تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,093,393 |
تعداد دریافت فایل اصل مقاله | 97,197,895 |
میزان تغییرات ترکیبات ثانویه تحت تنش خشکی در نهالهای بلوط برودار، دارمازو و ویول | ||
نشریه جنگل و فرآورده های چوب | ||
مقاله 1، دوره 66، شماره 1، فروردین 1392، صفحه 1-14 اصل مقاله (464.58 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2013.35337 | ||
نویسندگان | ||
مونا نظری1؛ رقیه ذوالفقاری* 2؛ پیام فیاض2 | ||
1دانشجوی کارشناسی ارشد دانشگاه یاسوج | ||
2استادیار، عضو هیئت علمی دانشکدة کشاورزی و پژوهشکدة منابع طبیعی دانشگاه یاسوج | ||
چکیده | ||
تولید ترکیبات ثانویه در برابر تنشهای محیطی بهعنوان سدی دفاعی است. این موارد عمدتاً ترکیبات فنولی ازجمله اسیدهای فنولی، تاننها و لیگنین هستند. در تحقیق حاضر، سه گونة بلوط زاگرس (برودار، دارمازو و ویول) تحت تنش خشکی آزمایش شد. برای این منظور، نهالها بدون اینکه در گلدان مطالعهای انجام شود و در شرایط کاملاً یکسان و در فضای باز کاشته شدند. سپس، زمانیکه نهالها چهارماهه بودند، آبیاری قطع شد تا خاک گلدانها بهتدریج به ظرفیت مزرعهای 70% (تیمار ضعیف)، 50% (تیمار متوسط) و 30% (تیمار شدید) طی پانزدهروز رسیدند. پس از برداشت نهالها در هر مرحله از آزمایش، ذیتودة کل و میزان ترکیبات ثانویة مختلف (فنول کل، تانن کل، تانن متراکم) برگ نهالها اندازهگیری شدند. نتایج نشان داد که تنش خشکی، میزان ذیتوده را بهطور معنیداری کاهش داد. نتایج ترکیبات ثانویة مختلف در گونههای مختلف نیز نشان داد که تنها تانن کل گونة بلوط ایرانی در معرض تنش خشکی ضعیف با کنترل تفاوت معنیداری داشت. همچنین در تنش خشکی شدید نیز تانن متراکم و فنول کل نسبت به کنترل در هر سهگونه تغییر افزایشی غیرمعنیدار داشت؛ اما میزان تانن کل تحت تنش خشکی شدید نسبت به کنترل تنها در گونة برودار بهطور قابلتوجهی بیشتر بود. همچنین درصد زندهمانی گونة برودار نیز از دو گونة دیگر بالاتر بود؛ بنابراین، بهنظر میرسد که یکی از مکانیسمهای مؤثر در مقاومت به خشکی افزایش میزان تانن کل باشد که در گونة برودار مشاهده شد و سبب حفظ زندهمانی بالاتر در این گونه شد. | ||
کلیدواژهها | ||
بلوط؛ ترکیبات ثانویه؛ تنش خشکی؛ ذیتوده | ||
مراجع | ||
[1]. Andrew, K.B., Hammer, G.L., and Henzell, R.G. (2000). Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Science, 40(4): 1037-1048. [2]. Farshadfar, E., Ghannadha, M., Zahravi, M., and Sutka, J. (2001). Genetic analysis of drought tolerance in wheat. Plant Breeding, 114: 542-544. [3]. Farshadfar, E., Mohammadi, R., Aghaee, M., and Sutka, J. (2003). Identification of QTLs involved in physiological and agronomic indicators of drought tolerance in rye using a multiple selection index. Acta Agronomica Hungari, 51: 419-428. [4]. Karmer, P.G., and Koslovski, T.T. (1979). Physiology of woody plants. Academic Press, New York. [5]. Talebi, M., Sagheb Talebi, Kh., and Jahanbazi, H. (2006). Site demands and some quantitative and qualitative characteristics of Persian Oak (Quercus brantii Lindl.) in Chaharmahal & Bakhtiari Province (western Iran). Iran Forest and Poplar Research, 14(1): 67-79. [6]. Mirzaei, J., Akbarinia, M., Hosseini, S.M., Tabari, M., and Jalali, S.Gh. (2007). Comparison of natural regenerated woody species in relation to physiographic and soil factors in Zagros forests (Case study: Arghavan reservoir in north of Ilam province). Pajouhesh & Sazandegi, 77: 16-23. [7]. Jazireie, M.H., and Ebrahimi rastaghi, M. (2003). Zagros silviculture. Published Tehran University, Tehran. [8]. Taiz, L., and Zeiger, E. (2002). Plant physiology. 