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ABSTRACT: The purpose of this work is to develop robust and interpretable quantitative structure”activity
relationship (QSAR) models for assessing the aquatic toxicity of phenols using a combined set of descriptors
encompassing the logP and recently developed variables (Monconn-Z variables). The used dataset consists of
250 chemicals with toxicity data to the ciliate Tetrahymena pyriformis. For each compound, a total of 197
physico-chemical descriptors including logP and Molconn-Z descriptors were calculated. Multiple linear
regression (MLR) and Partial least squares (PLS) were used to obtain QSARs and the predictive performance
of the proposed models were verified using external statistical validations. The results of stepwise-MLR
analysis reveal that the AlogP, MlogP and ClogP models were not successful for the prediction of aquatic
toxicity for all the compounds. And by using the logP (AlogP and MlogP) with Molconn-Z descriptors, the
obtained QSARs were not successful enough nutill removal of some outliers. Two optimal QSARs were built
with R2 of 0.71 and 0.70 for the training sets and the external validation Q2 of 0.69 and 0.68 respectively. All
these selected descriptors in the best models account for the hydrophobic (AlogP, MlogP) and other
electrotopological properties like SHCsatu, Scarboxylicacid, SHBa, gmax and nelem. PLS produces a good
model using all the calculated descriptors with R2 of 0.78 and Q2 of 0.64, and hydrophobic and electrotopological
descriptors show importance for the prediction of phenolic toxicity.

Key word: QSAR, Molconn-Z descriptors, LogP descriptors, Aquatic toxicity, Tetrahymena pyriformis,
                    Phenols

INTRODUCTION
Phenols represent a substantial part of the

chemicals produced worldwide. They have been widely
used as materials in medicine, industry and agriculture
(Liu et al., 2010). Despite their great importance, when
released in the environment as wastewater streams, such
organic pollutants are toxic to humans (Bukowska et
al., 2004), and serious threat to the ecosystems as well
(Kušić, 2009). Even, some are persistent in the
environment (Cunningham et al., 2005). Due to these
adverse effects on living species and environment, it is
necessary to assess the toxicity and explore the acute
toxicity mechanisms of such compounds, which is not
only significant to preserve of environment but also
helpful to propose a reasonable policy for the
government to regulate those compounds.

However, assessment the toxicity for a given
compound by performing a toxicological experiment is
not an easy task because this can be costly, time-

consuming and could potentially produce toxic side
products from the experimental methods used today
(Hill, 1972). Analysis of the toxicity should also
consider multiple environments and all biological
interactions with the living organisms of the
ecosystems ,but data that quite often are not available
(Duchowicz et al., 2008). Therefore, it is unreality to
obtain the accurate toxicity data by performing
experiments. A generally accepted strategy for
overcoming the shortage of experimental
measurements is the analysis based on Quantitative
Structure–Activity Relationships (QSAR) (Hansch
and Leo, 1995; Cronin and Dearden, 1995; Vighi et al.,
2001). Thus, in the past years, many attempts have
been made to develop QSARs for the prediction of
the toxicity of phenols and its derivatives to
Tetrahymena pyriformis with different methods and
different descriptors based on the same data set
(Cronin and Schultz, 1996; Garg et al, 2001; Cronin et
al, 2002; Duchowicz et al, 2008). And these QSAR
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studies having proved to be valuable in predict the
toxicity and interpret the mechanism of toxic action for
phenols. However, because of the complicate structure,
diversiform groups and mother circus rings of phenols,
it is impossible to ensure the accurate prediction of
toxicity based on the limited descriptors. Generally,
different descriptors represent different mechanisms
of toxic action. Only well known the mechanism of toxic
action we can give much more accurate prediction of
toxicity. Therefore, it is an urgent need to develop
newer descriptors to encode molecular features and
chemical information from different dimensions. In this
background, we have introduced a number of novel
descriptors calculated by Molconn-Z software. To our
knowledge, the data set used in this study was
calculated by Molconn-Z software for the first time
and there is still no model which is built based on the
Molconn-Z molecular descriptors for predicting the
toxicity of phenols. Further, using a combined set of
descriptors encompassing the logP and Molconn-Z
parameters for the assessment the toxicity of phenols
was also novel.

In the present work, a dataset of toxicity values
for 250 phenolic compounds  and a total of 197
descriptors (including logP and Molconn-Z) were used
to develop predictive QSAR models for the toxicity of
diverse chemical to T. pyriformis by stepwise
regression-multiple linear regression (MLR) and partial
least squares (PLS) regression. To evaluate
performance of logP and Molconn-Z parameters, the
robust models obtained in the present study were
compared with those models developed from
corresponding method and other descriptors in
literature. Significance of different parameters appearing
in the final models in relation to the toxicity was
discussed and the mechanism about the aquatic toxicity
of phenols was interpreted.

MATERIALS & METHODS
The aqueous toxicities are expressed as pIGC50 =

log (IGC50)
 “1, with IGC50 expressing the concentration

(mmol/L) producing a 50% growth inhibition on T.
pyriformis under a static regime. A dataset of toxicity
values (pIGC50) for 250 phenols compounds in this
study was obtained from the literature (Cronin et al.,
2002). The dataset was randomly divided into two
groups, a training set and a validation set, with
approximately one forth of the total compounds were
assigned in the test set. The training set containing
187 compounds was used to develop prediction models,
and the test set including 63 compounds was used for
the assessment of these models. All these  compounds
with their chemical names, CAS#s, Smiles and values
of experimental toxicity employed in the study are
provided in Table 1 (supplementary information).

In this study, the molecular descriptors were
calculated using Molconn-Z program (version 4.10)
based on the SMILES format of all compounds. The
Molconn-Z software is capable of calculating a wide
range of topological indices of molecular structure,
including the molecular connectivity chi indices, mχt
and mχtv; kappa shape indices, mk and mk;
electrotopological state indices, Si; hydrogen
electrotopological state indices, HESi; atom type and
bond type electrotopological state indices; new group
type and bond type electrotopological state indices;
topological equivalence indices and total topological
indices; several information indices, such as the
Shannon and the Bonchev-Trinajstiç information
indices; counts of graph paths, atoms, atoms types,
bond types; and others. Another important descriptor,
i.e., 1-octanol/water partition coefficient (Log P), MlogP
and AlogP, was calculated by Dragon software. And
ClogP was calculated by Hansch-Leo’s logP
calculation method (Hansch and Leo, 1979). In total,
the most widely used 197 indices were calculated. The
descriptors with > 99% zeros were excluded, and the
remaining 95 descriptors (including 3 logP and 92
Molconn-Z descriptors) are used for further analysis.

QSAR models were developed from training set
using stepwise-MLR and PLS method. The MLR
models development consists two parts. Firstly, we
developed QSARs for the assessment of aquatic
toxicity among all data using only logP descriptors,
i.e., AlogP, MlogP and ClogP, to allow an easier
explanation of the aquatic toxicity mechanism of
phenols. Next, the stepwise-MLR methodology was
used to investigate QSARs to prediction of aquatic
toxicity of phenols using logP descriptors combined
with Molconn-Z descriptors, i.e., MlogP + Molconn-Z
descriptors, AlogP + Molconn-Z descriptors, ClogP +
Molconn-Z descriptors, and all the calculated
descriptors. One model was developed by PLS based
on all the calculated descriptors. All the models used
the same training set for model development and the
same test set for external validation. Fit of the resultant
MLR models were quantified with the goodness of fit
(R2), the standard error of prediction for training set
(SEP), the goodness of prediction (Q2) and the standard
error of estimation for test set (SEE), the Fisher ratio (F).
The quantitative measure of model performance for
PLS model is given by the R2 and Q2 values, which
give the fraction explained variance for training and
validation data, respectively.

