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Abstract 

In this paper we introduce a new scheme of censoring and study it under the 
Weibull distribution. This scheme is a mixture of progressive Type II censoring 
and self relocating design which was first introduced by Srivastava [8]. We show 
the superiority of this censoring scheme (PSRD) relative to the classical schemes 
with respect to “asymptotic variance”. Comparisons are also made with respect to 
the total expected time under experiment (TETUE) as an important feature of time 
and cost saving. These comparisons show that TETUE(SRD) < TETUE(PSRD) < 
TETUE(PC2) if 0 < β < 1, TETUE(PSRD) = TETUE(SRD) < TETUE(PC2) if β = 1 and 
TETUE(PSRD) is the best among all the designs if β = 2 (Rayleigh distribution 
case). 

 
Keywords: Asymptotic variance; Fisher information matrix; Maximum likelihood; Self relocating 
design (SRD); Total expected time under experiment 

 
 

 
* Corresponding author, Tel.: +98(21)29903011, Fax: +98(21)22431649, E-mail: a_khodadadi@sbu.ac.ir 

1. Introduction 
In life testing, if an early decision is of more 

importance, we may plan a censored life testing instead 
of doing complete one. Although censored life testing 
loses efficiency compared to complete life testing of 
size n , the feature of censored life testing is time 
saving. For a review, see [12,13]. 

The two most common censoring schemes are 
termed as Type-I (C1) and Type-II (C2) censoring 
schemes. Briefly, they can be described as follows: 
Consider n  items under observation in a particular 
experiment. In the conventional Type-I censoring 
scheme, the experiment continues up to a pre-specified 
time T . On the other hand, the conventional Type-II 
censoring scheme requires the experiment to continue 

until a pre-specified number of failures m n≤  occurs. 
The mixture of Type-I and Type-II censoring scheme is 
known as a hybrid censoring scheme, which was first 
introduced by Epstein [4,5]. 

One of the drawbacks of the conventional Type-I, 
Type-II or hybrid censoring schemes is that they do not 
allow for removal of units at points other than the 
terminal point of the experiment. One censoring scheme 
known as the Type-II progressive censoring (PC2) 
scheme, which has this advantage, has become very 
popular in the last few years. It can be described as 
follows: consider n  units in a study and suppose that 

<m n  is fixed before the experiment. Moreover, m  
other integers, 1 , , mR R… , are also fixed so that 

1 , , =mR R m n+ + +… . At the time of the thi  failure, 
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iR  of the remaining units are randomly removed. For 
further details on Type-II progressive censoring the 
readers may refer to the recent excellent monograph of 
Balakrishnan and Aggarwala [1]. 

We now describe the modified schemes, which are 
called Self Relocating Designs (SRD). Basically, the 
idea behind an SRD is as follows. As under the classical 
case, we start with the same number u  of machines of 
each brand. However, here, at all times during the 
experiment we maintain the same number of competing 
machines of each brand. This is done as follows. If we 
have u  machines of each brand, we have a total of um  
machines. This set of um  machines is divided into u  
subsets, such that in each subset, there is exactly one 
machine of each brand. The subsets are made at the 
beginning of the experiment, we wait until the first 
failure occurs. Instantaneously after the first failure, the 
( 1)m −  machines which are in the subset to which the 
failed machines belong, are removed from the 
experiment. Thus, after the first failure, there are exactly 
( 1)u −  machines of each brand still continuing in the 
experiment. The experiment is continued until the 
second failure, instantaneously after the second failure, 
the ( 1)m −  machines which are in the subset to which 
the second failed machine belongs are censored. Thus, 
after the second failure, we are left with ( 2)u −  
machines of each brand remaining in the experiment. 
This process is continued until a specified number G  of 
failures has occurred (corresponding to Type-II 
censoring) or until a specified time period T  has passed 
(corresponding to Type-I censoring). These classes of 
designs were first introduced in [8] and particular cases 
of these were studied in some details under exponential 
distribution. These studies established the superiority of 
SRD over individual censoring of Type-II in the sense 
that the former gave rise to a smaller value for the trace 
of the asymptotic variance (in a certain sense). You can 
find some more results related to these types of 
censoring in [6,9,10]. 

