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Abstract
This paper is concerned with the problem of designing discrete-time control

systems with closed-loop eigenvalues in a prescribed region of stability. First, we
obtain a state feedback matrix which assigns all the eigenvalues to zero, and then
by elementary similarity operations we find a state feedback which assigns the
eigenvalues inside a circle with center   and radius. This new algorithm can also be
used for the placement of closed-loop eigenvalues in a specified disc in z-plane for
discrete-time linear systems. Some illustrative examples are presented to show the
advantages of this new technique.
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Introduction
In many applications, mere stability of the controlled

object is not enough, and it is required that the poles of
the closed-loop system should lie in a certain restricted
region of stability. Several design methods have been
reported which utilize the LQ technique to achieve the
desired pole allocation. The closed-loop poles can be
placed exactly as specified. Kawasaki and Shimemura
(1983) have derived a method of allocating all the
closed-loop poles in a preferable region rather than
exact location. However, the continuous-time results
cannot be directly extended to the discrete-time case.
Fujinaka and Katayama (1988) describe a method for
designing discrete-time optimal control systems with
closed-loop poles in a prescribed region, Yuan and
Achenie and Jiang (1996) addressed the problem of
linear quadratic regulator (LQR) synthesis with regional

closed-loop pole constraints. Benner and Castillo and
Quintana-Orti (2001) presented the method for partial
stabilization of large-scale discrete-time linear control
systems. Grammont and Largillier (2006) employed an
approach to localize matrix eigenvalues in the sense that
they build a sufficiently small neighborhood for each
eigenvalue (or for a cluster). Recently, Ayatollahi
(2013) obtained a method for Maximal and minimal
eigenvalue assignment for discrete-time periodic
systems by state feedback. Zhou, Cai and Duan (2013)
obtained a method for Stabilisation of time-varying
linear systems via Lyapunov differential equations.
Franke (2014) presented the method for Eigenvalue
assignment by static output feedback – on a new
solvability condition and the computation of low gain
feedback matrices.

A well-known desired region for discrete systems is
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a disc ),( rcD centered at )0,(c with radius r, in which

1 rc , as shown in Fig. 1. In this paper, the aim is
to present a method for localization of eigenvalues in
small specified regions of complex plane by state
feedback control for discrete-time linear control
systems.

Materials and Methods
Problem Statement

The problem of localization of eigenvalues in a small
specified region has been the subject of many
investigators in the last decades [2,6].

Consider a controllable linear time-invariant system
defined by the state equation

     tButAxtx  (1)
or its discrete-time version

     tButAxtx 1 (2)

where   ntx  ,   mtu  and the matrices A
and B are real constant matrices of dimensions nn
and mn respectively, with mBrank )( . The aim
of eigenvalue assignment in a specified region is to
design a state feedback controller, K , producing a
closed-loop system with a satisfactory response by
shifting controllable poles from undesirable to desirable
locations. Karbassi and Bell [7,8], have introduced an
algorithm for obtaining an explicit parametric controller
matrix K by performing similarity operations on the
controllable pair  AB, . In fact, K is chosen such that
the closed-loop system eigenvalues

BKA  (3)

lie in the self conjugate eigenvalue spectrum
 n ,,, 21  . Recently, Karbassi and

Tehrani [9] extended the previous results as to obtain
an explicit formula involving nonlinear parameters in
the control law. The stabilization problem consists in
finding a feedback matrix nmK  such that the
input ,...2,1,0,  kxKu kk , yields a stable closed
loop system

,...2,1,0,)(1  kxxBKAx kkk (4)

In case the spectrum (or set of eigenvalues) of the

closed-loop matrix, denoted by )( , is contained in
the open unit disk we say that  is (Schur) stable or
convergent (in other words, 1i for all

)(i ). The stabilization problem arises in
control problems such as, the computation of an initial
approximate solution in Newton’s method for solving
discrete-time algebraic Riccati equations, simple
synthesis methods to design controllers, and many more
[3, 11, 12].

The stabilization problem can in principal be solved
as a pole assignment problem. Pole assignment methods
compute a feedback matrix such that the closed-loop
matrix of system (3) has a prespecified spectrum. In this
paper, we present an efficient approach for localization
of eigenvalues in small specified regions for linear
discrete-time systems. Our assignment procedure is
composed of two stages. We first obtain a primary state
feedback matrix pF which assigns all the eigenvalues
of closed-loop system to zero, then produce a state
feedback matrix K which assigns all the closed-loop
system eigenvalues in a small specified disc or discs.