Linear regression analysis provides one of the
most widely used statistical methods largely because
it is simple to apply, easy to interpret and always gives
good results when solving a wide range of problems
(Hand, 1981).  In this study, a variable selection
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Table 1.The chemical names, CAS#s, Smiles and values of experimental toxicity employed in the study
(Continue)

 

ID Name CAS# Smiles Toxicity 

1 4-Hydroxyphenylacetic acid 000156-38-7 O=C(O)Cc(ccc(O)c1)c1  -1.5 
2 3-Hydroxybenzyl alcohol  000620-24-6 OCc1cccc(O)c1  -1.04 
3 4-Carboxyphenol  000099-96-7 O=C(O)c(ccc(O)c1)c1 -1.02 
4 3-Hydroxy-4-methoxybenzyl alcohol 004383-06-6 COc1ccc(CO)cc1O -0.99 
5 4-Hydroxy-3-methoxybenzyl amine 007149-10-2 COC1=C(O)C=CC(=C1)CN   -0.82 
6 4-Hydroxyphenethyl alcohol  000501-94-0 OCCc(ccc(O)c1)c1  -0.83 
7 3-Carboxyphenol  000099-06-9 O=C(O)c(cccc1O)c1  -0.81 
8 4-Hydroxybenzamide  000619-57-8 NC(=O)c1ccc(O)cc1  -0.78 
9 4-Hydroxy-3-methoxybenzyl alcohol 000498-00-0 COc1cc(CO)ccc1O -0.7 
10 2,6-Dimethoxyphenol  000033-51-2 COC1=CC=CC(=C1O)OC  -0.6 
11 2,4,6-Tris(dimethylaminomethyl) phenol 000090-72-2 Oc(c(cc(c1)CN(C)C)CN(C)C)c1CN(C)C -0.52 
12 Salicylic acid  000069-72-7 O=C(O)c(c(O)ccc1)c1 -0.51 
13 2-Methoxyphenol  000090-05-1 O(c(c(O)ccc1)c1)C -0.51 
14 5-Methylresorcinol  000504-15-4 Oc(cc(O)cc1C)c1  -0.39 
15 4-Methylcyanophenol  000055-55-0 CC1=CC=C(O)C(=C1)C#N  -0.38 
16 3-Hydroxyacetophenone  000121-71-1 O=C(c(cccc1O)c1)C -0.38 
17 2-Ethoxyphenol 000094-71-3 O(c(c(O)ccc1)c1)CC  -0.36 
18 4-Acetylphenol  000099-93-4 O=C(c(ccc(O)c1)c1)C  -0.3 
19 3-Ethoxy-4-methoxyphenol  000150-76-5 O(c(ccc(O)c1)c1)C  -0.3 
20 2-Methylphenol  000095-48-7 Oc(c(ccc1)C)c1  -0.29 
21 2-Hydroxybenzamide  000065-45-2 O=C(N)c(c(O)ccc1)c1 -0.24 
22 Phenol  000108-95-2 Oc(cccc1)c1 -0.21 
23 4-Methylphenol  000106-44-5 Oc(ccc(c1)C)c1  -0.18 
24 4-Hydroxy-3-methoxyphenethylalcohol 002380-78-1 CCOC1=CC(=CC=C1OC)O  -0.18 
25 3-Acetamidophenol  000621-42-1 O=C(Nc(cccc1O)c1)C  -0.16 
26 3-Hydroxy-4-methoxybenzaldehyde 000621-59-0 O=Cc(ccc(OC)c1O)c1 -0.14 
27 4-Hydroxy-3-methoxyacetophenone 000498-02-2 O=C(c(ccc(O)c1OC)c1)C  -0.12 
28 3,5-Dimethoxyphenol  000500-99-2 COc1cc(O)cc(OC)c1  -0.09 
29 2-Hydroxyethylsalicylate  000087-28-5 OCCOC1=CC=CC=C1C([O-])=O  -0.08 
30 3-Methylphenol  000108-39-4 Oc(cccc1C)c1  -0.06 
31 Methyl-3-hydroxybenzoate  019438-10-9 COC(=O)c1cc(O)ccc1  -0.05 
32 3-Methoxy-4-hydroxybenzaldehyde 000121-33-5 O=Cc(ccc(O)c1OC)c1  -0.03 
33 4-Hydroxy-3-methoxybenzonitrile 004421-08-3 Oc(ccc1C#N)c(c1)OC -0.03 
34 3-Ethoxy-4-hydroxybenzaldehyde 000121-32-4 O=Cc(ccc(O)c1OCC)c1  0.01 
35 4-Fluorophenol  000371-41-5 Fc(ccc(O)c1)c1  0.02 
36 2-Cyanophenol  000611-20-1 OC1=CC=CC=C1C#N  0.03 
37 5-Fluoro-2-hydroxyacetophenone  000394-32-1 CC(=O)C2=C(O)C=CC(=C2)F  0.04 
38 2,4-Dimethylphenol 000105-67-9 Oc(c(cc(c1)C)C)c1  0.07 
39 2-Hydroxyacetophenone  000118-93-4 OCC(=O)C1=CC=CC=C1  0.08 
40 2,5-Dimethylphenol  000095-87-4 Oc(c(ccc1C)C)c1  0.08 
41 Methyl-4-hydroxybenzoate  000099-76-3 O=C(OC)c(ccc(O)c1)c1 0.08 
42 3,5-Dimethylphenol  000108-68-9 Oc(cc(cc1C)C)c1  0.11 
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43 4'-Hydroxypropiophenone  000070-70-2 O=C(c(ccc(O)c1)c1)CC  0.12 
44 2,3-Dimethylphenol  000526-75-0 Oc(c(c(cc1)C)C)c1  0.12 
45 3,4-Dimethylphenol  000095-65-8 Oc(ccc(c1C)C)c1  0.12 
46 2-Ethylphenol  000090-00-6 Oc(c(ccc1)CC)c1 0.16 
47 Syringaldehyde 000134-96-3 O=Cc(cc(OC)c(O)c1OC)c1  0.17 
48 Salicylhydrazide  000936-02-7 c1cccc(O)c1C(=O)NN  0.18 
49 2-Chlorophenol  000095-57-8 Oc(c(ccc1)Cl)c1  0.18 
50 4-Hydroxy-2-methylacetophenone 000875-59-2 Oc1cc(C)c(C(=O)C)cc1  0.19 
51 4-Ethylphenol  000123-07-9 Oc(ccc(c1)CC)c1  0.2 
52 3-Ethylphenol  000620-17-7 Oc1cc(CC)ccc1 0.23 
53 Salicylaldoxime  000094-67-7 N(O)=Cc(c(O)ccc1)c1  0.25 
54 2,3,6-Trimethylphenol  002416-94-6 Oc(c(ccc1C)C)c1C  0.28 
55 2,4,6-Trimethylphenol  000527-60-6 Oc(c(cc(c1)C)C)c1C  0.28 
56 2-Hydroxy-5-methylacetophenone 001450-72-2 O=C(c(c(O)ccc1C)c1)C  0.31 
57 2-Bromophenol  000095-56-7 Oc(c(ccc1)Br)c1  0.33 
58 5-Bromo-2-hydroxybenzyl alcohol  002316-64-5 c1c(O)c(CO)cc(Br)c1  0.34 
59 2,3,5-Trimethylphenol  000697-82-5 Oc(c(c(cc1C)C)C)c1  0.36 
60 3-Methoxysalicylaldehyde  000148-53-8 O=Cc(c(O)c(OC)cc1)c1  0.38 
61 Salicylhydroxamic acid  000089-73-6 ONC(=O)c1c(O)cccc1  0.38 
62 2-Chloro-5-methylphenol  000615-74-7 Oc(c(ccc1C)Cl)c1  0.39 
63 4-Allyl-2-methoxyphenol  000097-53-0 O(c(c(O)ccc1CC=C)c1)C  0.42 
64 2-Hydroxybenzaldehyde 000090-02-8 O=Cc(c(O)ccc1)c1  0.42 
65 2,6-Difluorophenol  028177-48-2 Fc1cccc(F)c1O  0.47 
66 Ethyl-3-hydroxybenzoate  007781-98-8 c1c(O)cccc1C(=O)OCC  0.48 
67 4-Cyanophenol  000767-00-0 C(#N)c(ccc(O)c1)c1  0.52 
68 4-Propyloxyphenol  018979-50-5 O(c(ccc(O)c1)c1)CCC 0.52 
69 4-Chlorophenol  000106-48-9 Oc(ccc(c1)Cl)c1  0.55 
70 Ethyl-4-hydroxybenzoate  000120-47-8 O=C(OCC)c(ccc(O)c1)c1  0.57 

