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ABSTRACT: In this paper, the grouting ability of sandy soils is investigated by artificial 

neural networks based on the results of chemical grout injection tests. In order to evaluate 

the soil grouting potential, experimental samples were prepared and then injected. The sand 

samples with three different particle sizes (medium, fine, and silty) and three relative 

densities (%30, %50, and %90) were injected with the sodium silicate grout with three 

different concentrations (water to sodium silicate ratio of 0.33, 1, and 2). A multi-layer 

Perceptron type of the artificial neural network was trained and tested using the results of 

138 experimental tests. The multi-layer Perceptron included one input layer, two hidden 

layers and one output layer. The input parameters consisted of initial relative densities of 

grouted samples, the average size of particles (D50), the ratio of the grout water to sodium 

silicate and the grout pressure. The output parameter was the grout injection radius. The 

results of the experimental tests showed that the radius of grout injection is a complicated 

function of the mentioned parameters. In addition, the results of the trained artificial neural 

network showed to be reasonably consistent with the experimental results. 

 

Keywords: Artificial Neural Network, Chemical Grout, Grout-Ability, Sandy Soil. 

 

 

INTRODUCTION 

 

In the past two centuries, the injection 

method has been used for improving soil 

properties. Various methods of grouting 

such as permeation grouting, filling 

grouting, fracture grouting, compaction 

grouting, and electro-osmosis chemical 

grouting have been developed for injection 

in soils (Liao et al., 2011). Among the 

different grouting methods, chemical 

grouting is commonly applied in order to 

increase the soil resistivity and improve its 

physical and mechanical characteristics. 

There are a considerable number of 

studies on the improvement of soil 

characteristics such as permeability 

reduction or shear strength increase using 

the grouting methods; however, relatively a 

limited number of experimental works has 

been undertaken for determining the grout-

ability of sands through chemical grouting. 
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In this respect, Portland cement was first 

used in a single injection; however, in 

sample cases with tiny pores in sediments, 

adequate penetration of the injection would 

have been a problem due to the large cement 

grains compared to the size of soil pores 

(Karol, 1983). 

Grouts are divided into two general 

categories namely the grouts with suspended 

beads (rough grout) and soluble grouts (soft 

grout). The mixture of water and cement, 

clay, Bentonite, and etc. are categorized as 

rough grouts. In contrast, Silicates, 

Lignosulfonate, Amyloplast, Akrylamide, 

Polyester, Urea, Ethan, and some other 

chemicals are known as soft chemical grouts 

(Army Corps of Engineers, 1995). 

The grouting of granular soils has been 

studied for years. For example, Lenahan and 

Herndon (1976) suggested some limits for 

the grout-ability of soils considering the 

grain size of soil (Herndon and Lenahan, 

1976). Bell (1993) and Cerenand Incecik 

(1995) examined the grout-ability of soil 

only based on the grain size of soil and 

cement (Bell, 1993; Incecik and Ceren, 

1995). However, large-scale experiments 

showed that the injection of the granular soil 

is affected by various parameters of soil and 

grout (Akbulut, 1999; Kutzner, 1996). These 

parameters included the size of soil and 

grout grains, the fine content of the soil 

(FC), grout pressure (GP), soil relative 

density (Dr), and water to cement ratio 

(W/C) (or viscosity) of the grout injected 

(Saute and Saglamer, 2002). Also, Dano et 

al. (2004) evaluated the grout-ability of 

sandy soil with very fine-grained cement 

grout (Dano et al., 2004). 

In this paper, the grouting ability of sandy 

soils with particles of medium to silt size 

using sodium silicate grout was 

experimentally investigated. The grout used 

was a chemically based grout. Ata and 

Vipulanandan (1998, 1999) studied the 

effective factors on the mechanical and 

creep properties of sands being injected with 

this grout (Ata and Vipulanandan, 1998 and 

1999). Hassanlourad et al. (2010) examined 

the mechanical properties and the shear 

strength behavior of grouted sands using 

sodium silicate through unconfined and 

drained and un-drained triaxial tests 

(Hassanlourad et al., 2012). 

The Artificial Neural Network (ANN) 

technique also was used for simulating the 

grouting process of the soil. The ANN is a 

simple simulation of the human brain and 

accepted as a reliable data-modeling tool to 

capture and register complex relationships 

between inputs and outputs (Caglar and 

Arman, 2007; Banimahd et al., 2005).  

ANNs have been also developed as a new 

tool for analyzing geotechnical problems. 

