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Abstract

This paper is concerned with the problem of designing discrete-time control
systems with closed-loop eigenvalues in a prescribed region of stability. First, we
obtain a state feedback matrix which assigns all the eigenvalues to zero, and then
by elementary similarity operations we find a state feedback which assigns the
eigenvalues inside a circle with center and radius. This new algorithm can also be
used for the placement of closed-loop eigenvalues in a specified disc in z-plane for
discrete-time linear systems. Some illustrative examples are presented to show the

advantages of this new technique.
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Introduction

In many applications, mere stability of the controlled
object is not enough, and it is required that the poles of
the closed-loop system should lie in a certain restricted
region of stability. Several design methods have been
reported which utilize the LQ technique to achieve the
desired pole allocation. The closed-loop poles can be
placed exactly as specified. Kawasaki and Shimemura
(1983) have derived a method of allocating all the
closed-loop poles in a preferable region rather than
exact location. However, the continuous-time results
cannot be directly extended to the discrete-time case.
Fujinaka and Katayama (1988) describe a method for
designing discrete-time optimal control systems with
closed-loop poles in a prescribed region, Yuan and
Achenie and Jiang (1996) addressed the problem of
linear quadratic regulator (LQR) synthesis with regional

closed-loop pole constraints. Benner and Castillo and
Quintana-Orti (2001) presented the method for partial
stabilization of large-scale discrete-time linear control
systems. Grammont and Largillier (2006) employed an
approach to localize matrix eigenvalues in the sense that
they build a sufficiently small neighborhood for each
eigenvalue (or for a cluster). Recently, Ayatollahi
(2013) obtained a method for Maximal and minimal
eigenvalue assignment for discrete-time periodic
systems by state feedback. Zhou, Cai and Duan (2013)
obtained a method for Stabilisation of time-varying
linear systems via Lyapunov differential equations.
Franke (2014) presented the method for Eigenvalue
assignment by static output feedback — on a new
solvability condition and the computation of low gain
feedback matrices.

A well-known desired region for discrete systems is
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adisc D(c,r) centered at (c¢,0) with radius r, in which

|C| +7 <1, as shown in Fig. 1. In this paper, the aim is

to present a method for localization of eigenvalues in
small specified regions of complex plane by state
feedback control for discrete-time linear control
systems.

Materials and Methods

Problem Statement

The problem of localization of eigenvalues in a small
specified region has been the subject of many
investigators in the last decades [2,6].

Consider a controllable linear time-invariant system
defined by the state equation

x(£)= Ax(t)+ Bulz) (1)
or its discrete-time version
x(t+1)= Ax(t)+ Bult) )

where x(l‘) eR", u(t) € R" and the matrices A

and B are real constant matrices of dimensions 1 X 1
and 7 X m respectively, with rank(B) = m . The aim
of eigenvalue assignment in a specified region is to
design a state feedback controller, K , producing a
closed-loop system with a satisfactory response by
shifting controllable poles from undesirable to desirable
locations. Karbassi and Bell [7,8], have introduced an
algorithm for obtaining an explicit parametric controller
matrix K by performing similarity operations on the

controllable pair (B, A). In fact, K is chosen such that
the closed-loop system eigenvalues

I'=A+BK 3)

lie in the self conjugate eigenvalue
A={ﬂl,lz,...,lll}.Recently, Karbassi and

Tehrani [9] extended the previous results as to obtain
an explicit formula involving nonlinear parameters in
the control law. The stabilization problem consists in

finding a feedback matrix K € R™" such that the
input u, = Kx, ,k=0,1,2,... , yields a stable closed

spectrum

loop system

X, =(A+BK)x, =Tx,, k=0,12,.. 4)

In case the spectrum (or set of eigenvalues) of the
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closed-loop matrix, denoted by A(I"), is contained in
the open unit disk we say that I" is (Schur) stable or

convergent (in other words, |ﬂ,l.| <1 for all

A. € A(I")). The stabilization problem arises in

control problems such as, the computation of an initial
approximate solution in Newton’s method for solving
discrete-time algebraic Riccati equations, simple
synthesis methods to design controllers, and many more
[3,11,12].

