Alteration ) 3 Sarcheshmeh Porphyry (SP)Sericite Quartz (SQ)

 Late Fine porphyry (LF)Silicified (SI)

 Quartz Eye porphyry (QE)Biotite (BI)

 
Biotit Dyke (BD) 

Hornblende Dyke (HD)

Potassic (PO) 

Argillic (AR)

 Feldspar Dyke (FD)

Rock class UCS (MPa) Number Rock class UCS (MPa) Number Rock class UCS (MPa) Number 

QE-QS-2 35.32 713 SP-SI-3 30 2368 BD-W-1 57 892 

QE-QS-3 26.71 587 SP-SQ-2 36.37 868 BD-W-2 31.45 676 

QE-SI-1 39.9 142 SP-SQ-3 27.51 702 BD-W-3 25.6 38 

QE-SI-2 31 351 SP-PO-2 35.6 615 AN-PR-1 52.42 1113 

QE-SQ-3 27.51 30 GR-PR-1 58.33 201 AN-PR-2 38.64 1357 

LF-QS-1 59 5578 GR-PR-2 45.52 37 AN-PR-3 33.24 35 

LF-QS-2 45.8 1359 GR-PR-3 26.46 34 AN-QS-1 45.43 671 

LF-QS-3 40.15 35 GR-QS-2 26 1749 AN-QS-2 33.94 13434 

LF-SI-2 40 31 GR-SQ-2 46.97 129 AN-QS-3 25.55 4522 

LF-SI-3 34.44 30 GR-SQ-3 27.31 153 AN-BI-1 50.2 91 

LF-SQ-2 34.7 46 GR-SI-2 32.1 151 AN-BI-2 31.9 2261 

LF-SQ-3 26.24 34 GR-SI-3 25 31 AN-BI-3 26.17 7770 

LF-PO-1 34.3 372 HD-W-1 71.44 6545 AN-SQ-2 32.7 7138 

LF-PO-2 32.14 291 HD-W-2 45.12 13306 AN-SQ-3 29.71 2945 

SP-QS-1 32.6 123 HD-W-3 31.13 6052 AN-SI-2 32.72 1311 

SP-QS-2 34.95 2663 FD-W-1 58.5 103 AN-SI-3 25.47 1822 

SP-QS-3 55 4288 FD-W-2 37.64 471    

SP-Si-2 44.53 3883 FD-W-3 26.24 100    
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Fig. 6. Experimental omnidirectional semi-variogram overlaid by its fitted spherical model. 

 

 

 

Fig. 7. Experimental semi-variograms of the UCS values overlaid by: a, c) their fitted spherical model, and b) their 

fitted Gaussian model in three different directions. 

a 

c 

b 
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   In order to improve the estimation 

procedure, the data were employed in three 

different search volumes enabling the 

coverage of the entire deposit’s spatial 

domain. The standardized semi-variogram 

model parameters are shown in Table 3. 
 

Table 3. Standardized variogram model parameters. 

Semi-Variogram Model Type Nugget Effect 
Spatial 

Variance 
Range (m) 

Omni-Directional (Nested Structures) 
Structure 1 Spherical 

0.274 
0.284 88 

Structure 2 Spherical 0.505 350 

X Spherical 0.141 0.811 350 

Y Gaussian 0.345 0.645 147 

Z (Nested Structures) 
Structure 1 Spherical 

0.000 
0.202 15 

Structure 2 Spherical 0.444 80 

         

 The experimental variogram in Figure 7c 

clearly shows two nested structures - one at a 

smaller scale (about 15 m) and the other at a 

larger scale (about 80 m). It was decided to 

model and use both the large- and small-scale 

components of the variogram. Thus, the large-

scale structure (structure two) was overlaid on 

top of the small-scale structure (structure one). 

However, it should be noted that, due to a lack 

of strong spatial continuity at the border of 

different rock units where the UCS parameter 

may vary abruptly (sharp changes of UCS 

values between adjacent blocks in different 

zones), the variogram models are 

inappropriate, causing less accurate estimates 

to be obtained by the OK algorithm. Despite 

such evident weakness, the OK method is used 

for 3D UCS modelling in the case study of the 

Sarcheshmeh copper ore deposit. Before 

performing Kriging estimations, it is important 

to assess the quality of the estimation by 

conducting a series of cross-validation tests. 