71 5-Methyl-2-nitrophenol  000700-38-9 CC1=CC=C(C(=C1)O)[N+]([O-
])=O 0.59 

72 2-Bromo-4-methylphenol  006627-55-0 CC1=CC=C(O)C(=C1)Br 0.6 
73 2,4-Difluorophenol  000367-27-1 C1(F)=CC(F)=C(O)C=C1 0.6 
74 3-Isopropylphenol  000618-45-1 Oc(cccc1C(C)C)c1  0.61 
75 5-Bromovanillin  002973-76-4 O=Cc(cc(OC)c(O)c1Br)c1  0.62 
76 α,α,α-Trifluoro-4-cresol  000402-45-9 Oc1ccc(C(F)(F)F)cc1 0.62 
77 Methyl-4-methoxysalicylate 005446-02-6 COC(=O)c1c(O)cc(OC)cc1 0.62 
78 4-Bromophenol 000106-41-2 Oc(ccc(c1)Br)c1  0.68 
79 2-Chloro-4,5-dimethylphenol  001124-04-5 Cc1cc(O)c(Cl)cc1C  0.69 
80 4-Butoxyphenol  000122-94-1 O(c(ccc(O)c1)c1)CCCC  0.7 
81 4-Chloro-2-methylphenol  001570-64-5 Oc(c(cc(c1)Cl)C)c1  0.7 
82 3-tert-Butylphenol  000585-34-2 Oc(cccc1C(C)(C)C)c1  0.73 
83 2,6-Dichlorophenol  000087-65-0 Oc(c(ccc1)Cl)c1Cl  0.73 
84 2-Methoxy-4-propenyIphenol  005932-68-3 Oc(ccc1C=CC)c(c1)OC 0.75 
85 3-Chloro-5-methoxyphenol 082477-68-7 COC1=CC(=CC(=C1)O)Cl 0.76 
86 4-Chloro-3-methylphenol  000059-50-7 Oc(ccc(c1C)Cl)c1  0.8 

Table 1.The chemical names, CAS#s, Smiles and values of experimental toxicity employed in the study
(Continues)
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87 2-Isopropylphenol 000088-69-7 Oc(c(ccc1)C(C)C)c1  0.8 
88 2,6-Dichloro-4-fluorophenol  000392-71-2 OC1=C(Cl)C=C(F)C=C1Cl  0.8 
89 4-Iodophenol  000540-38-5 Oc(ccc(c1)I)c1  0.85 
90 2,2'-Biphenol  001806-29-7 Oc(c(c(c(O)ccc1)c1)ccc2)c2 0.88 
91 4-tert-Butylphenol  000098-54-4 Oc(ccc(c1)C(C)(C)C)c1  0.91 
92 3,4,5-Trimethylphenol  000527-54-8 Oc(cc(c(c1C)C)C)c1 0.93 
93 2,2',4,4'-Tetrahydroxybenzophenone 000131-55-5 O=C(c(c(O)cc(O)c1)c1)c(c(O)cc(O)c2)c2  0.96 
94 4-sec-Butylphenol  000099-71-8 Oc(ccc(c1)C(CC)C)c1  0.98 
95 3-Hydroxydiphenylamine  000101-18-8 Oc(cccc1Nc(cccc2)c2)c1  1.01 
96 4-Hydroxybenzophenone  001137-42-4 O=C(c(cccc1)c1)c(ccc(O)c2)c2  1.02 
97 2,4-Dichlorophenol 000120-83-2 Oc(c(cc(c1)Cl)Cl)c1  1.04 
98 2,4,6-Tribromoresorcinol  002437-49-2 Oc1c(Br)cc(Br)c(O)c1Br  1.06 
99 Benzyl-4-hydroxyphenyl ketone  002491-32-9 OC1=CC=C(C(=O)C2=CC=C(O)C=C2CC3=CC 

   =CC=C3)C(=C1)CC4=CC=CC=C4 
1.07 

100 4-Chloro-3-ethylphenol  014143-32-9 Oc1cc(CC)c(Cl)cc1  1.08 
101 2-Phenylphenol  000090-43-7 Oc(c(c(cccc1)c1)ccc2)c2  1.09 
102 2,5-Dichlorophenol  000583-78-8 Oc(c(ccc1Cl)Cl)c1  1.13 
103 3-Chloro-4-fluorophenol  002613-23-2 Oc1cc(Cl)c(F)cc1  1.13 
104 3-Bromophenol  000591-20-8 Oc(cccc1Br)c1  1.15 
105 6-tert-Butyl-2,4-dimethyIphenol  001879-09-0 Oc(c(cc(c1)C)C(C)(C)C)c1C  1.16 
106 4-Chloro-3,5-dirnethyIphenol 00088-04-0 Oc(cc(c(c1C)Cl)C)c1 1.2 
107 2-Hydroxybenzophenone  000117-99-7 O=C(c(cccc1)c1)c(c(O)ccc2)c2  1.23 
108 4-tert-Pentylphenol  000080-46-6 Oc(ccc(c1)C(CC)(C)C)c1  1.23 
109 4-Bromo-3,5-dimethyIphenol  007463-51-6 Oc1cc(C)c(Br)c(C)c1  1.27 
110 4-Bromo-6-chloro-2-cresol  007530-27-0 Oc1c(Cl)cc(Br)cc1C  1.28 
111 4-Cyclopentylphenol  001518-83-8 Oc1ccc(cc1)C2CCCC2  1.29 
112 2-tert-Butylphenol  000088-18-6 Oc(c(ccc1)C(C)(C)C)c1 1.29 
113 2-tert-Butyl-4-methyIphenol  002409-55-4 Oc(c(cc(c1)C)C(C)(C)C)c1  1.3 
114 2-Hydroxydiphenylmethane  028994-41-4 Oc(c(ccc1)Cc(cccc2)c2)c1  1.31 
115 Butyl-4-hydroxybenzoate  000094-26-8 O=C(OCCCC)c(ccc(O)c1)c1  1.33 
116 3-PhenyIphenol 000580-51-8 Oc(cccc1c(cccc2)c2)c1  1.35 
117 n-Pentyloxyphenol  018979-53-8 O(c(ccc(O)c1)c1)CCCCC 1.36 
118 2,4-Dibromophenol  000615-58-7 Oc(c(cc(c1)Br)Br)c1  1.4 
119 2,4,6-Trichlorophenol  000088-06-2 Oc(c(cc(c1)Cl)Cl)c1Cl 1.41 

120 2-Hydroxy-4-
methoxybenzophenone  000131-57-7 O=C(c(cccc1)c1)c(c(O)cc(OC)c2)c2  1.42 

121 Isoamyl-4-hydroxybenzoate  006521-30-8 O=C(OCCC(C)C)c(ccc(O)c1)c1  1.48 
122 3,5-Dichlorosalicylaldehyde  000090-60-8 O=Cc(c(O)c(cc1Cl)Cl)c1  1.55 
123 4-Cyclohexylphenol  001131-60-8 Oc(ccc(c1)C(CCCC2)C2)c1 1.56 
124 3,5-Dichlorophenol  000591-35-5 Oc1cc(Cl)cc(Cl)c1  1.57 
125 3,5-Di-tert-butylphenol  001138-52-9 Oc(cc(cc1C(C)(C)C)C(C)(C)C)c1  1.64 
126 3,5-Dibromosalicylaldehyde  000090-59-5 Oc1c(Br)cc(Br)cc1C=O  1.64 
127 3,4-Dichlorophenol  000095-77-2 Oc1ccc(Cl)c(Cl)c1  1.75 
128 4-Bromo-2,6-dichlorophenol  003217-15-0 Brc(cc(Cl)c1O)cc1Cl 1.78 
129 2,6-Di-tert-butyl-4-methylphenol  000128-37-0 Oc(c(cc(c1)C)C(C)(C)C)c1C(C)(C)C  1.8 

Table 1.The chemical names, CAS#s, Smiles and values of experimental toxicity employed in the study
(Continues)



928

Jiang, D. X. et al.