The stabilization problem can in principal be solved
as a pole assignment problem. Pole assignment methods
compute a feedback matrix such that the closed-loop
matrix of system (3) has a prespecified spectrum. In this
paper, we present an efficient approach for localization
of eigenvalues in small specified regions for linear
discrete-time systems. Our assignment procedure is
composed of two stages. We first obtain a primary state

feedback matrix F' » Which assigns all the eigenvalues

of closed-loop system to zero, then produce a state
feedback matrix K which assigns all the closed-loop
system eigenvalues in a small specified disc or discs.

Synthesis
Consider the state transformation

x(1)=Tx(¢)

where T can be obtained by elementary similarity

)

operations as described in [7]. In this way,
A=T"'"ATand B=T"'B are in a compact
canonical form known as vector companion form:
G, B,
A= B= (6)
1 0 0

n—mxm

Here G0 is an mXn matrix and B, is an mxm
upper triangular matrix. Note that if the Kronecker
invariants of the pair (B, A) are regular, then A and

B are always in the above form [7]. In the case of

irregular Kronecker invariants, some rows of /,_, in

Z are displaced [8]. It may also be concluded that if

the vector companion form of A4 obtained from
similarity operations has the above structure, then the

Kronecker invariants associated with the pair (B, A)

are regular [7].
The state feedback matrix which assigns all the
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eigenvalues to zero, for the transformed pair (B R A), is
then chosen as

u=-B, G,X =Fx 7

Which results in the primary state feedback matrix
for the pair (B, A) defined as

F, =FT" (8)

The

I'y = A+ BF assumes a compact Jordan form

transformed closed-loop matrix

with zero eigenvalues

mxn

©)

n—mxm

Theorem 1: Let D be a block diagonal matrix in
the form

D 0 -« 0
0 D, - 0

D=\ S : (10)
0 0 D,

where each D, ,(j=12,....,k)is either of the

form

VN
B a,
( to designate the complex

a;+iff;)

or in case of real eigenvalues

(11

conjugate eigenvalues

D, =1d,] (12

If such block diagonal matrix D with self conjugate
eigenvalue spectrum is added to the transformed closed-

~

loop matrix, I, then the eigenvalues of the resulting

matrix is the eigenvalues in the spectrum.

159

Proof: The primary compact Jordan form in the case
of regular Kronecker invariants is in the form

0,.,
T, = (13)
In*m E Ol’l*}ﬂxm
The sum of fo with D has the form:
H=T,+D (14)
I Omxn Dl 0
= +| (15)
| fZ 0 _ 0 D,
I 0 0 0 0 |
0 D, 0 0 0
= 0 D, 0 0 (16)
I, 0 0O D, - 0
. 0 0 .
0 - [, 0 0 - D,

where [, s=1,2,...,7 is the unit matrix of size 2
in case n—m is even. In case 7 —m is odd only one

1 , takes the form of a unit matrix of size one.
By expanding det(ﬁ — Al) along the first row it is

obvious that the eigenvalues of H are the same as the
eigenvalues of D . For the case of irregular Kronecker
invariants [8] only

some of the unit columns of [

h—m
since the unit elements are always below the main
diagonal, the proof applies in the same manner.

are displaced,

Results

Then [—NI , can be obtained from ]—N[ by performing

elementary similarity operations
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Column (j) — A; Column (i) (17)
followed by

Row (i) + A; Row () (18)
for j=n,n-1, ..., m, i=j-m.

Hence, the matrix H ,thus obtained will be in

primary vector companion form such that:

H,

Iz (19)

In—m : On—mxm

where H |, is an mXn matrix .