After fixing all the neighbourhood parameters, 

a cross-validation test is conducted using the 

experimental semi-variogram models. All the 

computations obtaining OK results are carried 

out using well-known 3D geostatistical 

modules of GSLIB employing appropriate 

anisotropic parameter-setting. The goodness-

of-fit of the results is analysed using cross-

validation. The histogram of the observed 

minus the estimated data is shown in Fig. 8, 

which closely follows a normal distribution. 

The mean of the estimation error is nearly 

equal to 0, which proves the unbiasedness of 

the OK estimates. In addition, the scatter plot 

of the observed versus the estimated data is 

shown in Figure 9. 
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Fig. 8. Histograms of the estimation errors using the OK 

method. 

Fig. 9. Scatter plots of the observed data versus the 

estimated data using the OK method. 
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3.4.2. Estimating the UCS Parameter Using the 

IK Method 

Since the UCS data are composed of different 

populations - resulting in a multi-modal 

distribution - the IK approach was selected as 

an appropriate nonlinear estimation method 

for estimating the UCS parameter. In this 

study, ten thresholds are used to obtain an 

adequate discretization of the conditional 

distributions. The selection of these 10 

thresholds were based on adequately sampling 

the full distribution of the UCS values, 

comprising changes between different 

populations and- in particular- adequately 

characterizing the high and low UCS 

populations. The conditional cumulative 

distribution function (CCDF) model provides 

information about the range of UCS values as 

well as the corresponding frequency 

probabilities (Fig. 10). The ten threshold 

values correspond to the eight deciles in the 

CCDF distribution and two additional 

thresholds at the quantiles of 0.025 and 0.95. 

These extreme values will help in 

characterizing the high and low values, 

minimizing the extrapolation errors at these 

end limits. As can be seen from Figure 10, the 

threshold values at the CCDF values of 0.3 to 

0.4 and 0.6 to 0.7 are equal, so only one of 

each was selected. Table 4 shows the 

threshold values and proportions that fall 

below that CCDF threshold value. 

UCS (MPa)

P
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b
a
b
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y

80706050403020100

80706050403020100
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0.8

0.6

0.4
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StDev 12.45

N 23988
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Fig. 10. Cumulative distribution function (CDF) model for determining threshold values. 

In the current study, the geometric 

anisotropy parameters were estimated using the 

PCA method. The experimental variograms for 

all the thresholds in the vertical direction 

clearly show two nested structures, one at the 

smaller scale and the other at the larger scale. It 

was decided to model and use of both large- 

and small-scale components of the variogram. 

Thus, the large-scale structure (structure two) 

was added to the small-scale structure 

(structure one). Table 4 shows the parameters 

for the models fitted to the experimental 

variograms.  

Before performing the Kriging estimations, 

it is important to assess the quality of the 

estimation by conducting a series of cross-

validation tests. After fixing all the 

neighbourhood parameters, a cross-validation 

test was conducted using the experimental 

semi-variogram models. The goodness-of-fit of 

the results was analysed using cross-validation. 

The histograms of the observed minus the 

estimated data obtained by applying the E-type 

method on the IK probabilities is shown in Fig. 

11, which closely follows a normal distribution. 

The mean of the estimation error is nearly equal 

to 0, which proves the unbiasedness of the IK 

estimates. In addition, the scatter plot of the 

observed versus the estimated data is shown in 

Figure 12. 
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Table 4. Standardized indicator variogram model parameters for defined threshold values. 

CCDF Cut off (MPa) Semi-Variogram 
Model 

Type 

Nugget 

Effect 

Spatial 

Variance 
Range (m) 

