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ABSTRACT

Ultrafine-grained steels offer the prospect of high strength compared with traditional steel. In this article, the
vibration responses of a beam as a function of the grain size of the material in HT-80 steel are investigated by an
analytical approach. First, the relation between Young’s modulus and grain diameter in HT-80 steel is obtained based
on the experimental results using curve fitting in the form of a mathematical equation. Then, governing equations
of the cantilever beam and also associated boundary conditions are derived based on Hamilton’s principle using
obtaining the total kinetic and potential energies of the system. After that, the natural frequencies of the system
are determined using an analytical approach. Finally, numerical results of the natural frequencies of the system are
presented concerning different values of the system parameters such as thickness, width, length, and grain size of
the material. The obtained results show that the grain diameter of the material and also the dimensions of the beam
such as thickness in the micro-scale have significant effects on the vibration response of the system. The presented
approach can be used to estimate the vibration characteristics of ultrafine-grained steels and also microsystems such
as piezoelectric cantilever-based MEMS sensors.
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1. Introduction
Young’s modulus, as one of the mechanical
properties, is an important technological and

electron  microscopy, and Nanoindentation
techniques [6]. Zhang et al. [7] examined the effect
of nanoscale reinforcement on the mechanical

structure-sensitive parameter that is dependent on
the grain size in ultrafine-grained materials. For
many years, research on ultrafine-grained metals
carried out all over the world due to their excellent
mechanical properties [1-4]. Tanaka and lizuka [5]
studied the effects of grain size and microstructure
on Young’s modulus and internal friction for a
high-strength steel HT-80. They found that Young’s
modulus is large in both coarse-grained and
ultrafine-grained specimens for sorbate and ferrite-
pearlite structures. The microstructure of ultrafine-
grained steel is characterized by X-ray diffraction,
scanning electron microscopy, transmission

behavior of ultrafine-grained composites. They
concluded that the presence of nanoparticles
enhances strength by interacting with dislocations,
while simultaneously retarding grain growth.

The vibration characteristics study of Micro-
Electro-Mechanical-System (MEMS) devices is
very important to the design and optimization
of micro components in small equipment.
Nowadays, the manufacturing of MEMS sensors
is possible through the development of fabrication
technologies [8-11]. A few of the researchers
investigated the effect of grain size on the natural
frequencies and mechanical properties of materials
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in the macro/micro dimension. Saffar et al. [12]
studied the correlation of the natural frequency of
thin solar silicon wafers with material grain size and
grain orientation using the nonlinear finite element
method. They found that the natural frequency
is a strong function of material orientation for an
anisotropic single-crystal silicon wafer.

Su et al. [13] presented a core-shell model
with a grain-boundary affected zone to study the
grain-size effect of nanocrystalline polycrystal
frequency. Hahn and Meyers [14] studied the
theories of grain size-dependent mechanical
behavior pertaining to the nanocrystalline regime.
Gholami and Ansari [15] investigated the effect of
grain size, grain surface energy, and small-scale
effects on the nonlinear pull-in instability and
free vibration of electrostatic nanoscale actuators
made of nanocrystalline silicon (Nc-Si). They
studied the influences of various parameters such
as the length scale parameter, the volume fraction
of the inclusion phase, density ratio, and average
inclusion radius on the pull-in instability and free
vibration of Nc-Si actuators.

Shatt[16] studied theeffects of theinhomogeneity
nature of NCMs on the bending behavior of NCM
beams. They showed that the bending stiffness of
the beam is agreed upon for the grain size effects
and the microstructure rigid rotation effects.

In the present article, the vibration behavior of
a cantilever beam with respect to the grain size
of the material in HT-80 steel is investigated by
an analytical approach. First, the mathematical
relation between grain diameter and Young’s
modulus in HT-80 steel is determined based on
the experimental results which are presented
in reference [5]. Then, governing equations of
the cantilever beam and also related boundary
conditions are derived using Hamilton’s principle.
The natural frequencies of the system are calculated
using the analytical approach. Finally, numerical
results of the natural frequencies of the system are
presented concerning different values of the system
parameters such as thickness, width, length, and
grain size of the material. The results show that
the grain diameter of the material and also the
dimensions of the beam such as thickness in the
micro-scale have significant effects on the vibration
response of the system.

2. The relation between Youngs Modulus and
Grain Diameter
Fig. 1 shows the experimental results of the relation

between Youngs modulus and grain diameter of
specimens in HT-80 steel [5]. It can be seen that
there are different values for Young’s module with
respect to the average of the grain diameter.

Using experimental results which have been
presented by Tanaka et al. [5], the mathematical
equation between Young’s modulus with respect
to the grain diameter has been depicted in Fig. 2.
According to Fig. 2, the equation between the grain
diameter d and Youngs module E using curve
fitting can be written as follows:

E = 6.4812x% — 22.939x + 224.68 (1)
X = LOglO(dg)

Using Eq. 1, it can be seen that the minimum value
of Youngs modulus E will occur at the following
point:

d

| . =58838 ym = Epy = 2043829 GPa (2)

Blmi

~ 212

[

% L
mo 210+ \\A o

= L \\

w a

-é \\ (o] 7’
o] S 0/’
£ ] G LA
.§205- i gt

= i A o

g |

202 . 1 : I
3 10 100 5C0

Grain diamster  (um)
Fig. 1- Experimental results of the relation between grain size

and Young’s modulus in HT-80 steel; (O: Sorbite; A: ferrite-
pearlite; O: as-received [5].
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Fig. 2- The mathematical equation of the relation between the
grain size and Young’s modulus in HT-80 steel.
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It should be noted that by increasing the grain size
the single crystal material will be created.