3th Ed., Massachusetts: Sinauer Associates. [9]. Jahanshahee, Sh., Tabarsa, T., Asghari, J., and Resalati, H. (2010). Investigation of the Amount of Tannic Acid in Bark Oak (Quercus castanifolia). Iranian Journal of Wood and Paper Industries, 1(1): 27-35. [10]. Poulos, H.M. (2007). Drought response of two Mexican oak species, Quercus laseyi and Q. sideroxila (Fagaceae), in relation to eleventional position. American Journal of Botany, 94(5): 809-818. [11]. Gieger, T., and Thomas, F.M. (2002). Effects of defoliation and drought stress on biomass partitioning and water relations of Quercus robur and Quercus petraea. Basic and Applied Ecology, 3: 171-181. [12]. Royo, A., Gil, L., and Pardos, J.A. (2001). Effect of water stress conditioning on morphology, Physiology and field performance of Pinus halepensis Mill seedling. New Forests, 21: 127-140. [13]. Rao, P.B. (2008). Drought resistance in seedling of five important tree species in Taraii region of Attarakhand. Journal Tropical Ecology, 49(1): 43-52. [14]. Fort, C., Fauveau, M.L., Muller, F., label, P., Granier, A., and Dreyer, E. (1997). Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying. Tree Physiology, 17: 281-289. [15]. Dunn, J.P., Potter, D.A., and Kimmerer, T.W. (1990). Carbohydrate reserves, radial growth and mechanisms of resistance of oak trees to phloemboring insects. Oecologia, 83: 458-468. [16]. Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51: 565-580. [17]. Chan, B.G., Waiss, A.C., and Lukefahr, M. (1978). Condensed tannin, an antibiotic chemical from Gossypium hirsutum. Journal of Insect Physiology, 24(2): 113-118. [18]. Reese, J.C., Chan, B.C., and Waiss, A.C. (1982). Effects of cotton condensed tannin, (maysin corn) and pinitol (soybeans) on Heliothis zea growth and development. Journal of Chemical Ecology, 8: 1429-1436. [19]. Heldt, W. (1997). Plant biochemistry and molecular biology. Oxford Uni. Press, New York. [20]. Markham, K.R. (1982). Techniques in flavonoid identification. Academic Press Inc, New York. [21]. Makkar, H.P.S. (2000). Quantification of tannins in tree foliage – A laboratory manual. FAO/ IAEA. [22]. Barry, K.M., Davies, N.W., and Mohammed, C.L. (2001). Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by high performance liquid chromatography– Electrospray ionisation mass spectrometry. Phytochemical Analysis, 12(2): 120-127. [23]. Scalbert, A. 1992. Tannins in woods and their contribution to microbial decay prevention. R.W. Hemi- ngway, P.E. Laks, (ed), Plenum Press, New York. [24]. Hillis, W.E. (1987). Heartwood and Tree Exudates. Springer- Verlag. Berlin, Heidelberg, New York. [25]. Bekkara1, F., Jay, M., Viricel, M.R., and Rome, S. (1998). Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant and Soil, 203: 27-36. [26]. Makkar, H.P.S, Singh, B., and Dawra, R.K. (1988). Effect of tannin-rich leaves of oak (Quercus incana) on various microbial enzyme activities of the bovine rumen. British Journal of Nutrition, 60(2): 287-296. [27]. Varmaghani, S., Yaghobfar, A., Gharadaghi, A., and Jafari, H. (2006). Usage of deternification oak kerenal (DOK) in broiler diets. Pajouhsh And Sazandegi, 19 (1): 50-58. [28]. Yildiz, S., Oncur, A., Kaya, I., and Unal, Y. (2002). Effects of tanniniferous oak (Quercus hartwisiana) Leaves on gas production in vitro rumen fermentation system. The Journal of the University of Yuzuncu Yil, Faculty of Veterinary Medicine, 8(2): 139-142. [29]. Masoudi Njad, M.K., and Rezazade Azari, M. (2000). Comparison of four methods of tannin extraction from the fruits of oak species in Iran. Journal of Hakim, 6(1). 81-88. [30]. Ammar, H., López, S., Gonzalez, J.S., and Ranilla, M.J. (2004). Tannin levels in the foliage of some Spanish shrub species at different stages of development. In: Salem H.B., Nefzaoui, A., Morand-Fehr, P. (Eds.), Nutrition and feeding strategies of sheep and goats under harsh climates. Zaragoza: CIHEAM-IAMZ, 59: 159 -163. [31]. Doce, R.R., Hervas, G., Giraldez, F.J., Lopez –Campos, O., Mantecon, A.R., and Frutosl, P. (2007). Effect of immature oak (Quercus pyrenaica) leaves intake on ruminal fermentation and adaptation of rumen microorganisms in cattle. Journal of Animal and Feed Sciences, 16(2): 13-18. [32]. Elahi, M., and Rouzbehan, Y. 2008. Characteriztion of Quercus persica, Quercus infectoria and Quercus libani as ruminant feeds. Animal Feed. Science and Technology. 