In this paper, we introduce a Type-II SRD 
progressive censoring (PSRD) scheme, and study the 
properties of this scheme under Weibull distribution 
which is widely used as a failure model, particularly for 
mechanical components. As the name suggests, it is a 
mixture of Type-II progressive and SRD censoring 
schemes. The paper is organized as follows: in section 2 
we discuss progressive Type-II SRD censoring, Weibull 
model and likelihood function under this new design. In 
section 3, we focus on Information matrices under 
competing designs and compare the asymptotic 
variances. In section 4, and 5 we compare the Total 

Expected Time Under Experiment (TETUE) with 
respect to the different designs and numerical results for 
Weibull distribution are presented in 4 Tables. 

2. New Class of SRD, Model Description  
and MLE 

2.1. Weibull Models 

The generalized Weibull distribution is given by the 
survival function 

( ) = exp[ ( )], 0t t tψ λθ− ≥  (1) 

Where the λ  is a positive real number, and ( )tθ  is 
a nondecreasing function of t, such that (0) 0θ = , 

( )θ ∞ = ∞ . 
It is clear that the density function is given by 

( )( ) '( ) , 0tf t t e tλθλθ −= >  

where prime(`) denotes differential coefficient. Also 
then, ( )tΛ  the hazard rate is given by 

( ) ( )t tλθ ′Λ = . 

and, [ ( ) ( )]Pr( | ) x yt x t y e λ θ θ− −> > = , where x y≥  
0≥ , 
Also, the density function of the life time of such a 

machine is ( | ),tf x y  where 

[ ( ) ( )]( | ) ( ) , 0.x y
tf x y x e x yλ θ θλθ − −′= ≥ ≥  (2) 

Many inference-oriented studies have been made 
under this distribution, for example [2,3]. Note that the 
two parameter standard Weibull distribution with scale 
parameter ( 0)α >  and shape parameter β (>0) is a 

special case of (1) with 1( ) , ( )t t β βθ λ
α

= =  so that 

( ; ) 1 exp[ ( ) ], 0tF t tβθ
α

= − − > . 

The model can be written in alternate parametric 
forms as indicated below:  

1( ; ) = 1 exp[ ( ) ], 0 with =F t t tβθ λ λ
α

′ ′− − ≥  

( ; ) = 1 exp( ), 0 with =tF t t
β

βθ α α
α

′− − ≥
′

 (3) 

1( ; ) = 1 exp( ), 0 with = ( )F t t tβ βθ λ λ
α

− − ≥  
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Although they are all equivalent, depending on the 
context a particular parametric representation might be 
more appropriate. A variety of models have evolved by 
transformation (linear or nonlinear), functional 
relationship, from this standard model. The parameters 
of the standard Weibull model are constant. For some 
models this is not the case. As a result, they are either a 
function of the variable t  or some other variable (such 
as stems level) or are random variables. Besides there 
are stochastic point process models with links to the 
standard Weibull model. For further details on Weibull 
models the readers may refer to the recent monograph 
of Murthy, D. N. P., Xie, Min and Jiang, Renyan [7]. 

2.2. Progressive Type-II SRD Censoring (PSRD) 

Suppose we have um  machines as those in SRD 
case. We start the experiment at time 0 (= 0)t  and as the 
first failure occurs, we remove 1 1R +  subsets, one of 
which contains the failed machine and choose the other 

1R  ones randomly from the survived subsets. Thus after 
the first failure, there are exactly 1 1u R− −  machines of 
each brand still functioning in the experiment. After the 
second failure, we remove 2 1R +  subsets so that we are 
left with 1 2( 2)u R R− − −  machines of each brand still 
continuing in the experiment. This process is continued 
until a specified number G  of failures had occurred 
(corresponding to progressive Type-II censoring). 