Synthesis
Consider the state transformation
   txTtx ~ (5)

where T can be obtained by elementary similarity
operations as described in [7]. In this way,

ATTA 1~  and BTB 1~  are in a compact
canonical form known as vector companion form:


















 mmnmnI

G
A

0
_____________~ 0

 
















 mmn

B
B

0
_______~ 0

(6)

Here 0G is an nm matrix and 0B is an mm
upper triangular matrix. Note that if the Kronecker
invariants of the pair  AB, are regular, then A~ and

B~ are always in the above form [7]. In the case of
irregular Kronecker invariants, some rows of mnI  in

A~ are displaced [8]. It may also be concluded that if
the vector companion form of A~ obtained from
similarity operations has the above structure, then the
Kronecker invariants associated with the pair  AB,
are regular [7].

The state feedback matrix which assigns all the
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eigenvalues to zero, for the transformed pair  AB ~,~
, is

then chosen as
xFxGBu ~~~

0
1

0   (7)

Which results in the primary state feedback matrix
for the pair  AB, defined as

1~  TFFp (8)

The transformed closed-loop matrix
FBA ~~~~

0  assumes a compact Jordan form
with zero eigenvalues






















mmnmn

nm

I 0
_____________

0
~

0



(9)

Theorem 1: Let D be a block diagonal matrix in
the form





















kD

D
D

D









00

00
00

2

1

(10)

where each jD , ),...,2,1( kj  is either of the
form












jj

jj
jD




(11)

( to designate the complex conjugate eigenvalues

jj i  )
or in case of real eigenvalues

][ jj dD  (12)

If such block diagonal matrix D with self conjugate
eigenvalue spectrum is added to the transformed closed-
loop matrix, 0

~ , then the eigenvalues of the resulting
matrix is the eigenvalues in the spectrum.

Proof: The primary compact Jordan form in the case
of regular Kronecker invariants is in the form






















mmnmn

nm

I 0
_____________

0
~

0



(13)

The sum of 0
~ with D has the form:

DH  0
~~

(14)






































kmmnmn

nm

D

D

I 





 0

0

0
_____________

0 1

(15)

































kr

l

l

DI

DI
D

D
D















000
00

000
0000

0000
0000

11

2

1

(16)

where rsI s ,...,2,1,  is the unit matrix of size 2
in case mn is even. In case mn is odd only one

sI takes the form of a unit matrix of size one.

By expanding )~det( IH  along the first row it is

obvious that the eigenvalues of H~ are the same as the
eigenvalues of D . For the case of irregular Kronecker
invariants [8] only

some of the unit columns of mnI  are displaced,
since the unit elements are always below the main
diagonal, the proof applies in the same manner.

Results

Then H~ can be obtained from H~ by performing
elementary similarity operations
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)()( iColumnjColumn j (17)
followed by

)()( jRowiRow j (18)
for j= n, n-1, …, m , i=j-m.
Hence, the matrix H~ thus obtained will be in

primary vector companion form such that:


















 mmnmnI

H
H

0
_____________~ 0


 (19)

where 0H is an nm matrix .

Because of similarity operation, the eigenvalues of
the matrix H~ are the same as the eigenvalues of H~

and that of D . Now the feedback matrix of the pair
)~,~( BA is defined by:

)(~~
00

1
00

1
0 HGBHBFK  

(20)

Theorem 2: The state feedback matrix K~ assigns
the eigenvalues of closed-loop matrix KBA ~~~~ 
inside a circle with center c and radius r if in case
circle intersects axis of abscissas we suppose jj  ,
be in the form:

)Re()1,0(*))Im(( 22 crandomcrsqrtj  (21)

)1,0(*))Im()(( 22 randomclrsqrtj  (22)

and in case circle does not intersect axis of abscissas
we suppose

)Re()1,0(* crandomrj  (23)

)Im()1,0()( 22 crandomlrsqrtj  (24)

where we take )Re(cl j   if 0)Re(* cj

and otherwise we take )Re(cl j  
and for assigning real valued eigenvalues in the

circle c and radius r we choose

)Re()1,0(*))Im(( 22 crandomcrsqrtd j  (25)

Proof: The eigenvalues of matrix D defined above
fall inside a circle with center c and radius r .