Because of similarity operation, the eigenvalues of
the matrix H , are the same as the eigenvalues of H
and that of D . Now the feedback matrix of the pair
(Z, E) is defined by:

K=F+B;'H,=B;' (-G, +H,)
(20)

Theorem 2: The state feedback matrix K assigns

the eigenvalues of closed-loop matrix I'= A+ BK
inside a circle with center ¢ and radius 7 if in case

circle intersects axis of abscissas we suppose &, p j.

be in the form:

a; =sqrt (r* —=Im(c)?) * random(0,1) + Re(c) (21)

B, = (sqrt(r* =1%) =|Im(c)|) * random(0,1) 22

and in case circle does not intersect axis of abscissas
we suppose

a,; =r*random(0,1) + Re(c) (23)

B, = sqrt(r® —=1*)* random(0,]) + Im(c)  (24)

where we take ] = ‘0!‘,-‘ - ‘Re(c)‘ if o, *Re(c) >0

and otherwise we take [/ = ‘a j‘ + |Re(c)|

and for assigning real valued eigenvalues in the
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circle ¢ and radius 7 we choose
. 2 2
d; =sqrt(r- —Im(c)")* random(0,1) + Re(c) (25)

Proof: The eigenvalues of matrix D defined above
fall inside a circle with center ¢ and radius 7 .
Let

(26)
o o~ e G, B, T,
F=d+Bk=|, S PR TRy A]
27
F G, —B,B,'G, + B,B,'H, _ H,
Ly O | [ Lum U

Clearlyl' = H ;, since H is similar to the matrix

H and the eigenvalues of matrix H are the same as that
of matrix D and elementary similarity operations do not
change the eigenvalues, then the eigenvalues of closed-

loop matrix I'= A4+ BK fall inside a circle with
center C and radius 7 .

Remark: Since K assigns the eigenvalues of the
closed-loop matrix I'= A+ BK inside a circle with

center ¢ and radius 7, it is obvious that the state
feedback controller matrix,

K=KT"'= B(;l(—GO +H, )T also assigns the
eigenvalues of the closed-loop matrix I' = A+ BK
inside a circle with center ¢ and radius 7 too.

Note that for assigning the eigenvalues of the closed-
loop matrix in spectrum A = {ﬂ,,, Ayyerrs /1,,} we
suppose

Dj:/ij j=12,...,n (28)

An algorithm for assignment of eigenvalues in a disc
D(c,r).

In this section we first give an algorithm for finding
a state feedback matrix which assigns zero eigenvalues
to the closed-loop system. Then we determine a gain
matrix which assigns the closed-loop eigenvalues in a
circle with center € and radius 7 .

Input: The controllable pair(A, B), the primary
state feedback F',, B, "and T~ which are calculated by

the algorithm proposed by Karbassi and Bell [7,8], the
center € and radius 7 of the target circle.
Step 1. Construct the block diagonal matrix D in
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the form (10), in which for assigning complex valued
eigenvalues in the circle with center ¢ and radius 7 if
circle intersects axis of abscissas we suppose

a; =sqrt( r* —Im(c)*) * random(0,1) + Re(c)
B, = (sqrt(r® =1*)— |Im(c)|) *random(0,1)

otherwise we choose

a,; =r*random(0,1) + Re(c)

B, = sqre(r’ — (‘aj‘ - ‘Re(c)‘ )?*) * random(0,1) + Im(c)

where we take 7 = ‘aj‘ ~[Re(e)| if @; *Re(c) >0

and otherwise we take /= ‘aj‘ + ‘Re(c)‘ and for

assigning real valued eigenvalues in the circle ¢ and
radius 7 we choose

_ 2 _ PARS
d; =sqrt(r- —Im(c)") * random(0,1) + Re(c)
Step 2. Set H = fo +D
Step 3. Transform H to primary vector companion
form H,as in (19) using elementary similarity
operations as specified in corollary of theorem 1 .
step 4. Now compute K =F, +B;'H T the

required state feedback matrix.

Illustrative Examples

Consider a discrete-time system given by

x(t +1)= Ax(¢)+ Bu(r)

Where A and B are randomly generated with
n=10and m=6.

