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Abstract

In the maximum flow network interdiction problem, an attacker attempts to
minimize the maximum flow by interdicting flow on the arcs of network. In this
paper, our focus is on the nodal interdiction for network instead of the arc
interdiction. Two path inequalities for the node-only interdiction problem are
represented. It has been proved that the integrality gap of relaxation of the
maximum flow network interdiction problem is not bounded below by a constant,
even when strengthened by the path inequalities. We show that this result is also
established for the nodal interdiction problem.
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Introduction

The network interdiction problem is a classical
problem in the network optimization. The major idea of
this problem is as follows: In the network optimization
problems, for example, the maximum flow network, the
shortest path, the multiple commodity network, the
stochastic network, and so on, we want to optimize the
objective function by considering some constraints. But,
in the network interdiction problems, an attacker tries to
stop this operation by attacking either arcs or nodes or
both.

The topic of interdiction has been entered in majority
of the network problems [2, 6, 8]. Also, the interdiction
problems serve in many of real world problems, such as
the conflict resolution [4], as well as controlling the
infections in a hospital [5].

One of the simplest network problems is the
maximum flow network problem [1]. The maximum

flow network interdiction problem has been represented
in [8] by interdicting arcs which is defined as follows:
For a network G = (N, A)with the node set N and arc
set A and two positive integers R and U, is there any
subset A’ = A so that deletion of these arcs consumes no
more than R units of resource and results the maximum
flow in the network which is no more than U ?

Wood in [8] proved that maximum flow network
interdiction problem is a NP-complete problem even
when the interdiction of an arc requires exactly one unit
of resource. He has also represented an integer linear
programming model for solving the maximum flow
network interdiction problem which has been widely
used in the literature of the interdiction problem.

Altner et al. in [3] expended the understanding of
Wood's integer linear programming for the maximum
flow network interdiction problem and the
approximability of this problem. They presented two
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classes of the path inequalities for the maximum flow
network interdiction problem. They proved that the
integrality gap of the linear programming relaxation of
Wood's model is not bounded below by a constant, even
when strengthened by the path inequalities.

Kennedy et al. in [7] used the nodal interdiction for
minimizing the maximum flow through a network. The
interdiction of a node can be converted the interdiction
of an arc via the method of node splitting. The node
splitting replaces node i in network with two artificial
nodes i’ and i” and anarc (i’,i"). In this method, the

size of the network increases. However, Kennedy et al.
in [7] represented yet another model for the nodal
interdiction.

In this paper, it is proved that the result of [3] can be
also established for the node-only interdiction problem
that has been introduced in [7]. For ease of reference,
we use the same notations as in [3].

Some basic facts
Let G = (N, A) be adirected network, where N and

A are the sets of nodes and arcs, respectively. Assume
that the network has a source node S € N and a sink
node t € N . We associate with each arc (i, J) € A a

capacity U; j-Acut is a partition of N into two subsets
Sand S=N\S suchthat Se Sand teS.An
arc (i, J) is called forward arc of the cut if i € S and

je S . As it has been stated in [7], the node-only
interdiction model can be formulated as follows:

(A)Minz = ZUij,Bij

(i,j)eA

st qj —aj +ﬂij +7ij >0 V(i,j)e A
ot —og 21
2.nivi<R
ieN
Yij =7i VieN
ai € {01} VieN
Bij.7ij < {04} V(i j)eA

where I is the interdiction cost for the node ie N

and R is the interdiction budget. The decision variables
are defined as follows:
{1 if i € Nis on thesink side of the cut
aj =
0

otherwise
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1 if (i, j) € Ais a forward arc
Bij = and isnot interdicted

0 otherwise

1 if (i, j) € Ais aforward arc
Yij = and is interdicted

0 otherwise

__1
7|—0

Now, we denote the relaxation of model (A) by
(A.LP), that is, we have:

(ALPYMinz =" > uj; A
(i, )eA
st. aj—aj+pij+7rij=20 V(i,j)eA

if i e Nisinterdicted
otherwise

oy —og =1

D.nivi <R

ieN

]/ij =7i VieN
;20 VieN
Bij.7ij 20 v(i,j)e A

In this paper, it is assumed that I; =1 for each node
ieN.

Results and Discussion

Consider a network G = (N, A) with the interdiction

budget R. It is emphasized that the network does not
contain multiple arcs. Consider a feasible solution
(c, B,y) to the model (A). Let node U € N be on the
source side of the cut and P,_; indicates the set of

node-disjoint paths from U to t in the network

G =(N, A). Also, let
N(P_t)={ve N\{u,t}|IpeP,_;;ve p}

and 1735_]: = {Pu—t Hpu_t‘ > R}

When a node v e N(P,_;) is interdicted, we cannot

traverse a path p e B,y which contains V on the

path. Now, there are two cases:
1. The length of each path in B,_; is at least 2.

Therefore, at least R paths can be interdicted. Since
IP,—t| >R, at least |P, |~ R nodesin N(P,_¢) are
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not interdicted. In other words, at least ‘Pu—t‘ —R of
the nodes in N(P,_;) have the variable y equals to 0.

2. The length of a path in P,_¢ is 1, that is, this
path is the arc (U,t). Since the arc (u,t) is not
interdicted and |P,_¢|> R, then at least [P, |- R of
the nodes in N(R,_,) have the variable y equals to 0.