 

130 4-Chloro-2-isopropyl-5-methylphenol 000089-68-9 Oc(c(cc(c1C)Cl)C(C)C)c1  1.85 
131 2,4,6-Tribromophenol  000118-79-6 Oc(c(cc(c1)Br)Br)c1Br  2.03 
132 4-Heptyloxyphenol  013037-86-0 O(c(ccc(O)c1)c1)CCCCCCC  2.03 
133 4-tert-Octylphenol  003294-03-9 CCCCCC(C)(C)C1=CC=C(O)C=C1 2.1 
134 4-(4-Bromophenyl)phenol  029558-77-8 OC1=CC=C(C=C1)C2=CC=C(Br)C=C2  2.31 
135 3,5-Diiodosalicylaldehyde  002631-77-8 O=Cc1c(c(cc(c1)I)I)O  2.34 
136 2,3,5-Trichlorophenol  000933-78-8 Oc1cc(Cl)cc(Cl)c1Cl 2.37 
137 4-Nonylphenol  000104-40-5 Oc(ccc(c1)CCCCCCCCC)c1  2.47 
138 Nonyl-4-hydroxybenzoate  038713-56-3 CCCCCCCCCOC(=O)C1=CC=C(O)C=C1  2.63 
139 2,4,6-Trinitrophenol  000088-89-1 OC1=C(C=C(C=C1[N+]([O-])=O)[N+]([O-])=O)

   [N+]([O-])=O 
-0.16

140 3,4-Dinitrophenol  000577-71-9 OC1=CC=C(C(=C1)[N+]([O-])=O)[N+]([O-])=O 0.27 
141 2,6-Dinitrophenol  000573-56-8 OC1=C(C=CC=C1[N+]([O-])=O)[N+]([O-])=O  0.54 
142 2,6-Dichloro-4-nitrophenol  000618-80-4 OC1=C(Cl)C=C(C=C1Cl)[N+]([O-])=O  0.63 
143 2,5-Dinitrophenol  000329-71-5 OC1=CC(=CC=C1[N+]([O-])=O)[N+]([O-])=O 0.95 
144 2,4-Dinitrophenol  000051-28-5 OC1=CC=C(C=C1[N+]([O-])=O)[N+]([O-])=O 1.08 
145 2,6-Dinitro-4-cresol  000609-93-8 CC1=CC(=C(O)C(=C1)[N+]([O-])=O)[N+] 

   ([O-])=O 
1.23 

146 4-Bromo-2-fluoro-6-nitrophenol  000320-76-3 OC1=C(C=C(Br)C=C1F)[N+]([O-])=O 1.62 
147 Pentafluorophenol  000771-61-9 OC1=C(F)C(=C(F)C(=C1F)F)F  1.64 
148 4,6-Dinitro-2-methylphenol  000534-52-1 CC1=CC(=CC(=C1O)[N+]([O-])=O)[N+]([O-])=O 1.72 
149 2,4-Dichloro-6-nitrophenol  000609-89-2 OC1=C(C=C(Cl)C=C1Cl)[N+]([O-])=O  1.75 
150 Pentachlorophenol  000087-86-5 Oc(c(c(c(c1Cl)Cl)Cl)Cl)c1Cl 2.05 
151 2,3,5,6-Tetrachlorophenol  000935-95-5 Oc1c(Cl)c(Cl)cc(Cl)c1Cl 2.22 
152 Pentabromophenol  000608-71-9 Oc(c(c(c(c1Br)Br)Br)Br)c1Br  2.66 
153 2,3,4,5-Tetrachlorophenol  004901-51-3 Oc1cc(Cl)c(Cl)c(Cl)c1Cl  2.71 
154 4-Acetamidophenol  000103-90-2 O=C(Nc(ccc(O)c1)c1)C  -0.82 
155 3-Aminophenol  00591-27-5 Oc(cccc1N)c1 -0.52 
156 4-Aminophenol  000123-30-8 Oc(ccc(N)c1)c1  -0.08 
157 3-Methylcatechol  000488-17-5 Oc(c(ccc1)C)c1O  0.28 
158 2-Amino-4-tert-butylphenol  001199-46-8 Nc1c(O)ccc(C(C)(C)C)c1  0.37 
159 4-Methylcatechol  000452-86-8 Oc(c(O)cc(c1)C)c1  0.37 
160 1,2,4-Trihydroxybenzene  000533-73-3 Oc(c(O)cc(O)c1)c1  0.44 
161 Hydroquinone  000123-31-9 Oc(ccc(O)c1)c1  0.47 
162 Catechol  000120-80-9 Oc(c(O)ccc1)c1  0.75 
163 2-Amino-4-chlorophenol  000095-85-2 Oc(c(N)cc(c1)Cl)c1  0.78 
164 1,2,3-Trihydroxybenzene 000087-66-1 Oc(c(O)ccc1)c1O  0.85 
165 2-Aminophenol  000095-55-6 Oc(c(N)ccc1)c1  0.94 
166 4-Chlorocatecol  002138-22-9 Oc1ccc(Cl)cc1O  1.06 
167 Chlorohydroquinone  000615-67-8 Oc(c(cc(O)c1)Cl)c1  1.26 
168 4-Amino-2-cresol  002835-96-3 Oc(c(cc(N)c1)C)c1 1.31 
169 2,3-Dimethylhydroquinone  000608-43-5 c1c(O)c(C)c(C)c(O)c1  1.41 
170 4-Amino-2,3-dimethylphenol  003096-69-3 Nc1c(C)c(C)c(O)cc1 1.44 
171 Bromohydroquinone  000583-69-7 Oc(c(cc(O)c1)Br)c1  1.68 

Table 1.The chemical names, CAS#s, Smiles and values of experimental toxicity employed in the study
(Continues)
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172 Tetrachlorocatechol  001198-55-6 ClOC1=CC=C(Cl)C(=C1OCl)Cl  1.7 
173 Phenylhydroquinone  001079-21-6 Oc(c(c(cccc1)c1)cc(O)c2)c2 2 
174 3,5-Di-tert-butylcatechol  001020-31-1 Oc(c(cc(c1)C(C)(C)C)C(C)(C)C)c1O  2.11 
175 Methoxyhydroquinone 000824-46-4 c1c(O)c(OC)cc(O)c1  2.2 
176 3-Hydroxy-4-nitrobenzaldehyde  000704-13-2 OC1=CC(=CC=C1[N+]([O-])=O)C=O 0.27 
177 5-Hydroxy-2-nitrobenzaldehyde  042454-06-8 OC1=CC=C(C(=C1)C=O)[N+]([O-])=O 0.33 
178 2-Amino-4-nitrophenol  061702-43-0 NC1=CC(=CC=C1O)[N+]([O-])=O  0.47 
179 4-Methyl-2-nitrophenol 000099-53-6 CC1=CC=C(O)C(=C1)[N+]([O-])=O 0.57 
180 4-Hydroxy-3-nitrobenzaldehyde  003011-34-5 OC1=CC=C(C=O)C=C1[N+]([O-])=O  0.61 
181 4-Nitrosophenol  000104-91-6 O=Nc(ccc(O)c1)c1  0.65 
182 2-Nitroresorcinol  000601-89-8 OC1=CC=CC(=C1[N+]([O-])=O)O  0.66 
183 4-Methyl-3-nitrophenol  002042-14-0 CC1=CC=C(O)C=C1[N+]([O-])=O  0.74 
184 2-Chloromethyl-4-nitrophenol 002973-19-5 OC1=CC=C(C=C1CCl)[N+]([O-])=O  0.75 
185 2-Bromo-2'-hydroxy-5'-nitroacetanilide 003947-58-8 OC1=CC=C(C=C1NC(=O)CBr)[N+]([O-])=O 0.87 
186 4-Amino-2-nitrophenol  000119-34-6 NC1=CC=C(O)C(=C1)[N+]([O-])=O 0.88 
187 2-Fluoro-4-nitrophenol 000403-19-0 OC1=CC=C(C=C1F)[N+]([O-])=O  1.07 
188 5-Fluoro-2-nitrophenol  000446-36-6 OC1=CC(=CC=C1[N+]([O-])=O)F  1.13 
189 4-Nitrocatechol 003316-09-4 OC1=CC=C(C=C1O)[N+]([O-])=O  1.17 
190 2-Amino-4-chloro-5-nitrophenol  006358-07-2 NC1=CC(=C(C=C1O)[N+]([O-])=O)Cl  1.17 
191 4-Fluoro-2-nitrophenol  000394-33-2 OC1=CC=C(F)C=C1[N+]([O-])=O  1.38 
192 4-Nitrophenol  000100-02-7 OC1=CC=C(C=C1)[N+]([O-])=O  1.42 
193 2-Chloro-4-nitrophenol 000619-08-9 OC1=CC=C(C=C1Cl)[N+]([O-])=O 1.59 
194 4-Chloro-6-nitro-3-cresol  007147-89-9 CC1=CC(=C(C=C1Cl)[N+]([O-])=O)O  1.64 
195 3-Methyl-4-nitrophenol  002581-34-2 CC1=CC(=CC=C1[N+]([O-])=O)O  1.73 
196 4-Bromo-2-nitrophenol  007693-52-9 OC1=CC=C(Br)C=C1[N+]([O-])=O 1.87 
197 4-Chloro-2-nitrophenol  000089-64-5 OC1=CC=C(Cl)C=C1[N+]([O-])=O  2.05 
198 Tetrabromocatechol  000488-47-1 Oc1c(O)c(Br)c(Br)c(Br)c1Br 0.98 
199 Tetramethylhydroquinone  000700-13-0 Oc(c(cc(O)c1C)C)c1C  1.28 
200 Tetrachlorohydroquinone  000087-87-6 Oc(c(c(c(O)c1Cl)Cl)Cl)c1Cl  2.11 
201 1,3,5-Trihydroxybenzene  006099-90-7 Oc1cc(O)cc(O)c1 -1.26 
202 2-Hydroxybenzylalcohol  000090-01-7 OCc(c(O)ccc1)c1  -0.95 
203 Resorcinol  000108-46-3 Oc(cccc1O)c1  -0.65 
204 4-(4-Hydroxyphenyl)-2-butanone  005471-51-2 O=C(CCc(ccc(O)c1)c1)C  -0.5 
205 3-Methoxyphenol  000150-19-6 O(c(cccc1O)c1)C  -0.33 