It should be noted that in the general form of
HT-80 steel, the mathematical equation of Young’s
modulus with respect to the grain diameter d_can
be expressed, approximately, as follows (please see
Fig. 3):

ford,< Spm; E=E (3)
for S5pm < dg< 300um;
E=6.4812[Logw(dg)]2—22.939Log10(dg)+224.68

for dg> 300pm ; E=E,

where E. and E., are the maximum Youngs
modulus of the material with the ultrafine-grained
and large grain size (for example single crystal)
cases, respectively. Values of E and E_, are equal to
215.17 GPa and 211.88 GPa, respectively.

3. Definition and Modeling of the System

A cantilever beam is used to study the vibration
behavior of a system with respect to the variation
of the size grain diameter of the material. The
modeling and geometry of the cantilever beam are
shown in Fig. 4. The cantilever beam has length L,
width b, thickness h, density p, Young’s modulus E,
and Poisson’s ratio 9. Also, the coordinate system
X-Y-Z has been shown in Fig. 4. It should be noted
that in this research the cantilever beam has been
made from HT-80 steel which the elasticity modulus
of the material can be obtained from Eq. 3.

4. Governing Equations
The strain energy of a linear elastic isotropic
material can be written as follows:
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Fig. 3- General form of the mathematical equation of Young’s
modulus with respect to the grain diameter in HT-80 steel.

g =1 f(ci]-si]-)dv ; i=xy,z (4)
2 \'A

where V denotes the volume of the system. In
addition, the components of the stress tensor o,
and the strain tensor g can be expressed as follows:
ojj = 2pg; + AeSy 5 g =% (ui']- + uj_i) (5)
In the above equations, u, are components of the
displacement vector, and the parameters A and
are Lamé constants. The Lamé constants can also be
written regarding Young’s modulus E and Poisson’s
ratio 9 as follows:

9E E

Maroa-z M 2a+e (©)

Consider that the w(x,t) denotes the transverse
deflection of the neutral line of the beam at any point
x along the length of the beam in the Z direction
(please see Fig. 4). By using Euler-Bernoulli beam
theory, the displacement field at any material point
in the beam can be expressed as follows:

ow(x,t) ]
0x ’

u =z u=0 ; u;=w(xt) (7)
Assuming small transverse deflection, the non-zero
components of the strain and the stress tensors can

be expressed as follows:

0*w
Exx = Zﬁ (8)
0°w
Oy = Eggy = Ezﬁ 9)

Therefore, from Eq. (4), the total strain energy of
the system can be obtained as follows:
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Fig. 4- The modeling and the geometry of the cantilever beam.
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T =%£[L(cijsﬁ)dA] dx

-2 | [ [ (o dA] dx

1t 2w\’
where
bh3

Therefore, for a uniform beam with an anisotropic
elastic material and a rectangular section, the
total strain energy of the system can be written as
follows:

=g ) [ (55 | o

The kinetic energy of the system T can be written
as follows:

o ot (2]

where the dot over variables is the derivative of the
variable relative to time.
For free vibration analysis of the system without

(12)

(13)

external non-conservative forces, Hamilton’s
principle is considered as follows:
t2
8(T—mg)dt=0 (14)

t

By substituting the Eqs. (12) and (13) into (14),
and then using variational calculus, governing
equations of motion of the system can be derived
as follows:

o*w . 9*W
(Blyy) 5+ (0 A) i = (p Ly) 55 =0 (15)

By neglecting

azvzv , the Eq. (15) can be simplified
as follows: ox

64-

(Elyy)a—Y—F(pA)W =0 (16)
X

The general solution of Eq. (16) can be expressed

as follows:

w(x, t) = W) sin(wt) (17)
By substituting Eq. (17) into Eq. (16) and to have
some algebraic simplification, we have

;X —B*Wx) =0

(18)

Yy

148

where w is the natural frequency of the system. Also,
the general solution of Eq. (18) can be obtained as
follows: (19)

W(x) = B, sin(Bx) + B, cos(Bx) + B, sinh(Bx) + B, cosh(px)
where By, B,, B; and B, are constants.