140: 78-89. [33]. Shure, D.J., Mooreside, P.D., and Ogle, S.M. (1998). Rainfall effects on plant–herbivore processes in an upland oak forest. Ecology, 79(2): 604-617. [34]. Wagner, M.R., (1986) .Influence of moisture stress and induced resistance in ponderosa pine, Pinus ponderosa Dougl. Ex. Laws, on the pine sawfly, Neodiprion autumnalis Smith. Forest Ecology and Management, 15(1): 43-53. [35]. Bennett, J.M. (1975). The effect pf light and water stress on yield and yield components of grain sorghum. M. Sc. thesis. Texas Tech University-Texas. [36]. Pizarro, L.C., and Bisigato, A.J. (2010). Allocation of biomass and photoassimilates in juvenile plants of six Patagonian species in response to five water supply regimes. Annals of botany, 106(2): 297-307. [37]. Carter, E., and Morris, P. (1994). The effect of temperature on polyphenol biosynthesis in Lotus corniculatus. Journal of Experimental Botany, 49: 1723– 1728. [38]. Carter, E.B., Theodorou, M.K. and Morris, P. (1999). Responses of Lotus corniculatus to environmental change. 2. Effect of elevated CO2 temperature and drought on tissue digestion in relation to condensed tannin and carbohydrate accumulation. Journal of the Science of Food and Agriculture, 79: 1431-1440. [39]. Koukia, M., and Manetas, Y. (2002). Resource availability affects differentially the levels of gallotannins and condensed tannins in Ceratonia siliqua. Biochemical Systematics and Ecology, 30(7): 631-639. [40]. Chartzoulakis, K., Bosabalidis, A.M., Patakas, A. and Vemmos, S. (2000). Effect of water stress on water relation gas exchange and leaf structure of olive tree. Journal of Acta Horticulturae, 537: 241-247. [41]. Thomas, F.M., Schafellner, C. (1999). Effects of excess nitrogen and drought on the foliar concentrations of allelochemicals in young oaks (Quercus robur L. and Q. petraea [Matt.]. Liebl. Journal of Applied Botany, 73: 222-227. [42]. Quero, J.L., Villar, R. Maranon, T., and Zamora, R. (2006). Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytologist, 170: 819-834. [43]. Zhang, X., Wu, N., and Li, C. (2005). Physiological and growth responses of Populus davidiana ecotypes to different soil water contents. Journal of Arid Environments. 60: 567-579. [44]. Makkar, H.P.S., and Singh, B. 1993. Effect of storage and urea addition on detannification and in sacco dry matter digestibility of mature oak (Quercus incana) leaves. Animal Feed Science and Technology, 41(3): 247-259. [45]. Anuraga, M., Duarsa, P., Hill, M.J., and Lovett, J.V. (1993). Soil moisture and temperature affect condensed tannin concentrations and growth in Lotus corniculatus and Lotus pedunculatus. Australian Journal of Agricultural Research, 44: 1667-1681. [46]. Estiarte, M., Decastro, M., and Espelta, J.M. (2007). Espects of resource availability on condensed tannins and nitrogen in two Quercus species differing in leaf life span. Annals of Forest Science, 64: 201-210. [47]. Koricheva, J., Larsson, S., Haukioja, E., and Keinänen, M. (1988). Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos, 83: 212-226. [48]. Martin, J.S., and Martin, M.M. (1982). Tannin assays in ecological studies: lackof correlation between phenolics, proanthicyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia, 54: 205-211. | ||
آمار تعداد مشاهده مقاله: 2,991 تعداد دریافت فایل اصل مقاله: 3,547 |