206 Ethyl-4-hydroxy-3-
methoxyphenylacetate  060563-13-5 CCOC(=O)Cc1cc(OC)c(O)cc1 -0.23 

207 4-Methoxyphenol  000150-76-5 O(c(ccc(O)c1)c1)C -0.14 
208 3-Cyanophenol  000873-62-1 Oc1cccc(C#N)c1  -0.06 
209 4-Ethoxyphenol  000622-62-8 O(c(ccc(O)c1)c1)CC  0.01 
210 4-Hydroxypropiophenone   000070-70-2  O=C(c(ccc(O)c1)c1)CC  0.05 
211 3-Hydroxybenzaldehyde  000100-83-4 O=Cc(cccc1O)c1  0.09 
212 4-Chlororesorcinol  000095-88-5 Oc(c(ccc1O)Cl)c1  0.13 
213 2-Fluorophenol   000367-12-4 Fc(c(O)ccc1)c1  0.19 
214 4-Hydroxybenzaldehyde  000123-08-0 O=Cc(ccc(O)c1)c1 0.27 
215 2-Allylphenol  001745-81-9 Oc(c(ccc1)CC=C)c1  0.33 

Table 1.The chemical names, CAS#s, Smiles and values of experimental toxicity employed in the study
(Continues)
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216 3-Fluorophenol  000372-20-3  Oc1cccc(F)c1 0.38
217 4-Isopropylphenol  000099-89-8 Oc(ccc(c1)C(C)C)c1  0.47
218 2-Hydroxy-4-methoxyacetophenone  000552-41-0 COc1ccc(C(C)=O)c(O)c1  0.55
219 3-Methyl-2-nitrophenol  004920-77-8 CC1=C(C(=CC=C1)O)[N+]([O-])=O  0.61
220 4-Propylphenol  000645-56-7 Oc(ccc(c1)CCC)c1  0.64
221 2-Hydroxy-4,5-dimethylacetophenone  036436-65-4 Oc1cc(C)c(C)cc1C(=O)C  0.71
222 2-Methyl-3-nitrophenol  005460-31-1 CC1=C(C=CC=C1O)[N+]([O-])=O  0.78
223 3-Chlorophenol  000108-43-0  Oc(cccc1Cl)c1 0.87
224 4,6-Dichlororesorcinol  000137-19-9 Oc(c(cc(c1O)Cl)Cl)c1  0.97
225 4-Benzyloxyphenol  000103-16-2  O(c(ccc(O)c1)c1)Cc(cccc2)c2  1.04
226 3-Iodophenol 000626-02-8 Oc(cccc1I)c1  1.12
227 4-Bromo-2,6-dimethylphenol  002374-05-2 Oc(c(cc(c1)Br)C)c1C 1.17
228 2,3-Dichlorophenol  000576-24-9 Oc(c(c(cc1)Cl)Cl)c1  1.28
229 5-Pentylresorcinol  000500-66-3 CCCCCC1=CC(=CC(=C1)O)O  1.31
230 4-Phenylphenol  000092-69-3 Oc(ccc(c(cccc1)c1)c2)c2  1.39
231 Benzyl-4-hydroxybenzoate 000094-18-8 O=C(OCc(cccc1)c1)c(ccc(O)c2)c2  1.55
232 4-Hexyloxyphenol  018979-55-0 O(c(ccc(O)c1)c1)CCCCCC  1.64
233 4-Hexylresorcinol  000136-77-6 Oc(c(ccc1O)CCCCCC)c1 1.8 
234 2,4,5-Trichlorophenol  000095-95-4 Oc(c(cc(c1Cl)Cl)Cl)c1  2.1 
235 2-Ethylhexyl-4'-hydroxybenzoate  005153-25-3 CCCCC(CC)CC1=CC(=CC=C1C([O-])=O)O 2.51
236 2,3-Dinitrophenol  000066-56-8 OC1=CC=CC(=C1[N+]([O-])=O)[N+]([O-])=O 0.46
237 2,3,5,6-Tetrafluorophenol 000769-39-1 Oc1c(F)c(F)cc(F)c1F  1.17
238 2,6-Diiodo-4-nitrophenol  000305-85-1 OC1=C(I)C=C(C=C1I)[N+]([O-])=O  1.71
239 3,4,5,6-Tetrabromo-2-cresol  000576-55-6 Oc(c(c(c(c1Br)Br)Br)C)c1Br  2.57
240 2,4-Diaminophenol  000137-09-7 NC1=CC=C(O)C(=C1)N  0.13
241 5-Amino-2-methoxyphenol  001687-53-2 Nc1cc(O)c(OC)cc1 0.45
242 6-Amino-2,4-dimethylphenol  041458-65-5 Oc(c(cc(c1)C)C)c1N  0.89
243 Trimethylhydroquinone  000700-13-0 Oc(c(cc(O)c1C)C)c1C  1.34
244 Methylhydroquinone  096937-50-7 CC1=CC(=CC=C1O)O  1.86
245 3-Nitrophenol  000554-84-7 OC1=CC=CC(=C1)[N+]([O-])=O  0.51
246 2-Nitrophenol  000088-75-5 OC1=CC=CC=C1[N+]([O-])=O  0.67
247 3-Fluoro-4-nitrophenol  000394-41-2 OC1=CC=C(C(=C1)F)[N+]([O-])=O 0.94
248 2,6-Dibromo-4-nitrophenol  000099-28-5 OC1=C(Br)C=C(C=C1Br)[N+]([O-])=O  1.36
249 4-Nitro-3-(trifluoromethyl)phenol 000088-30-2 OC1=CC=C(C(=C1)C(F)(F)F)[N+]([O-])=O 1.65
250 Tetrafluorohydroquinone  000771-63-1 Fc(c(F)c(O)c1F)c(O)c1F  1.84

approach was applied in the linear regression analysis
process: Stepwise technique (Jenrich, 1960). The
stepwise-MLR process builds up a model through
stepwise addition of descriptors, where the inclusion
of a given descriptor is based on the F statistic values.
A deletion process is then employed where each
independent variable is held out in turn, and a model is
developed by using the remaining pool of descriptors.
Then all pairs and triplets are held out, and the process
is repeated. In this work, the stepwise-MLR was
performed using a free R-statistical software.