Also, the boundary conditions of the cantilever
beam system can be expressed as follows:

Ww(@0) =0 ; d—W(O) =0 (20)
dx

dw 3w
— (@) =0
X

=00 g
By substituting Eq. (20) into Eq. (19), a set of four
algebraic equations resulting in matrix form can be
obtained as follows: (21)

[ 0 1 0 1 B,
| B 0 L 0 ])By| _
—B2 sin(BL) B, =0

—B2 cos(BL) B?sinh(BL) B? cosh(BL)J

—B3cos(BL) B3sin(BL)  PB% cosh(BL) B3 sinh(BL)

o

For the nontrivial solution of Eq. (21), the
determinant of the matrix [Qij] must be zero. Also,
if the determinant of the matrix [Qij] is zero, the
result and the first, second, third, and fourth roots
of it can be calculated as follows: (22)

det [Qij] =0 = cos(B,L)cosh(B,L)=—1; n=1,..,0
B,L = 1.87510; B,L = 4.69409; BsL = 7.85476;
B,L = 10.99554

Therefore, according to Egs. (18), the natural
frequencies of the cantilever beam system can be
determined as follows:

ﬁf (23)

on = (Bol)? [ 2
where E denotes Young’s modulus of the material

can be written with respect to the average of the
grain diameter dg in HT-80 steel as follows: (24)

E= 64812 [Loglo(dg)]z —22.939[Log;,(dg)] +
for 5um < d; < 300pm

5. Results and Discussion

In this section, the effect of grain size in HT-80
on the natural frequencies of the system is studied.
In numerical analyses of a macro system, the
following nominal dimensions data and materials
properties in Table 1 have been considered. Also,
to study a microsystem, the following nominal
dimensions data in Table 2 have been mentioned.
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The first natural frequency of the macro cantilever
beam (please see Table 1) versus the grain diameter
(dg) has been depicted in Fig. 5, for different
values of the beam length L. The obtained results
in Fig. 5 show that the first natural frequencies of
the macro system will decrease and then increase
with an increase in the grain diameter. Also, the
first natural frequencies of the system will increase
with an increase in the beam length L. It should
be noted that there is interesting behavior on the
natural frequencies with the increase of the grain

diameter d_ which can be considered to identify the
microstructure of material with the measurement
of its natural frequencies. The above behavior for
the second and third natural frequencies of the
macro cantilever system can also be observed in
Figs. 6 and 7, respectively.

In addition, the first and second natural
frequencies of the microcantilever beam
(microsystem) versus the thickness h have been
presented in Figs. 8 and 9, respectively, for different
values of the microbeam length L. The correction

Table 1- Nominal dimensions and material properties of the macro cantilever beam which has been made from HT-80 steel

Parameters description Symbol unit Value

Length L mm 60

Width b mm 20

Thickness h mm 2

Young’s modulus (E) E GPa 6.4812 x? — 22.939x + 224.68 ;
(for 5pum < dg < 300pm) x = Logy,(dg)

Density [5] p Kg/m® 7850

Poisson’s ratio [5] 9 --- 0.28

Table 2- Nominal dimensions of the microcantilever beam which has been made from HT-80 steel

Parameters description Symbol unit Value
Length L pm 800
Width b pm 300
Thickness h pum 17

d gﬁlli:dﬂ'(;zm)
Fig. 5- Variation of the first natural frequency of the macro
cantilever beam versus the grain diameter dg for different
values of the beam length.

d: grain diameter { m)

Fig. 6- Variation of the second natural frequency of the macro
cantilever beam versus the grain diameter dg for different
values of the beam length.
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Fig. 7- Variation of the third natural frequency of the macro
cantilever beam versus the grain diameter dg for different

values of the beam length.
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Fig. 9- Variation of the second natural frequency of the
microcantilever beam versus the thickness h for different
values of the beam length.

factor of the first and second natural frequencies
of the microcantilever beam system versus the
thickness h has been investigated in Figs. 10 and 11,
respectively, for different values of Young’s modulus
E, of the microbeam. The obtained results in Figs.
10 and 11 show that correction factor for first and
second natural frequencies of the microsystem will
decrease when the thickness h increases.

6. Summary and Conclusion

In this article, the vibration behavior of macro
and microcantilever beams with respect to the
grain size of the material in HT-80 steel was
studied by an analytical approach. To capture size
effects and also to predict the natural frequency
behavior of the microsystem, governing equations

150
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Lagfh) ; h: Tickness of the micro beamy{ ;mj)

Fig. 8- Variation of the first natural frequency of the
microcantilever beam versus the thickness h for different
values of the beam length.
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Fig. 10- Correction factor for first natural frequency of the
microcantilever beam versus the thickness h for different
values of the beam base Young’s modulus E,.
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Fig. 11- Correction factor for first natural frequency of the
microcantilever beam versus the thickness h for different
values of the beam base Young’s modulus E,.
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were derived using Hamiltons principle for a
cantilever beam. Also, according to Ref. [5], the
equation between the grain diameter and Young’s
modulus of HT-80 steel was obtained by using
curve fitting. The analytical method was employed
in the solution of the partial differential equations
considering the effect of grain size on the young’s
modulus of the system. The first, second, and third
natural frequencies of the system for various values
of the grain diameter, beam thickness, and beam
length was investigated. Also, correction factors for
the first and second natural frequencies of a micro
cantilever beam versus the micro beam thickness
were obtained. The obtained results show that
the grain diameter of the material and also the
dimensions of the beam in the micro-scale have
significant effects on the vibration behavior of the
system.
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