[ 0.5562 0.9397 -0.8496 -0.4319 -0.1641
-1.9351 —-2.8526 0.8587 —0.2420 0.3564

oo -0.8954  0.0709 0.2822 0.0811 -0.8105

b 1.9273 23531 -0.9619 -0.2276 -0.3064
-0.3304 -0.4135 -0.5530 -0.1613  0.5824

| 0.83100 0.1293 0.1483 -0.6124 -0.3957

161

(51 45 7 6 7 9 7 1]
8 353 48 9 9 0 4
2 589 483170
4 9 47 46 78 711
) 9 396 9 1 12 3 4
6 38 43 7 9 4380
01 47 486 3 01
003608 426 8
6 4 48106 7 3 3
5256 9 43 45 5]
(6 9 3 8 0 0]
327 495
726 6 35
9 3 3 5 2 8
B:593985
9 2 2 3 8 5
507 2 37
1 37 46 2
6 9 6 450
01 6 3 9 9]

The open loop eigenvalues are
{4.3425+3.7729i,— 2.8866 + 4.2589i,0.5762 + 7.3189i,—

5.2995,9.9397,-1.2993,47.5948 }

which are widely spread in the complex plane. In order
to locate them in small discs inside the unit circle, we
employ the above algorithm step by step. First, the
primary state feedback matrix which locates all the
eigenvalues of the closed-loop system to the origin of
the complex plane is found to be:

-0.8470 -0.4790 0.9248 -0.5369 1.3768 |
2.4827 0.0461 —2.4483 0.6816 —1.5133
-1.2085 -1.9974 -2.6222 0.3534 0.7550
—-2.2244  0.7936 2.8304 -0.9579 -0.1807
0.4486 0.5280 0.8366 —0.3133 -0.4381
0.0434 0.4790 0.6961 -0.3795 —1.2058 |
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a
: (04923 1.0016 —0.7594 —0.3785 —0.2115
_1.8740 —2.8736 0.7904 —0.2656 0.3739
| 06921 01092 03497 -0.1482 ~0.7533
17446 23807 09514 0.0028 —0.3868
~0.4037 —0.4769 —0.5745 —0.1311 0.6348
0.8407  0.0515 00712 -0.5710 —0.3801
b
05548  0.8723 —0.8232 —0.4877 —0.1618
~2.0149 —2.5864 0.8921 0.0319  0.2566
| 707632 02306 0309 00056 —09431
19630 2.1981 —1.0059 —0.2993 —0.1689
~0.4303 —0.4343 —05281 —0.1542 0.6301
0.7976  0.0039  0.0500 —0.5480 —0.3456
c) i
05563 07711 —0.8532 —0.5370 —0.1158
~20171 —2.6420 08975 —0.0157 0.2759
| 08172 01987 02780 00523 -09322
20299 21766 —0.9990 —0.3783 —0.1365
~03970 —04167 —0.5276 —0.1621 0.6104
07929  0.0425  0.0838 —0.5681 —0.3576
d
05711  1.0006 —0.8181 —0.4208 —0.2041
~1.9622 —27954 08581 —0.1615 0.3395
(| 707772 01454 02972 -0.0046 08621
1.8838 23060 —0.9747 —0.1923 —0.2732
~03950 —0.4273 —0.5373 —0.1565 0.6134
| 0.8023  0.0483 00847 —0.5708 —03635

Now we consider the following different cases:

a) It is desired to locate the closed-loop eigenvalues
inside the unit circle centered at origin. By using the
algorithm, the state feedback matrix obtained is (above):

It can be verified that the closed-loop eigenvalues are

{—0.4451£0.83447,0.0153£0.7467i,0.4660 +
0.3704i,0.8462,0.2026,—-0.5252,—-0.6721},

clearly all are inside the unit circle.

b) In this case, we find the state feedback matrix
which assigns the closed-loop eigenvalues in the disc
D(0.5,0.3). By using the algorithm, the state
feedback matrix obtained is (above):