Partial Least Squares (PLS), introduced by Wold
et al. (1984), is a combination of MLR and PCA method
which has received a great of attention in the field of

chemometrics, bioinformatics, medicine, pharmacology
and others (Nguyen and Rocke, 2002). It attempts to
explain the variance in the independent variables and
tries to obtain a good correlation between the
dependent and the independent variables. The original
descriptors was reduced to a smaller number of latent
variables called PLS components (PC) that were used
as independent variables while the toxicity served as
the response variable. The PCs contained most of the
information in the independent variables that was
useful for predicting dependent variables, while
reducing the dimensionality of the regression problem
by using fewer components than the number of
independent variables. Partial least squares (PLS) are
considered as an especially useful method for

Table 1.The chemical names, CAS#s, Smiles and values of experimental toxicity employed in the study
(Continues)
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constructing predictive models when the factors are
many and highly collinear.

The quality of the final optimized equations
obtained via the MLR approach is judged by means of
criteria: the Kubinyi function (FIT) (Kubinyi, 1994). The
FIT (d) criterion has a low sensitivity to changes in
small d values and a substantially increasing sensitivity
for large d values. It is given by

)1)((
)1()(

22

2

RdN
dNdRFIT
−+
−−

= (1)

Where N is the number of molecules in the training
set, d is the number of descriptors, R (d) is the
correlation coefficient for a model with d descriptors.
The greater the FIT value the better the linear equation.
The optimal number of molecular descriptors to be
included in the linear regression model (dopt) is deduced
from the plot of FIT vs d, as the Kubinyi function
achieves a maximum value (dmax). And the following
criterion was adopted for determining dopt:

1. Calculate d1 = [dmax/2] + 1, where [x] denotes the
integer part of x.

2. If the slope of FIT at d1 is greater than at d1+1, then
dopt=d1, otherwise, dopt=d1+1.

By means of this criterion, it is expected to obtain
a dopt value that reflects a “breaking point” beyond
which the FIT improvement is negligible (Duchowicz
et al., 2008).

A crucial problem for the obtained QSAR model
is the definition of its applicability domain (AD) (Xia
et al., 2009). For any QSAR model, only the predictions
for chemicals falling within its AD can be considered
reliable and not model extrapolations (Pan et al., 2009).
Several methods were reported for defining the AD of
QSAR models, but the most common one is determining
the leverage values for each compound (Gramatica,
2007). In the present work, the Williams plot, the plot
of the standardized residuals versus the leverage, was
exploited to visualize the AD of a QSAR model. The
distance of the chemical from the centroid of its training
set was measured by the leverage of a chemical. And
the leverage of a compound in the original variable
space is defined as (Netzeva et al., 2005):

leverage” (h*) is defined as (Eriksson et al., 2003):

Where n is the number of training compounds, p is the
number of predictor variables. A leverage value which
is greater than the warning leverage is considered large.

Outliers to each of the models developed were
identified on the basis of having a high standardised
residual more than 2.5 times the standard error of
estimate for a particular equation (Verma and Hansch,
2005). QSAR models that have no or very few outliers
are considered as good models. Thus, in order to
develop good models, outliers were removed and re-
analysis. Then, the mechanisms of these removed
outliers were given a reasonable interpretation from
statistical data and structure of compound.

RESULTS & DISCUSSION
We first built three models (Table 2) using ALogP,

MlogP and ClogP individually. ClogP model has poor
prediction with a R2 of 0.03 and Q2 of 0.04. MlogP and
AlogP model, derived from MlogP and AlogP descriptor
respectively, show better prediction capability than
ClogP model. Interestingly, MlogP exhibts stronger
modeling power than AlogP, and the prediction
accuracies were 52% for MlogP and 39% for AlogP.

Then, 3 logP and 92 Molconn-Z descriptors were
used to built QSARs by stepwise-MLR method and
the criteria of Kubinyi function was applied for the
optimal of molecular descriptors. The resultant QSARs
were summarized in Table 1 and the definition of
descriptors involved in the model were shown in Table
3.

The following equation was developed from a
stepwise selection of ClogP + Molconn-Z descriptors
and the dopt was six.

pIGC50 = - 0.59(±0.139)
- 0.38(±0.090) SsssN + 0.15(±0.027) SssCH2

- 0.08(±0.018) SssO + 0.05(±0.009) SsCl
- 0.05(±0.008) SHBint2 + 0.01(±0.001) molweight

Ntra = 187,Ntest = 63, R2 = 0.60, SEP = 0.56, F = 44.73, Q2

= 0.48, SEE = 0.53, FIT = 1.21

Because of the low prediction accuracy (Q2 = 0.48)
and large gap between R2 and Q2 for Eq. 4, the model
was not further analyzed.

The following relationship was found between
the toxicity of the phenols to T. pyriformis and MlogP
+ Molconn-Z descriptors. The stepwise-MLR and
sensitivity analysis result the following equation:

i
TT

ii xXXxh 1)( −= (2)

nph )1(3* += (3)

Where xi is the descriptor vector of the considered
compound and X is the descriptor matrix derived from
the descriptor values of training set. A “warning

(4)



932

Jiang, D. X. et al.

Table 2. Summary of all MLR models developed in this study and relative parameters

 

Equations R2 SEP F Q2 S EE dopt 

pIGC50=+0.74(±0.063 + 3.36×10-6(±0.000)ClogP 0.03 0.85 5.66 0.04 0.70 — 

pIGC50=-0.47(±0.104)  + 0.54(±0.041)AlogP 0.48 0.62 172.61 0.39 0.56 — 

pIGC50=-0.55(±0.112)  + 0.63(±0.049)MlogP 0.47 0.63 164.12 0.52 0.50 — 

Eq. 4 0.60 0.56 44.73 0.48 0.53 6 

Eq. 5 0.66 0.51 58.76 0.60 0.47 6 

Eq. 6 0.71 0.46 106.92 0.69 0.41 4 

Eq. 7 0.69 0.49 66.30 0.67 0.43 6 

Eq. 8 0.70 0.47 84.31 0.68 0.42 5 

Table 3. The symbols and definitions of the molecular descriptors in this work

Class Descriptor Descript ion 

AlogP octanol-water partition coeffic ient based on Atom Type  
Classifica tion 

ClogP octanol-water partition coeff icient based on the constants of 
these  fragments and correction factors 

logP 

MlogP octanol-water partition coeffic ient based on  Molecular  Type  
Classifica tion 

SsssN Sum of a tom-type E-State: >N-  
SssCH2 Sum of a tom-type E-State: -CH2- 
SssO Sum of a tom-type E-State: -O- 
SsCl Sum of a tom-type E-State: -Cl 
SHBint2 E-State descr iptors of potentia l internal H bond strength 
SHCsatu E-State of Csp3 bonded to unsaturated C atoms 
SHsOH Atom type electrotopological state index values for atom 

types 
Scarboxylicac id E-State of carboxylic acid 

SwHBa weak H bond acceptor  index, sum of E-State values for  >N-, 
-O-, =O, -S- along with -F, and –Cl 

gmax Extreme atom level E-State  values in molecule: Gmax—
Largest E-State value 

E-sta te 

SHBa Acceptor descriptor for molecule (sum of E-state values for 
a ll hydrogen bond acceptors in the  molecule). The  following 
groups are classified as acceptors: -OH, =NH, -NH2, -NH-, 
>N-, -O-, =O, -S- along with -F and -Cl. 

nclass number of classes of topologically (symmetry) equivalent 
graph vertices 

Molecular 
connectivity 

nelem number of  elements in molecule  

Molecular weight molweight Molecular weight 
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pIGC50 = - 1.341(±0.215) + 0.69(±0.043) MlogP
- 0.32(±0.076) SHCsatu +  0.14(±0.031) ShsOH
- 0.09(±0.015) Scarboxylicacid + 0.07(±0.018) nclass
- 0.04(±0.009) SwHBa