Let
(26)

 )(
00

~~~~
00

1
0

,

0

,

0 HGB
B

I
G

KBA
mmnmmnmn

















 



(27)




















 






mmnmnmmnmn I
H

I
HBBGBBG

,

0

,

0
1

000
1

000

00
~

Clearly H~~  , since H~ is similar to the matrix

H~ and the eigenvalues of matrix H~ are the same as that
of matrix D and elementary similarity operations do not
change the eigenvalues,  then the eigenvalues of closed-
loop matrix KBA ~~~~  fall inside a circle with
center c and radius r .

Remark: Since K~ assigns the eigenvalues of the
closed-loop matrix KBA ~~~~  inside a circle with
center c and radius r , it is obvious that the state
feedback controller matrix,

1
00

1
0

1 )(~   THGBTKK also assigns the
eigenvalues of the closed-loop matrix BKA 
inside a circle with center c and radius r too.

Note that for assigning the eigenvalues of the closed-
loop matrix in spectrum  n ,,, 21  we
suppose

njD jj ,,2,1   (28)

An algorithm for assignment of eigenvalues in a disc
),( rcD .

In this section we first give an algorithm for finding
a state feedback matrix which assigns zero eigenvalues
to the closed-loop system. Then we determine a gain
matrix which assigns the closed-loop eigenvalues in a
circle with center c and radius r .

Input: The controllable pair ),( BA , the primary

state feedback pF , 1
0
B and 1T which are calculated by

the algorithm proposed by Karbassi and Bell [7,8], the
center c and radius r of the target circle.

Step 1. Construct the block diagonal matrix D in
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the form (10), in which for assigning complex valued
eigenvalues in the circle with center c and radius r if
circle intersects axis of  abscissas we suppose

)Re()1,0(*))Im(( 22 crandomcrsqrtj 

)1,0(*))Im()(( 22 randomclrsqrtj 

otherwise we choose

)Re()1,0(* crandomrj 

)Im()1,0()))Re((( 22 crandomcrsqrt jj  

where we take )Re(cl j   if 0)Re(* cj

and otherwise we take )Re(cl j   and for

assigning real valued eigenvalues in the circle c and
radius r we choose

)Re()1,0(*))Im(( 22 crandomcrsqrtd j 

Step 2. Set DH  0
~~

Step 3. Transform H~ to primary vector companion
form H~ as in (19) using elementary similarity
operations as specified in corollary of theorem 1 .

step 4. Now compute 1
0

1
0

 THBFK p the
required state feedback matrix.

Illustrative Examples
Consider a discrete-time system given by
     tButAxtx 1

Where A and B are randomly generated with
10n and 6m .









































5543496525
3376018446
8624806300
1036847410
0849734836
4321196939
7787647494
0713849852
4099843538
1797675415

A









































993610
054696
264731
732705
583229
589395
825339
536627
594723
008396

B

The open loop eigenvalues are

}5948.47,2993.1,9397.9,2995.5
,3189.75762.0,2589.48866.2,7729.33425.4{


 iii

which are widely spread in the complex plane. In order
to locate them in small discs inside the unit circle, we
employ the above algorithm step by step. First, the
primary state feedback matrix which locates all the
eigenvalues of the closed-loop system to the origin of
the complex plane is found to be:






































2058.13795.06961.04790.00434.03957.06124.01483.01293.08100.0
4381.03133.08366.05280.04486.05824.01613.05530.04135.03304.0
1807.09579.08304.27936.02244.23064.02276.09619.03531.29273.1

7550.03534.06222.29974.12085.18105.00811.02822.00709.08954.0
5133.16816.04483.20461.04827.23564.02420.08587.08526.29351.1

3768.15369.09248.04790.08470.01641.04319.08496.09397.05562.0

pF
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Now we consider the following different cases:
a) It is desired to locate the closed-loop eigenvalues

inside the unit circle centered at origin. By using the
algorithm, the state feedback matrix obtained is (above):

It can be verified that the closed-loop eigenvalues are

,}6721.0,5252.0,2026.0,8462.0,3704.0
4660.0,7467.00153.0,8344.04451.0{




i
ii

clearly all  are inside the unit circle.
b) In this case, we find the state feedback matrix

which assigns the closed-loop eigenvalues in the disc
)3.0,5.0(D . By using the algorithm, the state

feedback matrix obtained is (above):
The closed-loop eigenvalues are

,}3398.0,6024.0,0817.03974.0,1139.0
7454.0,1103.02535.0,2343.06490.0{

ii
ii




all of which are inside the disc )3.0,5.0(D .

c) In this case, we find the state feedback matrix
which assigns the closed-loop eigenvalues in the disc

)02.0,5.0(D . By using the algorithm, the state
feedback matrix obtained is:

The closed-loop eigenvalues are in the set

}5088.0,4900.0,5198.0,4842.0,0055.0