Once the network is trained with a proper 

number of sample data sets, a new output 

having a relatively similar pattern will be 

predicted on the basis of the previous 

learning (Grima et al., 2000). 

From the early 1990s, ANNs have been 

applied to almost every problem in 

geotechnical engineering such as 

compaction and permeability (Agrawal, 

1994; Goh, 1995b; Gribb and Gribb, 1994; 

Sinha and Wang, 2008 ), soil classification 

(Cal, 1995), soil density (Goh, 1995b), 

blasting (Lu, 2005),dams (Kim and Kim, 

2006), environmental geotechnics (Shang, 

2004), earth anchoring (Shahin and Jaksa, 

2004, 2005, 2006), grout-ability prediction 

of soil with micro-fine cement grouts Liao et 

al, 2011), determination of the pile bearing 

capacity (Teh et al., 1997; Lee and Lee, 

1996), thermal properties of soils (Erzin et 

al., 2006), and foundation settlement 

analysis (Shahin et al., 2002). 

In summary, the effective parameters on 

the grout radius of injection (ROI) for the 

sandy-silty soil included soil relative density 

(Dr), soil average size (D50), grout water to 

sodium silicate ratio (W/S), and grout 

pressure (GP), which were examined using 
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the ANN technique in this research. It was 

observed that an artificial neural network is 

well capable of learning and predicting 

complex relations between these parameters 

in the grouting process. 

 

EXPERIMENTAL DATA 

GENERATION 

 

Based on the soil mechanics knowledge, 

parameters affecting the soil injection 

include particle size distribution, grain size, 

compaction of soil, and grout concentration 

and pressure. Therefore, a number of 

experimental tests were carried out as 

presented below. 

 

Particle Size of the Used Sand 

A broken silty sand as called Firoozkooh 

sand was used for the testing purpose. To 

examine the effect of the soil particle size on 

its grout-ability using chemical grout, three 

types of particle size distributions including 

medium (remained on the sieve #100 and 

passed from sieve #40), fine (remained on 

the sieve #200 and passed from sieve #100), 

and very fine (%50 remained on the sieve 

#200 and %50 passed from sieve #200) were 

prepared. Figure 1 shows the prepared three 

particle size distributions. 

 

Combination of Grout 

The selected grout for injection in the soil 

was a chemical based grout called sodium 

silicate. The advantages of this grout are it's 

relatively low cost and easy penetration to 

the soil voids. Another benefit of this grout 

is its low environmental hazards (Army 

Corps of Engineers, 1995). 

The main compositions of the grout are 

sodium silicate (Na2O2SiO2) as the main 

cause of the connectors and water as an 

element for hydration and viscosity 

reduction factor. Also, other additives such 

as formamide as the chemical reactor and 

aluminum sulfate as an accelerator of the 

chemical reactions were used. Sodium 

silicate grout is usually used to increase the 

bearing capacity of soft soils and/or 

groundwater seepage control. Experiments 

show that sodium silicate grout is resistant in 

acidic, alkaline, salt, and fungal 

environments (Army Corps of Engineers, 

1995). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1. Particle size distribution of the used sand samples. 
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Grouting  

The injection system consists of a grout 

tank, a cylindrical mold of sampling which 

is 100cm in length and 4 cm in diameter, and 

a piping system to enter and exit the grout. 

The tank, pipes, and the mold are made of a 

transparent plastic (plaxi glass) so that the 

grout injection could be observed and traced. 

For a more precise control, the necessary 

pressure for the grout injection was 

gradually adjusted as the tank elevation 

controls different injection pressure. The 

minimum and maximum elevation of the 

tank was considered to be 100cm and 

500cm, respectively, and each elevation 

increment of the tank was selected as 28 cm 

for increasing the grout pressure. The 

grouted samples were positioned 

horizontally and then injected. Figure 2 

illustrates the grouting machine. 

 

Sample Preparation  

The grouted samples were made of three 

relative densities using the dry deposition 

method and then injected by three different 

grout combinations (Water/sodium silicate 

ratio). In total, 138 grouting steps were taken 

on the samples. Results of the experiments 

are summarized in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Grouting machine. 
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Table 1. Experimental data. 