Ntra = 187,Ntest = 63, R2 = 0.66, SEP = 0.51, F = 58.76, Q2

= 0.60, SEE = 0.47, FIT = 1.58

From residuals (not shown) of Eq. 5, it can be
seen that the model does not provide adequate
predictive power for the assessment of toxicity. Eleven
compounds with residual values over 2.5S, nine in
training set and two in test set, were identified as
statistical outliers (Table 4). Removal of these
compounds and re-analysis reveals a significant
equation with dopt = 4:

pIGC50 = + 0.65(±0.323)  +  0.73(±0.039) MlogP
- 0.22(±0.038) gmax

Table 4.The structures of outliers in MLR and PLS models

Compound structure 
Outliers to 
equat ions 

 
Compound structure  
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equations 
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Eq.(6) 
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Eq.(5) 
 

   

 

- 0.07(±0.013) Scarboxylicacid + 0.03(±0.004) SHBa

Ntra = 178, Ntest = 61, R2 = 0.71, SEP = 0.46, F = 106.92,
Q2 = 0.69, SEE = 0.41, FIT = 2.21

The resulted correlation between experimental and
predicted pIGC50 values of this model is shown in Fig.
1 (a). In this figure, plots in the training and test data
sets are all well distribution around the regression line.
Table 1 presents the detailed statistics of the model we
obtained, where it is clear that the R2 (= 0.71) and Q2

(= 0.69) have a significant improvement and the number
of variables decrease after removing these outliers.

The Williams plot (Fig. 1 (b)) shows that six
chemicals in the training set with h > h* (h* = 0.06) and
the standardized residuals  < 2.5S. However, all the six
chemicals in the training set fit the model well. Another
two compounds, one in the training set and the other

(5)

(6)
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Fig. 1(a). Plot of the experimental pIGC50 to T.
pyriformis against toxicity predicted by Eq. (6)

in the test set, with h < h* and the standardized
residuals < 2.5S, were considered as outliers. These
outliers were compound 2 (3-Hydroxybenzyl alcohol)
and 138 (Nonyl-4-hydroxybenzoate).

Based on AlogP, MlogP, ClogP and Molconn-
Z descriptors, stepwise-MLR and sensitive analysis
result the following equation:

pIGC50 = - 1.512(±0.306) + 0.580(±0.034) AlogP
- 0.314(±0.075) SHCsatu  + 0.189(±0.066) nelem
+ 0.070(±0.017) nclass -  0.060(±0.014)
Scarboxylicacid - 0.043(±0.009) SwHBa
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Fig. 1(b). Plot of standardized residuals versus
leverages. Lines represent ±2.5 standardized

residuals, dotted line represents warning leverage
(h* = 0.06)

(7)

Ntra = 187,Ntest = 63, R2 = 0.69, SEP = 0.49, F = 66.37, Q2

= 0.67, SEE = 0.43, FIT = 1.79

Intrestingly, a model developed from AlogP + Molconn-
Z descriptors shared the same equation as Eq. (7). From
the residuals point of view, the Eq. 7 was not an
adequate model to estimate the pIGC50 in this study.
Six outliers (Table 3) with a residual exceeding the value
2.5S were observed. Removal of these outliers and re-
analysis reveal a significant model with dopt = 5:

pIGC50 = - 1.45(±0.263) + 0.59(±0.036) AlogP
- 0.33(±0.080) SHCsatu + 0.20(±0.070) nelem
- 0.06(±0.015) Scarboxylicacid + 0.01(±0.004) SHBa

Ntra = 184, Ntest = 60, R2 = 0.70, SEP = 0.47, F = 84.31, Q2

= 0.68, SEE = 0.42, FIT = 2.02.

The plot of the predicted pIGC50 values based on Eq.
(8) versus experimental ones is shown in Fig. 2 (a).
Obviously, the predicted pIGC50 values are in a good
agreement with experimental ones. The 5-parameter
model provides high statistical quality: R2 = 0.70 and
Q2 = 0.68.

(8)

The optimal model was subjected to the further
applicability domain analysis. As can be seen from
Williams plot of Eq. 8 shown in Fig. 2 (b), eight
chemicals in the training set with h > h* (h* = 0.07),
seven of which with the standardized residuals <  2.5S
and the rest one with the standardized residuals > 2.5S.
The distribution of residuals in Fig. 2 (b) shows that
the best molecular descriptors given by Eq. 8 lead to
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Fig. 2(a). Plot of the experimental pIGC50 to T.
pyriformis against toxicity predicted by Eq. (8)



residuals that tend to follow a normal distribution for
most of the phenols. Only one outlier, compound 139
(2, 4, 6-Trinitrophenol), were observed.
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Table 5. Proportion of Variance Explained (Percentage)

 

Input  variables ( X)  Target Variables (Y) 
Laten t Factor 

Curr ent X (%)  
Cu mulative X 

(% ) Cu rrent  Y (%) Cumulative Y (% ) 

1 19.001 19.001 42.626 42.626 
2 9.387 28.388 18.696 61.322 
3 4.176 32.564 8.395 69.716 
4 6.792 39.357 2.524 72.240 
5 6.136 45.492 1.756 73.996 
6 3.425 48.917 1.142 75.138 
7 2.746 51.663 0.912 76.050 
8 3.369 55.032 0.577 76.627 
9 2.445 57.477 0.661 77.288 

10 2.728 60.206 0.566 77.854 

equal manner to PC1. The second PC accounted for
about 18.70% of the total variance. The third PC
explained about 8.40% of the total physical properties
of descriptors. The remaining six PCs did not show
any significant contributions, cumulative accounting
for 5.61% of the variance. PLS utilized these reduced
principal component provided a model with an R2 of
0.78 and Q2 of 0.64. The plot of predicted vs
experimental toxicities was shown in Fig. 3. All the
chemicals in this figure followed a regression line well,
which indicated that PLS model has a high goodness-
of-fit. Three compounds (Table 4), compound 175
(Methoxyhydroquinone), compound 198
(Tetrabromocatechol)  and 244 (Methylhydroquinone)
were treated as outliers of this model. Among them,
compound 175 and 244 were in training set, and
compound 198 was in test set. All these outliers in PLS
model were also present in MLR model.

The original 96 variables were compressed and
analyzed by PLS, yielding 10 Latent Factor (PCs). The
statistical results of the PLS were shown in Table 5
and the coefficients for these 10 PCs were shown in
Table 6. As can be seen from Table 4, four major
components described over 70% of the total variance.
The first PC (PC1) explains 42.63% of the total variance,
and each component is expected to contribute in an

 

PCs PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

0.43  0.19  0.08  0.03  0.02  0.01  0.01  0.01  0.01  0.01  
Coeffic ients 

(0.426) (0.613) (0.697) 0.722) (0.740) (0.751) (0.761) (0.766) (0.773) (0.779)

Table 6. The coefficients of PLS model

As demonstrated in the literature (Pontolillo and
Eganhouse, 2001), the octanol-water coefficient for a
given compound could be subject to high variability
due to the applied experimental procedure or the
selected calculation method. Thus the accuracy and
quality of a QSAR model are often greatly affected by
the specific logP used. For this reason, we first built
three models using ALogP, MlogP and ClogP
individually (Table 2). Obviously, models developed
using logP descriptors alone are not satisfactory to
predict the toxicity of phenols due to their low R2 and
Q2 values. Therefore, more descriptors, 92 Molconn-Z
descriptors, were added to build more powerful
predictive models. Usually, the more variables chosen
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Fig. 3. Plot of the experimental pIGC50 to T. pyriformis against toxicity predicted by PLS model

by the stepwise regression the higher correlation to
some extent. But the inclusion of more descriptors
indicates that there are more factors controlling toxicity
in this data set, which may be hard for interpretation of
the mechanisms of toxic action. Therefore, in the
present study, a strategy of the principle of maximal
parsimony, the Kubinyi function (FIT) method, was
taken into account in the process of developing models
to optimize the number of molecular descriptors. And
to state whether the model’s assumptions are met, the
applicability domain of a QSAR model was
investigated.
As we know, the molecular structures of the chemicals
control their activities and descriptors directly encode
particular features of molecular structure. Thus, it is
possible to shed light on mechanisms of toxic action
of the compounds by interpreting the descriptors in
the regression model. And from coefficients of each
variable in the model, the importance of each descriptor
and the question that which of the independent
variables has a greater effect on the dependent variable
in the multiple regression analysis can also be
interpreted. In Eq. 6, from the absolute size of the
standardized regression coefficients, it can be
concluded that LogP (MlogP) contribute the most
significantly to pIGC50 variation. LogP is a descriptor
which can well describe the bioavailability of a
chemical to organism. The penetration/solubility
descriptors (like logP) reflect the ability of a compound
to form non-covalent interactions with its environment,
to dissolve and persist in water or in a lipidic
environment, or to permeate the phase interfaces.
Generally, larger logP indicates a stronger ability of
the chemical to permeate the cell membrane of an
organism and, therefore, to much more easily interact