5083.0,0001.04825.0,0124.05154.0{

i
ii 

,

all of which are inside the disc )02.0,5.0(D .
Clearly, localization of eigenvalues in small specified
regions of complex plane by state feedback control is
achieved.

d) In this case, we find the state feedback matrix
which assigns the closed-loop eigenvalues in the disc

)4.0,1.02.0( iD  . By using the algorithm, the state
feedback matrix obtained is (above):

a)






































1822.14133.07234.05713.00270.03801.05710.00712.00515.08407.0
4292.03097.08995.05269.04672.06348.01311.05745.04769.04037.0
0575.06912.05996.25816.03401.23868.00028.09514.03807.27446.1

5545.01227.05364.28794.11331.17533.01482.03497.01092.06921.0
5088.15445.03531.21241.04705.23739.02656.07904.08736.28740.1

3846.13406.07744.06124.08666.02115.03785.07594.00016.14923.0

K

b)






































1743.14144.07657.05797.00371.03456.05480.00500.00039.07976.0
4431.02881.08885.04687.04795.06301.01542.05281.04343.04303.0
2780.01351.10316.39409.01530.21689.02993.00059.11981.29630.1

8007.03632.07037.29871.12252.19431.00056.03096.02306.07632.0
4294.19493.06747.22823.01968.22566.00319.08921.05864.20149.2

3452.14774.08737.04131.07440.01618.04877.08232.08723.05548.0

K

c)






































1849.14010.07478.05421.00418.03576.05681.00838.00425.07929.0
4443.02931.08657.04790.04701.06104.01621.05276.04167.03970.0
3349.02321.11076.30088.11164.21365.03783.09990.01766.20299.2

8428.03952.06867.29899.12284.19322.00523.02780.01987.08172.0
4482.19333.06526.22294.02627.22759.00157.08975.06420.20171.2

3345.15582.09648.03176.06755.01158.05370.08532.07711.05563.0

K

d)






































1854.14021.07409.05443.00392.03635.05708.00847.00483.08023.0
4413.02971.08704.04900.04685.06134.01565.05373.04273.03950.0
1851.09495.08436.27865.02266.22732.01923.09747.03060.28838.1

7399.02978.06302.29467.11997.18621.00046.02972.01454.07772.0
4844.17349.04842.20370.03995.23395.01615.08581.07954.29622.1

3766.14785.08479.05265.08730.02041.04208.08181.00006.15711.0

K
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The closed-loop eigenvalues are in the set

},1615.0,3704.0,2691.00761.0,0759.0
4814.0,0475.00884.0,1875.02829.0{




ii
ii

all of which are inside the disc )4.0,1.02.0( iD  .
e) In this case, we find the state feedback matrix

which assigns the closed-loop eigenvalues in the discs:

)1.0,0(),3.0,2.06.0(
),1.0,2.02.0(),1.0,2.02.0(

43

21

DiD
iDiD




.

By using the algorithm, the state feedback matrix
obtained is (above):

The closed-loop eigenvalues are
}1683.01558.0,2453.02084.0{ ii  which are

inside the discs )1.0,2.02.0(),1.0,2.02.0( 21 iDiD  ,
and also in the sets
 7627.0,4437.0,0662.05657.0  i and

 0555.0,0478.0  which are inside the discs

)3.0,2.06.0(3 iD  and )1.0,0(4D respectively.

Discussion
A simple algorithm was given for localization of

eigenvalues in small specified regions of complex plane
by state feedback control. This method was achieved by
implementing properties of vector companion forms.
The merit of this approach is that it can be achieved by
elementary similarity operations which are significantly
simpler to realize computationally than the existing
methods. In the existing literature only location of
eigenvalues in discs centered on the real axis is
presented whereas location of eigenvalues in any
arbitrary specified disc or discs inside the unit circle can
be achieved by the presented algorithm easily. The
numerical examples which were tested showed that the
algorithm works perfectly and the number of arithmetic
operations of the proposed method is less than the
method of assignment with application of the
Gerschgorin Theorem [13] , although the system
matrices and the location of discs were chosen
randomly. It is claimed that the transformations

e)






































2278.13592.06350.04175.00419.04418.06608.02148.02247.08390.0
4281.03386.08128.05913.04248.05576.01535.05908.04235.02601.0
2198.09973.08110.28173.02272.23166.02666.09463.03724.29936.1

7536.03282.04976.29830.11608.17287.00851.02602.00106.09824.0
5421.15491.03701.21543.05546.23688.03533.08530.09036.28658.1

4089.14604.08894.05998.09334.01762.03404.08331.00043.14979.0

K

Figure 1. Specified discs ),( rcD
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obtained by similarity operations reduce accuracy of the
computations [2], however, other methods such as LQR
methods [10,11,15] and the method presented in [1,13]
are more complicated.
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