D50 (mm) Dr (%) W/S GP (cm) ROI (cm) D50 (mm) Dr (%) W/S GP (cm) ROI (cm) 

0.375 50 2 120 60 0.11 50 2 176 100 

   
148 100 

  
1 120 24 

  
1 120 35 

   
148 38 

   
148 70 

   
176 61 

   
176 100 

   
204 83 

  
0.33 120 24 

   
232 100 

   
148 40 

  
0.33 120 16 

   
176 62 

   
148 29 

   
204 80 

   
176 38 

   
232 100 

   
204 49 

0.375 90 2 120 29 
   

232 63 

   
148 53 

   
260 75 

   
176 79 

   
288 88 

   
204 100 

   
316 100 

  
1 120 24 

 
90 2 120 21 

   
148 40 

   
148 46 

   
176 56 

   
176 67 

   
204 72 

   
204 88 

   
232 88 

   
232 100 

   
260 100 

  
1 120 19 

  
0.33 120 16 

   
148 32 

   
148 29 

   
176 48 

   
176 38 

   
204 62 

   
204 47 

   
232 76 

   
232 56 

   
260 90 

   
260 65 

   
288 100 

   
288 74 

  
0.33 120 16 

   
316 83 

   
148 22 

   
344 92 

   
176 31 

   
372 100 

   
204 40 

0.375 30 2 120 80 
   

232 49 

   
148 100 

   
260 58 

  
1 120 42 

   
288 67 

   
148 78 

   
316 76 

   
176 100 

   
344 85 

  
0.33 120 30 

   
372 93 

   
148 57 

   
400 100 

   
176 79 

 
30 2 120 49 

   
204 100 

   
148 85 

0.11 50 2 120 37 
   

176 100 

   
148 80 

  
1 120 

39 
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Table 1. Experimental data. (Continued) 

D50 (mm) Dr (%) W/S GP (cm) ROI (cm) D50 (mm) Dr (%) W/S GP (cm) ROI (cm) 

0.11 30 1 148 60 0.075 50 0.33 344 38 

   
176 82 

   
372 41 

   
204 100 

   
400 44 

  
0.33 120 20 

   
428 45 

   
148 38 

 
90 1 120 6 

   
176 56 

   
148 12 

   
204 74 

   
176 18 

   
232 100 

   
204 22 

0.075 50 1 120 7 
   

232 28 

   
148 13 

   
260 33 

   
176 19 

   
288 38 

   
204 24 

   
316 42 

   
232 30 

   
344 46 

   
260 35 

   
372 49 

   
288 40 

   
400 52 

   
316 44 

   
428 53 

   
344 48 

  
0.33 120 5 

   
372 51 

   
148 9 

   
400 54 

   
176 14 

   
428 56 

   
204 18 

  
0.33 120 5 

   
232 22 

   
148 10 

   
260 26 

   
176 15 

   
288 30 

   
204 20 

   
316 33 

   
232 24 

   
344 37 

   
260 28 

   
372 39 

   
288 32 

   
400 40 

   
316 35 

   
428 41 

 

ARTIFICIAL NEURAL NETWORK 

(ANN) 

 

The ANN is a data processing system that is 

formed by simple processing elements which 

are closely related. They are some sort of 

computational models which are based on 

the information processing system of the 

human brain. Neural networks are the 

combination of the simple elements which 

operate in parallel with each other and are 

inspired by the biological nervous systems. 

As in nature, the network function is 

determined largely by the connections 

between the elements (Demuth and Beale, 

2003). In fact, in an ANN hidden knowledge 

behind the data is transferred to the network 

structure. The artificial neural network, in 

which there is no explicit knowledge and 

clear relationship about the problem 

elements, was used in this study.  

 

Multi - Layer Perceptron (MLP) 

Architecture  

Each ANN is formed by a number of 

computational units called neurons which 



Civil Engineering Infrastructures Journal, 47(2): 239 – 253, December 2014 

245 

 

are connected together. ANNs are composed 

of three different layers of neurons: one 

input layer, one or more hidden layers, and 

one output layer (Griffiths and Andrews, 

2011). In the MLP type of the network, each 

neuron in each layer is connected to the next 

layer neurons and there is no connection to 

the back layer of the network. Architecture 

of a simple neuron is shown in Figure3. 

In each neuron, each input (p) is 

multiplied by a weight (w) (which is 

changed adaptively to improve the 

performance of the network based on the 

pairs of external and internal signals) and is 

summed with a bias (b). Then, (n) is used as 

an indicator in the transfer function (f) that 

finally gives an output (a). 

The input layer consists of neurons which 

receive the data from external sources 

(Basheer and Hajmeer, 2000). The hidden 

layer processes the data received from the 

input neurons and passes it on to the output 

layer (Nelson and Illingworth, 1991). The 

output layer receives the data from the 

hidden layer and transforms them into a 

predicted value of the output (Griffiths and 

Andrews, 2011). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Architecture of a simple neuron. 