The closed-loop eigenvalues are
{0.6490 £0.23437,0.2535+0.11037,0.7454 £

0.1139,0.3974+£0.08177,0.6024,0.3398},
all of which are inside the disc D(0.5,0.3).
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-0.8666 —0.6124 0.7744 —0.3406 1.3846 |
2.4705 0.1241 -2.3531 0.5445 —1.5088
—1.1331 -1.8794 -2.5364 0.1227 0.5545
—-2.3401 0.5816 2.5996 -0.6912 -0.0575
0.4672 0.5269 0.8995 —-0.3097 -0.4292
0.0270 0.5713 0.7234  -0.4133 —1.1822 ]
—0.7440 —0.4131 0.8737 -0.4774 1.3452 ]
2.1968 —0.2823 -2.6747 0.9493 —1.4294
—-1.2252 -1.9871 —-2.7037 0.3632 0.8007
—-2.1530 0.9409 3.0316 —1.1351 -0.2780
0.4795 0.4687 0.8885 —0.2881 —-0.4431
0.0371 0.5797 0.7657 —-0.4144 -1.1743 |
-0.6755 —0.3176 09648 —0.5582 1.3345 |
22627 —-0.2294 -2.6526 0.9333 —1.4482
—-1.2284 —-1.9899 -2.6867 0.3952 0.8428
—-2.1164 1.0088 3.1076  —1.2321 -0.3349
0.4701 0.4790 0.8657 —0.2931 —-0.4443
0.0418 0.5421 0.7478 -0.4010 —1.1849 |
—-0.8730 —0.5265 0.8479 —0.4785 1.3766 |
23995 —-0.0370 -2.4842 0.7349 —1.4844
-1.1997 -1.9467 -2.6302 0.2978 0.7399
—-2.2266  0.7865 2.8436 —0.9495 -0.1851
0.4685 0.4900 0.8704 —-0.2971 -0.4413
0.0392 0.5443 0.7409 -0.4021 -1.1854 |

c) In this case, we find the state feedback matrix
which assigns the closed-loop eigenvalues in the disc
D(0.5,0.02). By using the algorithm, the state

feedback matrix obtained is:
The closed-loop eigenvalues are in the set
{0.5154+0.01247,0.4825+0.0001/,0.5083 £

0.0055i,0.4842,0.5198,0.4900,0.5088}

all of which are inside the disc D(0.5,0.02).

Clearly, localization of eigenvalues in small specified
regions of complex plane by state feedback control is
achieved.

d) In this case, we find the state feedback matrix
which assigns the closed-loop eigenvalues in the disc
D(0.2+0.1i,0.4) . By using the algorithm, the state

feedback matrix obtained is (above):
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e)
[0.4979  1.0043 -0.8331 -0.3404 —0.1762
—1.8658 —2.9036 0.8530 —-0.3533 0.3688
Ko -0.9824 -0.0106 0.2602  0.0851

The closed-loop eigenvalues are in the set
{0.2829+0.1875i,—0.0884 £ 0.04757,0.4814 +

0.07597,0.0761£0.26917,0.3704,—-0.1615},
all of which are inside the disc D(0.2 +0.1i,0.4) .

e) In this case, we find the state feedback matrix
which assigns the closed-loop eigenvalues in the discs:

D,(0.2+0.2i,0.1),D,(0.2—0.2i,0.1),
D,(~=0.6—0.2i,0.3), D, (0,0.1) '

By using the algorithm, the state feedback matrix
obtained is (above):

The closed-loop eigenvalues are

{0.2084+0.24537,0.1558+0.1683i}  which are
inside the discs D,(0.2+0.2,0.1),D,(0.2-0.2i,0.1),

and also in the sets

{~0.5657+0.0662i,-0.4437,-0.7627}  and
{0.0478, — 0.0555} which are inside the discs
D;(—0.6-0.27,0.3) and D,(0,0.1) respectively.