0.025 8 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.186 

0.570 70 

Structure 2 Spherical 0.276 250 

X Spherical 0.068 0.957 250 

Y Spherical 0.068 0.957 200 

Z (Nested Structures) 
Structure 1 Spherical 

0.089 
0.009 15 

Structure 2 Spherical 0.548 40 

0.1 25.55 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.193 

0.451 65 

Structure 2 Spherical 0.285 150 

X Spherical 0.225 0.704 150 

Y Spherical 0.175 0.725 115 

Z (Nested Structures) 
Structure 1 Spherical 

0.089 
0.132 10 

Structure 2 Spherical 0.607 65 

0.2 29.71 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.161 

0.379 65 

Structure 2 Spherical 0.317 150 

X Spherical 0.221 0.640 150 

Y Spherical 0.207 0.639 110 

Z (Nested Structures) 
Structure 1 Spherical 

0.075 
0.089 15 

Structure 2 Spherical 0.611 65 

0.3 

0.4 
31.9 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.232 

0.370 65 

Structure 2 Spherical 0.359 250 

X Spherical 0.364 0.603 250 

Y Spherical 0.357 0.582 200 

Z (Nested Structures) 
Structure 1 Spherical 

0.100 
0.148 15 

Structure 2 Spherical 0.498 65 

0.5 33.94 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.235 

0.375 75 

Structure 2 Spherical 0.364 250 

X Spherical 0.367 0.608 250 

Y Spherical 0.360 0.587 200 

Z (Nested Structures) 
Structure 1 Spherical 

0.110 
0.153 15 

Structure 2 Spherical 0.503 75 

0.6 

0.7 
37.64 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.264 

0.278 88 

Structure 2 Spherical 0.526 350 

X Spherical 0.375 0.661 350 

Y Spherical 0.396 0.558 250 

Z (Nested Structures) 
Structure 1 Spherical 

0.079 
0.206 15 

Structure 2 Spherical 0.428 80 

0.8 44.53 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.275 

0.277 88 

Structure 2 Spherical 0.544 350 

X Spherical 0.400 0.579 250 

Y Spherical 0.383 0.687 350 

Z (Nested Structures) 
Structure 1 Spherical 

0.075 
0.226 15 

Structure 2 Spherical 0.383 80 

0.9 52.9 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.304 

0.224 75 

Structure 2 Spherical 0.548 340 

X Spherical 0.446 0.633 340 

Y Spherical 0.425 0.567 250 

Z (Nested Structures) 
Structure 1 Spherical 

0.121 
0.219 15 

Structure 2 Spherical 0.380 75 

0.95 59.8 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.450 

0.136 75 

Structure 2 Spherical 0.500 280 

X Spherical 0.682 0.385 280 

Y Spherical 0.671 0.333 200 

Z (Nested Structures) 
Structure 1 Spherical 

0.179 
0.245 15 

Structure 2 Spherical 0.398 60 

1.0 71.44 

Omni-Directional 

(Nested Structures) 

Structure 1 Spherical 
0.732 

0.001 88 

Structure 2 Spherical 0.321 270 

X Spherical 0.782 0.272 270 

Y Spherical 0.782 0.207 200 

Z (Nested Structures) 
Structure 1 Spherical 

0.689 
0.045 15 

Structure 2 Spherical 0.095 60 
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Fig. 11. Histograms of the estimation errors using the IK 

method. 

Fig. 12. Scatter plots of the observed data versus the 

estimated data using the IK method. 

 

3.4.3. Estimating the UCS Parameter Using the 

NN Method 

In this section, the most popular interpolating 

method- namely NN - is used for estimating the 

UCS parameter. The distances from the sample 

to the block centre are calculated based on an 

anisotropy ellipsoid (which is defined identically 

to the search ellipsoid parameters used in the OK 

method). Since the UCS variability is closely 

associated with the structural and lithological 

variations throughout the 3D deposit extent, it is 

therefore expected that obtain better estimates of 

the UCS parameter would be obtained if 

geological information were to be used in the 

estimation process. For this reason, the NN 

algorithm (which takes into account the 

anisotropic structure of the governing geology in 

the estimation process) has provided some 

benefit, as is seen in the results outlined below. 

The goodness-of-fit of the different estimators is 

analysed using cross-validation. The histograms 

of the observed minus the estimated data 

obtained by the NN method are shown in Figure 

13 and they closely follow a normal distribution. 

In addition, a scatter plot of the observed versus 

the estimated data is shown in Figure 14. 

As is seen from Figure 13, the histogram of 

the errors - defined as the difference between 

the estimated and the true values - associated 

with the NN method is focused on zero, 

showing that the exactness of most estimated 

values (although there are a few overestimated 

values caused by sharp contrasts with narrow 

hornblende dykes that have the highest UCS 

values among the other rock units). 
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Fig. 13. Histogram of the estimation errors using the NN 

method.  

