تعداد نشریات | 161 |
تعداد شمارهها | 6,555 |
تعداد مقالات | 70,740 |
تعداد مشاهده مقاله | 124,725,378 |
تعداد دریافت فایل اصل مقاله | 97,922,653 |
بررسی امکان استفاده از مواد لیگنوسلولزی در ساخت لنت ترمز اتومبیل و اثر نانو آلومینا بر ویژگیهای آن | ||
نشریه جنگل و فرآورده های چوب | ||
مقاله 9، دوره 67، شماره 2، شهریور 1393، صفحه 283-294 اصل مقاله (991.96 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2014.51547 | ||
نویسندگان | ||
آیدا معزی پور* 1؛ محمد لایقی2؛ قنبر ابراهیمی3؛ بابک اکبری4 | ||
1کارشناس ارشد صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2استادیار گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3استاد گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
4کارشناس بخش تحقیقات شرکت ساپکو (طراحی مهندسی و تأمین قطعات ایران خودرو)، تهران، ایران | ||
چکیده | ||
در این پژوهش امکان استفاده از الیاف مواد لیگنوسلولزی در ساخت لنت ترمز و اثر اکسید آلومینیوم (آلومینا) بر ویژگیهای آن بررسی شد. عوامل متغیر این بررسی شامل نوع مادة لیگنوسلولزی (کنف، باگاس، و پوستة شالی) و ابعاد آلومینا (نانو و میکرون) بود. پس از ساخت نمونههای لنت ترمز دیسکی و انجام آزمونها مطابق استانداردهای مربوطه، نتایج حاصل تحلیل و بررسی شدند. نتایج نشان داد که بهترین مقاومت برشی در دمای محیط، مربوط به نمونههای ساختهشده از کنف و نانو آلومینا بود و بیشترین مقاومت برشی پس از حرارتدادن در دمای 300 درجة سلسیوس، مربوط به لنت ترمز ساختهشده از پوستة شالی و میکرو آلومینا بود. کمترین انبساط حرارتی در نمونههای ساختهشده از پوستة شالی و نانو آلومینا مشاهده شد. همچنین بیشترین ضریب اصطکاک مربوط به لنتهایی بود که در ترکیب آنها از الیاف باگاس و نانو آلومینا استفاده شده بود و کمترین نرخ سایش مربوط به لنت ترمزهای ساختهشده از پوستة شالی و میکرو آلومینا بود. مقایسة نتایج با استاندارد نشان داد که با استفاده از الیاف لیگنوسلولزی میتوان به مقاومت برشی و انبساط حرارتی ویژگیهای سایشی مطلوب در لنت ترمز دست یافت و بنابراین استفاده از این مواد در ساخت لنت ترمز ممکن است. | ||
کلیدواژهها | ||
آلومینا؛ الیاف مواد لیگنوسلولزی؛ انبساط حرارتی؛ لنت ترمز؛ مقاومت برشی؛ ویژگیهای سایشی | ||
مراجع | ||
[1]. Blau, P. (2001). Composition, functions and testing of friction brake materials and their additives. Journal of Oak Ridge National Laboratry, 64: 1-23.
[2]. Filip, P., Weiss, Z., and Rafaja, D. ( 2002). On friction layer formation in polymer matrix composite materials for brake applications. Journal of Wear, 252: 189-198.
[3]. Institute of Standard and Industrial Research of Iran. Number of 586, 3101, 2795.
[4]. Scholosser, T., and Folster, T. (1995). Automobile construction and echology. Journal of Kunststoffe plast Europe, 85 (3): 1-10.
[5]. Eriksson, M., and Jacobson, S. (2000). Tribological surfaces of organic brake pads. Journal of Tribology international, 33: 817-827.
[6]. Satapaty, B. K., and Bijwe, J. ( 2004). Performance of friction material of organic fibers. Journal of WEAR, 257: 573-584.
[7]. Juang, K. K., Kim, S. J., Basch, R. H., and Fash, J. W. (2004). The effect of metal fibers on the friction performance of automotive brake friction materials. Journal of Wear, 256 (4):406-414.
[8]. Boz, M., Kurt, A., and Maruo, K. (2007). The effect of AL2O3 on the friction performance of automotive brake friction materials. Journal of Tribology International, 40(7): 1161-1169.
[9]. Alma, M. H., and Basturk, M. A. (2005). Preparation and characterization of brake lining from modified tannin – phenol formaldehyde resin and asbestos free fillers. Journal of Material Science, 40(11): 3003-3005.
[10]. Mutlu, I. (2009). Investigation of tribological properties of brake pad by using rice straw and rice husk dust. Journal of Applied Science, 9 (2): 377-381.
[11]. Aigbodion, V. S., Hassan, S. B., Nyior, G. B., and Ause, T. ( 2010). Effect of bagasse ash reinforcement on wear behaviour of Al-Cu-Mg/bagasse ash particulate composites. Journal of Acta Metallurgica Sinica, 23 (1):12-18.
[12]. Chin, C. W., and Yousif. B. F. (2008). Adhesive and friction behaviour of polymeric composites based on kenaf fiber. Journal of International Conference on Advanced Tribology. Singapore.
[13]. Roubichek, V., Raclavska, H., Juchelkova, D., and Filip, P. (2008). Wear and environmental aspects of composite materials for automotive braking industry. Journal of Wear, 265 (2):167-175.
[14]. Bhimaraj, P., Briss, D. L., Action, J., Sawyer, W. J., Tony, C. G., Siegel, R. W., and Schadler, L. S. (2005). Effect of matrix morfology on the wear and friction behavior of alumina nanoparticle/poly (ethylene) terefthalate composites. Journal of Wear, 258 (9):1437-1443.
[15]. Rowell, R. M., and Stout, H. P. (1998). Jute and kenaf .In: Hand book of Fiber chemistry: 466-504.
[16]. Hamsi, A. H., and Pirooz, M. M. (2006). Investigation of chemical and anatomical properties of Kolza. Journal of Agricultural Science, 3: 647-657.
[17]. Saw, S. K., and Datta, C. (2009). Thermomechanical properties of Jute/Bagasse hybrid fibre reinforced epoxy thermoset composites.Journal of Bioresources, 4(4): 1455-1476.
[18]. Bharadwaj, A., Wang, Y., Sridhar, S., and Arunachalam, V. S. ( 2004). Pyrolysis of rice husk. Journal of Current Science, 87: 981-985.
[19]. Shi. G., Zhang, M. Q., and Rong, M. Z. (2004). Sliding behaviour of epoxy containing pretreatments. Wear, 256: 1072-1081.
[20]. Jing, X. S., Xaio, F. S., Sun, R. S., Fowler., P and Barid, M. S. (2003). Inhomogeneities in chemical structure of sugar cane bagasse lignin .Agricultural and Food Chemistry, 51: 6719-6725.
[21]. Bagheri. S. (2003). Investigation of behavior of five various fibers in the composition of brake lining. M. S. thesis. University of Science and Industry. 85 pp.
| ||
آمار تعداد مشاهده مقاله: 2,849 تعداد دریافت فایل اصل مقاله: 3,139 |