A

D

—-0.7287
1.9936  2.3724 -0.9463 -0.2666 —0.3166
-0.2601 -0.4235 -0.5908 -0.1535 0.5576
| 0.8390 02247  0.2148 —-0.6608 -0.4418

-0.9334 —-0.5998 0.8894 —0.4604 1.4089 |
2.5546  0.1543 —-2.3701 0.5491 -1.5421
—1.1608 —1.9830 -2.4976 0.3282  0.7536

-2.2272 08173  2.8110 -0.9973 -0.2198
0.4248 05913  0.8128 —-0.3386 -0.4281
0.0419 04175  0.6350 —-0.3592 -1.2278 ]

Discussion

A simple algorithm was given for localization of
eigenvalues in small specified regions of complex plane
by state feedback control. This method was achieved by
implementing properties of vector companion forms.
The merit of this approach is that it can be achieved by
elementary similarity operations which are significantly
simpler to realize computationally than the existing
methods. In the existing literature only location of
eigenvalues in discs centered on the real axis is
presented whereas location of eigenvalues in any
arbitrary specified disc or discs inside the unit circle can
be achieved by the presented algorithm easily. The
numerical examples which were tested showed that the
algorithm works perfectly and the number of arithmetic
operations of the proposed method is less than the
method of assignment with application of the
Gerschgorin Theorem [13] , although the system
matrices and the location of discs were chosen
randomly. It is claimed that the transformations

Dy(cy, 1)

v

AN

Dy(cs.1)

Figure 1. Specified discs D(C, I")
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obtained by similarity operations reduce accuracy of the
computations [2], however, other methods such as LQR
methods [10,11,15] and the method presented in [1,13]
are more complicated.

References

1. Ayatollahi M. Maximal and minimal eigenvalue
assignment for discrete-time periodic systems by state
feedback. Optim. Lett, 7: 1119-1123 (2013).

2. Benner P., Castillo M., and Quintana-orti E.S. Partial
stabilization of large-scale discrete-time linear control
systems. in: Technical Report, University of Bremen,
Germany (2001).

3. Dragan V., and Halanay A. Stabilization of linear systems.
in: Basel, Switzerland (1994).

4. Franke M. Eigenvalue assignment by static output feedback
— on a new solvability condition and the computation of low
gain feedback matrices. Int. J. Control, 87: 64-75 (2014).

5. Fujinaka T., and Katayama T. Discrete-time optimal
regulator with closed-loop poles in a prescribed region. Int.
J. Control, 47: 1307-1321 (1988).

6. Grammont L., and Largillier A. Krylov method revisited
with an application to the localization of eigenvalues.
Numer. Func. Anal. Opt, 27: 583-618 (2006).

7. Karbassi S.M., and Bell D.J. Parametric time-optimal

H. Ahsani Tehrani

164

J. Sci. . R. Iran

control of linear discrete-time systems by state feedback-
Part 1: Regular Kronecker invariants. Int. J. Control, 57:
817-830 (1993).

8. Karbassi S.M., and Bell D.J. Parametric time-optimal
control of linear discrete-time systems by state feedback-
Part 2: Irregular Kronecker invariants. /nt. J. Control, 57:
831-839 (1993).

9. Karbassi S.M., and Tehrani H.A. Parameterizations of the
state feedback controllers for linear multivariable systems.
Comput. Math. Appl, 44: 1057-1065 (2002).

10. Kawasaki N., and shimemura E. Determining quadratic
weighting matrices to locate poles in a specified region.
Automatica, 19: 557-560 (1983).

11. Mehrmann V. The autonomous linear quadratic control
problem. theory and numerical solution, In: Lecture notes in

control and information sciences, Springer-verlag,
Heidelberg (1991).

12. Sima V. Algorithms for linear quadratic optimization Pure
and applied mathematics, New York (1996).

13. Tehrani H.A. Assignment of Eigenvalues in a Disc D(c,r)
of Complex Plane with Application of the Gerschgorin
Theorem. World Appl. Sci. J, 5 (5): 576-581 (2008).

14. Yuan L., Achenie L.E.K., and Jiang W. Linear quadratic
optimal output feedback control for systems with poles in a
specified region. Int. J. Control, 64: 1151-1164 (1996).

15. Zhou B., Cai G., and Duan G. Stabilisation of time-varying
linear systems via Lyapunov differential equations. /nt. J.
Control, 86: 332-347 (2013).