Fig. 14. Scatter plots of the observed data versus the 

estimated data using the NN method. 
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3.5. Construction of 3D Input Geological 

Models  

In this section, a geological block model is 

constructed based on the wireframes (a 

wireframe is a surface or 3D volume formed 

by linked points together to form triangles) 

and drill hole data. The model contains an 

upper surface constraint defined by the surface 

topography and uses the ore body volume 

wireframe to control the internal constraints 

between ore and waste.  

A solid model is composed of a number of 

connected 3D blocks, each of which has a 

number of attributes, such as type of rock, 

alterations and dykes. A parent block is the 

largest block allowed in the model. The size of 

these blocks is selected based on several 

factors, such as the drill hole spacing, the 

mining method (bench height) and the ore 

deposit’s geological settings. Sub-blocking 

allows the subdivision of the parent blocks 

into smaller blocks for better fir with the 

wireframe dimensions.  

In this study, 3D solid models of alteration, 

lithology and dykes are created with a block 

size of 12.5 12.5 6.25 metres and a sub-

block size of 3 3 3 metres throughout the 

ore body extent. The final 3D geological solid 

model is created by combining these models 

together. It is worth noting that the geological 

solid model has been built taking into account 

borehole data. This final geological model is 

used as input for the NN, OK and IK 

estimators in estimating the UCS parameter at 

the centre of the blocks. 

3.6. Estimation of the UCS Parameter from 

the 3D Input Geological Model 

Once cross-validation has been carried out 

and all the parameters are optimized, the next 

step is the estimation of the UCS parameter 

using the NN, OK and IK methods at the 

centre of each block in the 3D geological 

solid model with a block size of 

12.5 12.5 6.25 metres throughout the ore 

body extent. The objective of the 

interpolation process is to provide a 3D 

geological solid model of the estimated UCS 

values which portrays the spatial distribution 

of the UCS values of weathered and altered 

rock masses throughout the study area.   

3.7. Construction of the 3D UCS Models  

Finally, 3D geological solid model of the 

estimated UCS values is constructed which 

portrays the spatial distribution of the UCS 

values of the weathered and altered rock 

masses throughout the study area. The 

estimated UCS values obtained by the NN, 

OK and IK methods on a plan of 2,200 

metres height above sea level for visual 

assessment are shown in Figs. 15 to 17 (see 

Table 2 for comparison). It is worth noting 

that the highest UCS values shown on these 

plans correspond to the intruded intact 

hornblende dykes which are excluded from 

the geological map (Fig. 3). 

 
3.8. Validating Models 

There are many diagnostic statistics capable 

of evaluating the validity of any estimation 

when a value Z* is estimated from the values 

of a regionalized variable Z known at a 

number of locations. The mean, standard 

deviation and RMSE are among these 

statistics. It is well established that a zero 

RMSE denotes global unbiasedness in the 

estimation procedure.  

After estimating the UCS parameter at the 

centre of each block in the 3D geological solid 

model using different methods, the obtained 

results and performance of each method are 

compared and validated employing 21 set-

aside boreholes encompassing 1,632 core 

sample data covering the 3D estimation space 

and the full range of UCS variation (Fig. 5b). 

The location map of the above-mentioned 21 

boreholes selected for validating the final 

derived models is shown in Figure 18.  

The comparison of the results obtained by 

the above-mentioned methods is based on the 

RMSE of the differences between the 

observed and estimated values of 21 boreholes 

data. The results obtained by all the studied 

models are shown in Table 5 for comparison.  
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Fig. 15. Plan of the UCS estimates using the NN method at 2,200 m height above sea level. 

 

Fig. 16. Plan of the UCS estimates using the OK method at 2,200 m height above sea level. 
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Fig. 17. Plan of the UCS estimates using the IK method at 2,200 m height above sea level. 

 

Fig. 18. Location map of 21 boreholes selected for validating the final derived models. 

Table 5. The results obtained by different models. 