 

Training of the Network  

Prior to the ANN training, a learning rule 

is selected which explains how weights will 

be modified in order to minimize the output 

prediction error. In the process of modeling, 

the back-propagation algorithm is the most 

common learning rule applied for training 

multi-layer ANNs (Balakrishnan and Weil, 

1986; Maier and Dandy, 2000). 

The Levenberg-Marquardt (LM) 

algorithm is an iterative technique that 

locates the minimum of a multivariate 

function that is expressed as the sum of 

squares of non-linear real-valued functions 

(Marquardt, 1963; Levenberg, 1944). It has 

become a standard technique for non-linear 

least-squares problems (Mittelmann, 2004), 

widely adopted in a broad spectrum of 

disciplines. However, the Train LM 

(Levenberg-Marquardt) method is usually 

considered as a faster error back-propagation 

algorithm. 

Using the gradient descent method, the 

Mean Square Error (MSE) is minimized. 

The MSE value is obtained from the 

following equation (Eq. (1)): 
 

 

(1) 

 

in which y and  are the network and 

experimental outputs respectively. N is the 

number of samples. 

 

ARCHITECTURE OF THE NEURAL 

NETWORK 

 

The MATLAB package’s neural network 

toolbox was used for the network progress 

(Demuth and Beale, 2003). Multi-layer 

Perceptron with basic feed-forward back-

propagation was chosen for the learning of 

the neural network which includes one input 

layer with four input parameters of Dr, D50, 

W/S, and GP. Two hidden layers with 5 and 

3 neurons in each layer and one output layer 

including the ROI considered for the 

network (Figure 4). It should be noted that if 

the relationships between the operation 

parameters and the quality responses are 

∑ ƒ p 
w n 

b 

a 

1 

Input Neuron with bias 
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difficult to identify, two hidden layers may 

be used. In this state, the network 

performance is better than that of one hidden 

layer. A comparison between the results 

obtained using one and two hidden layers are 

made and its findings are shown in Table 2. 

When each neuron in a feed-forward 

network is connected to the adjacent neurons 

in the forward layer, the architecture is 

referred to as multi-layer Perceptron 

(Griffiths and Andrews, 2011). Also, the 

number of neurons is selected through trial 

and error. 

In total, 138 available data sets were 

employed in order to develop the model. To 

avoid being over-trained, the data sets were 

divided into three categories. From all the 

data sets, 75 sets were used for training, 28 

sets were left for the test, and 35 sets were 

used for validating the network. 

The network training data were selected 

randomly (Griffiths and Andrews, 2011). 

The validation data sets were utilized to test 

the ANN during the training process, so that 

the training could be terminated once the 

validation error began to rise in order to 

avoid the memorization of the data (Basheer 

and Hajmeer, 2000). The test data set was 

used after training to evaluate the ANN 

performance. Figure 4 shows the 

architecture of the neural network model that 

was used. 

The tangent sigmoid function was used as 

an activation function in the hidden layer 

and the linear (Purelin) function was used as 

an activation function in the output layer. 

The Levenberg-Marquardt method was used 

for the network training. 

 

EVALUATION OF THE NETWORK 

PERFORMANCE 

 

Performance of the developed network was 

evaluated by the correlation coefficient (R), 

mean absolute error (MAE), and root mean 

square error (RMSE). 

 R was calculated by the regression 

equation that determines the relationship 

between the network outputs and the 

experimental results (Eq. (2)). The R value 

of one indicates the network's good 

performance and that the network is well 

extended to all the data. The R value of 

about zero reflects that there is no 

relationship between the network outputs 

and experimental results, and the network 

does not perform properly. 

 

 

(2) 

 

in which  and  are the network outputs 

and experimental results,  and  are the 

average of the network outputs and 

experimental results, respectively, and N is 

the number of samples. 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Architecture of the used neural network model. 

         Neuron 

         Connection 

 

D

r 

GP 

 

ROF 

Input 

layer 

First 

hidden 

layer 

Output 

layer 

Second 

hidden 

layer 



Civil Engineering Infrastructures Journal, 47(2): 239 – 253, December 2014 

247 

 

The RMSE is a suitable criterion to 

evaluate the network performance. The 

RMSE is of interest and it is widely reported 

in the literature (Willmott and Matsuura, 

2005). The RMSE value is much closer to 

zero for the better performance of a network, 

and is obtained from the following equation 

(Eq. (3)): 

 

 

(3) 

 

The MAE is an absolute measure of how 

close the predicted values are to an actual 

outcome. Investigations indicate that the 

MAE is a more natural measure of average 

error and is unambiguous. Dimensioned 

evaluations and inter-comparisons of the 

average model-performance error should be 

therefore based on the MAE (Willmott and 

Matsuura, 2005). The MAE value is much 

closer to zero for the better performance of a 

network (Eq. (4)). The best model is 

represented by a R value close to 1.0 and 

RMSE and MAE close to 0. 