with its target in the organism. This is especially true
for aquatic toxicological assay where the target species
is put into a solution with a given concentration of the
molecule investigated. MlogP descriptor encodes
information about the molecular hydrophobicity. The
MlogP takes a positive coefficient, which indicates that
increasing values of MlogP correlate with increasing
the aquatic toxicity of phenols. The second significant
molecular descriptors in the Eq. 6 are the E-state indices
which contain gmax, Scarboxylicacid and SHBa
descriptors. The E-state values represent the binding
affinity for a compound. The negative coefficient of
gmax and SHCsatu indicates that increasing values of
gmax and SHCsatu correlate with decreasing the
aquatic toxicity of phenols, which can be interpreted
as that the high negative E-State values can lead to
decreased binding affinity of a compound. The low
binding affinity is potentially low toxic to aquatic
organisms. Interestingly, the SHBa descriptor has the
positive coefficient, indicating the larger SHBa the
higher toxicity to organism. The group-type E-state
descriptors SHBa relate to toxicophores that have
hydrogen bond acceptor. It demonstrates that the more
hydrogen bond acceptor can improve the ability of
attaching to membrane or dissolving in body fluids,
thus increases the aquatic toxicity.

From Eq. 8, the most significant descriptor in the
equation continues to be logP (AlogP), whose weight
takes a positive sign further indicating that the
increasing values of AlogP correlate with increasing
potential of aquatic toxicity. Besides AlogP, the other
three important descriptors are directly related to the
atom-type E-state descriptors, i .e. , SHCsatu,
Scarboxylicacid and SHBa (Table 3). Among, the latter
two descriptors were also present in Eq. 6. As
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compared to Eq. 6, both Scarboxylicacid and SHBa in
Eq. 8 are less important than that in Eq. 6. Interestingly,
it also takes a negative weight as it does in Eq. 6, which
further implies that the increase of Scarboxylicacid and
SHBa value makes a compound less toxic. The
descriptor SHCsatu encodes E-State of Csp3 bonded
to unsaturated C atoms. Here, molecules with larger
SHCsatu values tend to have smaller predicted aquatic
toxicity values, as revealed by its negative coefficient
in Eq. 8. And the descriptor of nelem, a molecular
connectivity descriptor, encodes the number of
elements in molecule, which could explain the
bimolecular accessibility. In this model, nelem plays a
positive influence on the aquatic toxicity.

During the process of model developing, a lot of
outliers (Table 4) have been observed. From their
structural and physicochemical characteristics, all these
outliers can be classed into three types, i.e., 1):
quinones compounds, or capable of metabolism or
oxidization to quinones; 2): aromatic-nitrogen-
containing compounds, or capable of metabolism to
aromatic-nitrogen-containing compounds and 3):
extremely lipophilic or hydrophilic chemicals.
Compound 169 (2, 3-Dimethylhydroquinone), 175
(Methoxyhydroquinone) and 244
(Methylhydroquinone)  have the structure of 1- and 4-
substituted hydroxyl, which is oxidised into quinones
easily. Five nitroso compounds, Compound 139 (2, 4,
6-Trinitrophenol), 142 (2, 6-Dichloro-4-nitrophenol), 192
(4-Nitrophenol), 195 (3-Methyl-4-nitrophenol) and 238
(2, 6-Diiodo-4-nitrophenol) are aromatic-nitrogen-
containing compounds. Compound 168 (4-Amino-2-
cresol) and 170 (4-Amino-2, 3-dimethylphenol) are
amino compounds, which may be metabolized to a
nitroso group. Compound 4 (3-Hydroxy-4-
methoxybenzyl alcohol), 198 (Tetrabromocatechol) and
201 (1, 3, 5-Trihydroxybenzene) have the structure of
multiple-substituted hydroxyl groups which maybe
contribute to their high hydrophilic.

To simplify the analysis and to attempt to allow
some interpretation of the results, PCA was applied to
the descriptor  set.  PCA identified 10 PCs as
representative of the complete set of 96 descriptors.
PLS analysis based on these components provided a
model with Q2 of 0.64. Though the high Q2 of PLS
model, three outliers were observed in this model such
as, compound 175 (Methoxyhydroquinone), 198
(Tetrabromocatechol) and 244 (Methylhydroquinone).
The prediction toxicity of compound 175 and 244 were
lower than the experiments, and the prediction of
compound 198 was higher than the experiments. All of
those outliers were observed in MLR models. For
assessment of the predictivity of the models, an external
validation (test) set was used.

In the present study, three optimal models were
obtained and they were compared with those calculated

in previous work. Cronin et al. (2002) using stepwise-
MLR method obtained a seven-descriptor model
(including logD, LUMO, PNEG, ABSQon, SsOH, MW,
MaxHp) with R2 = 0.65, Q2 = 0.63 based on 108
descriptors, while removal of these outliers and re-
analysis reveals a significant seven-variables equation
with R2 = 0.83 and Q2 = 0.82. Enoch et al. (2008) employed
168 descriptors and stepwise-MLR method
constructed a 4-variables model (including logP,
AHard, NHDon, SdssC) with R2 of 0.66 and Q2 of 0.64. In
this work, two six-variables MLR models (Eq. 5 and Eq.
7) were built based on 95 descriptors. From statistics,
Eq. 5 has the similar predictive power to Cronin model
but poor to Enoch model. While Eq. 7 shows better
predictive than both Cronin and Enoch model. Remove
of outliers and reanalysis, two optimal models (Eq. 6
and Eq. 8) were obtained. Eq. 6 exhibits high predictive
power (R2 = 0.71, Q2 = 0.69) using only four optimal
variables and Eq. 8 contains only five descriptors with
R2 of 0.70 and Q2 of 0.68, indicating that both Eq. 6 and
Eq. 8 have stronger predictive than Enoch’s model.
Though the re-analysis Cronin’s model shows high
Q2, it is harder to interpret the mechanism of toxic action
because of its more variables than both Eq. 6 and Eq.
8. Cronin et al. (2002) used PLS approach with 200
compounds provided an 11-descriptors model with a
R2 of 0.60, remove of the outliers and re-analysis
provided a model with a R2 of 0.82. While the current
PLS model was developed based on 10 PCs with 187
compounds, providing a R2 of 0.78 without excluding
any outliers. It is clear that our PLS model shows more
statistical significant than the one obtained by Cronin.
From the high predictive power of the obtained models,
logP and Molconn-Z descriptors have been
demonstrated significant variables for the prediction
of the toxicity of phonels.

CONCLUSION
In this paper, a large data set of toxicity values for

phenols to the ciliated protozaon T. pyriformis has been
collected from literature and MLR and PLS methods
were performed on the data set. The employment of
logP descriptors and Molconn-Z descriptors made
possible to achieve better statistical parameters that
compare fairly well with others published previously
based on stepwise-MLR and PLS method. By stepwise-
MLR analysis, two robust models were obtained and
the mechanism of toxic action was interpreted
according to these descriptors involved in models. The
results showed that Eq.6 and Eq.8 were highly
predictive models for aquatic toxicity of phenols
because of high in R2 and Q2 and concise in variables.
Even, the models developed for training set are good
and potential for assessment and regulation purpose
because of the negligible difference between Q2 and
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R2 value. The results also indicate that developed
models in this study show better statistical significance
than those corresponding models reported in the
literature. The strong predictivity of final models shows
that LogP and Molconn-Z descriptors are significant
contribution to the prediction of toxicity and
interpretation of mechanism of toxic action. The resulut
of PLS analysis indicated that the PLS model was of
potential to predict the toxicity of phenols.
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