Estimated UCS 

(MPa) (IK) 

Estimated UCS 

(MPa) (OK) 

Estimated UCS 

(MPa) (NN) 

Observed UCS 

(MPa) 
Descriptive statistics 

70.16 70.94 71.44 71.44 Max 

11.97 10.02 3 3 Min 

37.50 37.05 37.16 37.56 Mean 

9.37 9.82 12.34 11.86 StDev 

2.90 3.15 2.01 - RMSE 

  

Based on the estimation error measure, the 

NN outperformed the other estimators; 

however, the superiority of the estimators is 

evaluated not only based on error statistics but 

also on consistency with the original data and 

the cross-validation of the estimated versus the 

observed data using tools like scatter plots. 

Finally, based on the cross-validation by 
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means of the RMSE statistics and scatter plots, 

the NN is the most appropriate interpolation 

method for estimating the UCS parameter. The 

histograms of the observed minus the 

estimated data and the scatter plots of the 

estimated versus the observed data by NN 

method using testing data are shown in 

Figures 19 and 20, respectively. As is seen 

from Figure 19, the histogram of the errors - 

defined as the difference between the 

estimated and true values- associated with the 

NN method is focused on zero, meaning the 

exactness of most of the estimated values 

(although there are a few overestimated values 

caused by sharp contrasts with narrow 

hornblende dykes that have the highest UCS 

values among the other rock units). In 

contrast, the histogram of the estimate errors 

made by the OK and IK methods shows a 

wider distribution due to the contribution of all 

the neighbouring points in the estimation 

process. Furthermore, the estimated UCS 

values using the NN method show better 

agreement with the governing geology, both in 

terms of lithology, alteration and weathering, 

such that stronger alterations correspond with 

lower UCS values and vice versa (Fig. 15) 

(see Figs. 3 and 4 for comparison). Histograms 

of the estimated UCS values obtained by NN 

method using the entirety of the data and the 

testing data are shown in Figure 21. As can be 

seen in Figure 21, the histograms of the 

estimated UCS values obtained by the NN 

method show better agreement with the 

histograms of the observed UCS values (see 

Fig. 5 for comparison). 
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Fig. 19. Histogram of estimation errors obtained by the NN 

method using testing data. 

Fig. 20. Scatter plot of the observed testing data versus 

the estimated data using the NN method.  

4. Conclusions 

In the presented research, statistical-structural 

and geostatistical methods were employed to 

assess their capabilities in estimating the UCS 

parameter in terms of accuracy and consistency 

with engineering geology parameters in the 

Sarcheshmeh copper deposit. The relationship 

between the UCS and rock mass weathering 

and alterations were employed to improve the 

estimation of the UCS parameter. The UCS 

parameter was estimated at the block centres in 

the 3D geological solid model with a block size 

of 12.5 12.5 6.25 metres throughout the ore 

body extent incorporating engineering geology 

parameters in the estimation procedure. 

Common interpolating methods, including the 

NN, OK and IK methods are used to generate a 

3D solid model of the estimated UCS values. 

The results show that the addition of geological 

information (a combination of lithology, 

weathering and alteration resulting in 67 rock 

class codes) into the predictor variables and the 

generalization of the UCS parameter through its 

relationship with a point-load index could 

significantly improve the estimation accuracy 

of the UCS parameter in different parts of the 

Sarcheshmeh copper deposit. Based on the 

comparison of the different methods, we can 

conclude that the superiority of the NN 

interpolating algorithm is due to the sharp UCS 

variation between the different rock units, on 

the one hand, and less variation inside the rock 
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units on the other hand. Therefore, this reason 

physically explains why the NN method 

enhances the accuracy of the interpolation 

procedure, resulting in a tangible estimation 

error reduction. 

Finally, it is concluded that, based on the 

cross-validation by means of the RMSE 

statistics for 21 set-aside borehole data and 

scatter plots, the NN is the most appropriate 

interpolation method for estimating the UCS 

parameter at the Sarcheshmeh site and similar 

porphyry copper deposits.  

 

 
 

 

Fig. 21. Histogram of the estimated values obtained by the NN method using: a) the entirety of the data, and b) the 

testing data. 

Descriptive statistics 

Max: 71.44 

Min: 1 

Mean: 36.86 

Median: 33.94 

StdDev: 12.33 
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