 

 
(4) 

 

RESULTS AND DISCUSSION 

 

As already anticipated, the radius of grout 

injection (ROI) is reduced by reducing the 

soil particle size, increasing the soil 

compaction or relative density, and 

decreasing the grout viscosity or W/S ratio 

and the injection pressure. Experimental 

tests showed that the particle size of soil to 

be grouted has the most effect on the radius 

of grout injection so that silt size particles 

resulted in a rapid reduction in the radius of 

grout injection. The effects of other 

mentioned parameters depended on the 

particle size of soil. The determination of the 

effects of these parameters on the radius of 

grout injection is hard. Figures 5-7 illustrate 

the effects of the soil particle size, soil 

relative density, and grout viscosity (W/S 

ratio) on the radius of grout injection, 

respectively, which include experimentally 

observed results and ANN predictions. It is 

obvious that the network has trained the 

experimentally tests results well and the 

effective parameters on the injection radius 

is well traced so that the network would be 

able to reasonably predict the effects of each 

parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Effect of soil particle size on the radius of slurry injection based on experimental tests and ANN predictions 

(W/S=1 and Dr=50%). 
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Fig. 6. Effect of soil relative density on the radius of slurry injection based on experimental tests and ANN 

predictions (medium soil and W/S=0.33). 

 

 
Fig. 7. Effect of grout viscosity (W/S ratio) on the radius of slurry injection based on experimental tests and ANN 

predictions (medium soil and Dr=90%). 

 

Figure 8 show a comparison between the 

total experimentally observed and ANN 

predicted training dataset. Figure 9 also 

illustrate them for the testing dataset. It is 

observed that the ANN has well trained and 

tested.  

The value of R between the 

experimentally observed and ANN predicted 

data was 0.99 for the trained datasets and 

0.98 for the tested datasets. The MAE value 

was obtained 0.17 and 0.29 for the trained 

and tested datasets, respectively, which are 

acceptable values. Also, the RMSE value 

was calculated 2.03 and 4.12 for the trained 

and tested datasets, respectively. It indicates 

the close relationship between the 

experimentally observed and ANN predicted 

data. All the ANN model characteristics are 

summarized in Table 2. 
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Fig. 8. Comparison of the experimentally observed and ANN predicted values for training dataset. 
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Fig. 9. Comparison of the experimentally observed and ANN predicted values for testing dataset. 
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Table 2. Characteristics of ANN’s Model. 

Type of character Value/Description Value/Description 

Number of training data 75 75 

Number of testing data 28 28 

Number of validating data 35 35 

Number of hidden layers 2 1 

Number of optimum neuron in each hidden layers 5,3 5 

Activation Function of hidden layers Tan-Sig Tan-Sig 

Activation Function of output layer Linear Linear 

Global Error Function MSE MSE 

Number of optimum epochs stage 35 60 

Training algorithm Levenberg_Marquardt Levenberg_Marquardt 

MAE for training stage 0.17 0.23 

MAE for testing stage 0.26 0.24 

RMSE for training stage 2.03 2.50 

RMSE for testing stage 4.12 6.07 

R for training stage 0.99 0.99 

R for testing stage 0.98 0.98 

 

CONCLUSIONS 

 

The grout-ability potential of sandy-silty 

soils was experimentally tested using a 

chemical grout called sodium silicate. The 

artificial neural network technique was used 

to simulate the relatively complex 

relationship between the effective 

parameters on the radius of grout injection, 

which include the soil particle size, soil 

relative density, grout concentration and 

grout pressure.  

The experimental tests showed that the 

radius of grout injection is reduced by 

reducing the soil particle size, increasing the 

soil compaction or relative density, and 

decreasing the grout concentration and 

injection pressure. The particle size of soil to 

be grouted has the most effect on the radius 

of grout injection so that silt size particles 

result in a rapid reduction in the radius of 

grout injection. The other parameters have 

side effects and their effects depend on silt 

size particles.  

The determination of the effects of these 

parameters on the radius of grout injection is 

a hard task. In this research, the artificial 

neural network trains the experimental test 

results well and the effective parameters on 

the injection radius are well traced so that 

the network developed in this study is able 

to predict the effect of each parameter. 
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