Using these two cases, we can represent the node-to-
sink path inequalities as follows:

2 A=7)2[R|-R,
iEN(Pu—t)

(|Pu—t|_ R)ay, +

where B, _¢ e?ﬁ_t.

It is certain that ¢, =0 or 1. If ¢, =1, the node-
to-sink path inequalities become
ZieN(Pu_t)(l_yi)Zo that it is valid. If o, =0,

then according to the above two cases, the inequalities
hold. The source-to-node path inequalities are similar to
the node-to-sink path inequalities. It follows that,
employing the same idea, the source-to-node path
inequalities can be obtained as follows:

Z(l—Vi) 2 (‘Ps—u‘— R)ay:
ieN(P_,)
R
where Pg_, €ePg_y.

We construct an instance and obtain the optimal
solution of (A) for this instance. Let Kk and g be

positive integers such that g >1 and k> u. An
instance | 1,k of (A) is constructed as follows: The

node set N and the arc set A are partitioned as
follows:

N={stiUXUz, |X|=2k, |Z|=x

A=Ax, UAX2 UAZl UA22

Ax, ={sV)|ve X}

Ax, ={v.t)|ve X}

Az, ={s.V)|veZ]

Az, ={v.t)|veZ]
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The arc capacities are defined as follows:

1 Gi)eAy,
1 ()ehy,
u o GieAs,

The interdiction budgetis R = gz+k —1.
Now, the optimal objective value of (A) is obtained
for the instance Iﬂ,k as follows:

Theorem 1. The optimal objective value of (A) for
the instance |, i is k +1.

Proof. Consider a solution in which the variables y
and ¢ are defined in the following way:

4210 ifieX Uz U{s}
! 1 otherwise
{1
Yi =
0

where X <X and Z2*cZ with ‘X*‘:k and

ifiex " Uz”
otherwise

‘Z*‘z,u—l- Therefore, the variables »;; and g, for
each (i, j) € E, are defined as follows:
i - {1 ,) e X x{tror (i, j) e 2" x{t}
0 otherwise
1 if (i, ) e{shx X \ X~
or(i, j) e{s}xz\z2"
0 otherwise

Bij =

It is straightforward to show that this solution is
feasible for (A). The objective value of this solution is
k +1, since:

Z= Zuijﬂij :‘X \ X*‘+‘Z \Z*‘ =k+1.

(i,j)eA
In this solution, K nodes in X and z—1 nodes in

Z are interdicted. Now, by contrary, assume that there
exists a feasible solution with the objective value strictly

less than b=k +1, that is, Z(i j)EAUijﬂij <b.

Since fijj =0 or 1, at most b —1 arcs in this solution
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must have their corresponding variable £ equals to 1.

in other words, at most b —1 nodes are not interdict.
Then, we have:

K+pu+2< Z;/i <R=pu+k-1,

ieN

which is a contradiction. m

We denote the model (A.LP) along with the path
inequalities as (S.LP) and obtain a feasible solution for
it.

(SLP)Minz =Y uj;Bij
(i,))eA
st. ¢ —aj +ﬂij +7ij >0 V(i,j)eA

o —ag =1
2 nizi<R
ieN
Yij =7i VieN
(‘Pu—t‘_R)au +
2 A-7)2Pi|-R
iEN(Pu—t)
Z(l—Vi)Z(‘Ps—u‘—R)au
ieN(P, )
a;j 20 VieN
Bij7ij 20 v(i,j)eA
R
Pit €P iy Psy €Pg,

Theorem 2. There exists a feasible solution for the
model (S.LP) of instance | 1,k that has the objective

value of 1+2£.
U
Proof. Consider the following solution:
0 ie{s}UX
aj = i ieZ U )?'
7]
1 i=t
0 (i, )) e Xx{t}or(i, j) e Zx{t}
Bi =1L i) edstx X or (i, j) e{syx 2
y7i
o 0 ie{s,3UX’
"Y1 zux

where ng,i\zk—l and X'=X\X. Itis

straightforward to see that this solution is feasible for
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(S.LP). The objective value of this solution is 1 + 25. [
U
For an instance |, let Z A (1) denotes the optimal

objective value of (A), ZZ\.LP(I) denotes the optimal

objective value of (A.LP) and Z;Lp(l) denotes the

optimal objective value of (S.LP). We now prove the
following theorem:

Theorem 3. Let &£ €(01) and [N|=n. For all

sufficiently large positive integers N, there exists an
instance | of (A) such that

1. —EA(I) e Q(nl™9),
Zg 1p(1)

Za(l _
2 *A—() eQ(nt?).
Zarp(l)
Proof. Consider the instance | =1, . According

to Theorems 1 and 2, we have:

Za(k) | k4l
Zs p(l4k) 142X
7,

This inequality together with n = 2k 4+ ;,+2 imply that

Za (1 k) J H(n—p)
Zg.LP(',u,k) - 2n-2)
For given ¢&€(0)]),

Therefore, we have

ZZ(',,,k) >n1_5(n—n1_g)’

Zg.LP(',u,k) - 2n-2

which proves the first part of the theorem. Now,
using the fact that

we choose y=n"?.

Zsp(l k) ZZarp(l k)
one can easily conclude the second part of the

theorem by using the first part. m
By constructing an instance, it was proved that

Za(l) eQ(nl‘g)- This relation shows that the
Zs.p(l)
integrality gap of relaxation of the nodal interdiction
problem along with the path inequalities is not bounded
below by a constant.
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