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Abstract 

In the maximum flow network interdiction problem, an attacker attempts to 

minimize the maximum flow by interdicting flow on the arcs of network. In this 

paper, our focus is on the nodal interdiction for network instead of the arc 

interdiction. Two path inequalities for the node-only interdiction problem are 

represented. It has been proved that the integrality gap of relaxation of the 

maximum flow network interdiction problem is not bounded below by a constant, 

even when strengthened by the path inequalities. We show that this result is also  

established for the nodal interdiction problem.    
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Introduction 

The network interdiction problem is a classical 

problem in the network optimization. The major idea of 

this problem is as follows: In the network optimization 

problems, for example, the maximum flow network, the 

shortest path, the multiple commodity network, the 

stochastic network, and so on, we want to optimize the 

objective function by considering some constraints. But, 

in the network interdiction problems, an attacker tries to 

stop this operation by attacking either arcs or nodes or 

both.  

The topic of interdiction has been entered in majority 

of the network problems [2, 6, 8]. Also, the interdiction 

problems serve in many of real world problems, such as 

the conflict resolution [4], as well as controlling the 

infections in a hospital [5].  

One of the simplest network problems is the 

maximum flow network problem [1]. The maximum 

flow network interdiction problem has been represented 

in [8] by interdicting arcs which is defined as follows: 

For a network ),( ANG  with the node set N and arc 

set A  and two positive integers R  and U , is there any 

subset AA   so that deletion of these arcs consumes no 

more than R  units of resource and results the maximum 

flow in the network which is no more than U ?   

Wood in [8] proved that maximum flow network 

interdiction problem is a NP-complete problem even 

when the interdiction of an arc requires exactly one unit 

of resource. He has also represented an integer linear 

programming model for solving the maximum flow 

network interdiction problem which has been widely  

used in the literature of the interdiction problem.  

Altner et al. in [3] expended the understanding of 

Wood's integer linear programming for the maximum 

flow network interdiction problem and the 

approximability of this problem. They presented two 
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classes of the path inequalities for the maximum flow 

network interdiction problem. They proved that the 

integrality gap of the linear programming relaxation of 

Wood's model is not bounded below by a constant, even 

when strengthened by the path inequalities.  

Kennedy et al. in [7] used the nodal interdiction for 

minimizing the maximum flow through a network. The 

interdiction of a node can be converted the interdiction 

of an arc via the method of node splitting. The node 

splitting replaces node i  in network with two artificial 

nodes i   and i   and an arc ),( ii  . In this method, the 

size of the network increases. However, Kennedy et al. 

in [7] represented yet another model for the nodal 

interdiction. 

 In this paper, it is proved that the result of [3] can be 

also established for the node-only interdiction problem 

that has been introduced in [7]. For ease of reference, 

we use the same notations as in [3]. 

Some basic facts 

Let ),( ANG   be a directed network, where N  and 

A  are the sets of nodes and arcs, respectively. Assume 

that the network has a source node Ns  and a sink 

node Nt . We associate with each arc Aji ),(  a 

capacity jiu . A cut is a partition of N  into two subsets 

S  and SNS \  such that Ss  and St . An 

arc ),( ji  is called forward arc of the cut if Si  and 

Sj . As it has been stated in [7], the node-only 

interdiction model can be formulated as follows: 
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where ir  is the interdiction cost for the node Ni  

and R  is the interdiction budget. The decision variables 

are defined as follows: 
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Now, we denote the relaxation of model (A) by 

(A.LP), that is, we have: 
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In this paper, it is assumed that 1ir  for each node 

Ni . 

 

Results and Discussion 

Consider a network ),( ANG   with the interdiction 

budget R . It is emphasized that the network does not 

contain multiple arcs. Consider a feasible solution 

),,(   to the model (A). Let node Nu  be on the 

source side of the cut and tuP   indicates the set of 

node-disjoint paths from u  to t  in the network 

),( ANG  . Also, let 

 pvPptuNvPN tutu   ;|},{\)(  

and 𝒫
R

tu  RPP tutu   | . 

 

When a node )( tuPNv   is interdicted, we cannot 

traverse a path tuPp   which contains v  on the 

path. Now, there are two cases: 

1. The length of each path in tuP   is at least 2. 

Therefore, at least R  paths can be interdicted. Since 

RP tu  , at least RP tu   nodes in )( tuPN   are 
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not interdicted. In other words, at least RP tu   of 

the nodes in )( tuPN   have the variable   equals to 0. 

2. The length of a path in tuP   is 1, that is, this 

path is the arc ),( tu . Since the arc ),( tu  is not 

interdicted and RP tu  , then at least RP tu   of 

the nodes in )( tuPN   have the variable   equals to 0. 

Using these two cases, we can represent the node-to-

sink path inequalities as follows: 
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It is certain that 0u  or 1. If 1u , the node-

to-sink path inequalities become 

0)1(
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 tuPNi i  that it is valid. If 0u , 

then according to the above two  cases, the inequalities 

hold. The source-to-node path inequalities are similar to 

the node-to-sink path inequalities. It follows that, 

employing the same idea, the source-to-node path 

inequalities can be obtained as follows: 
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We construct an instance and obtain the optimal 

solution of (A) for this instance. Let k  and   be 

positive integers such that 1  and k . An 

instance kI ,  of (A) is constructed as follows: The 

node set N  and the arc set A  are partitioned as 

follows: 
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The arc capacities are defined as follows: 
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The interdiction budget is 1 kR  . 

Now, the optimal objective value of (A) is obtained 

for the instance kI ,  as follows: 

 

Theorem 1. The optimal objective value of (A) for 

the instance kI ,  is 1k . 

Proof. Consider a solution in which the variables   

and   are defined in the following way: 
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It is straightforward to show that this solution is 

feasible for (A). The objective value of this solution is 

1k , since: 

1\\ **
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 


kZZXXuz

Aji

ijij . 

In this solution, k  nodes in X  and 1  nodes in 

Z  are interdicted. Now, by contrary, assume that there 

exists a feasible solution with the objective value strictly 

less than 1 kb , that is,  


Aji ijij bu
),(

 . 

Since 0ij  or 1, at most 1b  arcs in this solution 
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must have their corresponding variable   equals to 1. 

in other words, at most 1b  nodes are not interdict. 

Then, we have: 

12  


kRk

Ni

i  , 

which is a contradiction. ■  

We denote the model (A.LP) along with the path 

inequalities as (S.LP) and obtain a feasible solution for 

it. 
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Theorem 2. There exists a feasible solution for the 

model (S.LP) of instance kI ,  that has the objective 

value of 


k
21 . 

Proof. Consider the following solution: 
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where 1,  kXXX  and XXX \ . It is 

straightforward to see that this solution is feasible for 

(S.LP). The objective value of this solution is 


k
21 . ■ 

For an instance I , let )(*
A IZ  denotes the optimal 

objective value of (A), )(*
A.LP IZ  denotes the optimal 

objective value of (A.LP) and )(*
S.LP IZ  denotes the 

optimal objective value of (S.LP). We now prove the 

following theorem: 
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which proves the first part of the theorem. Now, 

using the fact that  
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one can easily conclude the second part of the 

theorem by using the first part. ■ 

By constructing an instance, it was proved that 
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integrality gap of relaxation of the nodal interdiction 

problem along with the path inequalities is not bounded 

below by a constant. 
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