2.3. Likelihood Function under PSRD 

For ease of discussion, we shall consider the cases 
= 1G  and 2 first, and then the case of general G . Let 

gL  denote the likelihood for =G g . Clearly, 1L  is the 
probability that 1um −  machines survive time 1t , and 
one machine (of type 1i ) fails at time 1t . Thus, using 
(1) and (2), we have 

=1
1 1

( )
= ( )

1

m
u i

i
i

tu
L t e

λ θ
λ θ

−⎛ ⎞
′⎜ ⎟

⎜ ⎟
⎝ ⎠

∑
 (4) 

Next, 2L  is the probability that 1um −  machines 
survive time 1t , one machine(of type 1i ) fails at time 

1t , and furthermore that out of the 1( 1)u R m− −  
machines working at time 1( 0)t + , 1( 1) 1u R m− − −  
machines survive time 2t ,and one machine (of type 2i ) 
fails at time 2t . Now, obviously, the life times of the 
machines working at any particular time are distributed 

independently of each other (and of all other machines 
which may have failed previously). Thus, effectively, 
out of the um  machines 'launched' at time 
0, 1( 1)( 1) 1m u R− − − −  machines survived time 2t , 
one machine (of type 2i ) (which could be anyone out of 
the 1( 1)u R− −  machines of type 2i . which were 'alive' 
at time ( 1 0t + )) failed at time 2t , one machine(of type 

1i ) (which could be anyone out of u  machines of type 

1i , alive at time 0 = 0)t  failed at time 1t . Since, as 
mentioned above, the life times of the individual 
machines are independent random variables, we obtain 

( 1 21
=1

2 22

=1
11

1) ( )1
= ( )

1

( )
( )

1

m
u R i

i
i

m
u i i

i
i

tu R
L t e

tu
t e

λ θ
λ θ

λ θ
λ θ

− −

−

−− −⎛ ⎞
′⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
′⎜ ⎟×

⎜ ⎟
⎝ ⎠

∑

∑
 (5) 

It is convenient to derive the expression for 2L  by 
the following 'conditional' argument. The events up to 
time 2t  can be divided into two stages, the first being 
the events till time 1t , and the other events in the time 

1 2( , ]t t . Notice that the events inside the two stages are 
independent of each other, except that in the second 
stage we have at time 1( 0)t +  exactly 1( 1)u R m− −  
machines, each of which is 1t  time units old. The 
likelihood of the events in the first stage is 

1 1( , )L sayξ= . Let 2ξ  be the likelihood of the events 
in the second stage (given 1t ). Clearly, from (1) and (2), 
we get  

1

2 22

( 1 2 1
=1

1
= ( )

1

1) [ ( ) ( )]

i

m
u R i

i

u R
t

t t
e

ξ λ θ

λ θ θ− −

− −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− −
×

∑
 (6) 

since we must have 2 1 2=L ξ ξ , (6) and (4) lead to (5). 
Now, consider the whole number of experiments 

divided into G  stages, the time period for the 
( = 1, , )thg g G…  stage being 

1
( , ]g gt t

−
. Let gξ  be 

the 'conditional ' likelihood for the thg  stage, given 

1gt − . Since at time 1( 0)gt − + , exactly 1

=1

g
ii

u R g−
− −∑  

machines of each type were alive, we obtain  
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1

=1

1

( 1
=1 =1

( 1)
= ( )

1

1) [ ( ) ( )]

g

i
ig i gg

g m
u i i g g

i i

u R g
t

R g t t
e

ξ λ θ

λ θ θ

−

−

− − −

⎛ ⎞
− − −⎜ ⎟

′⎜ ⎟
⎜ ⎟
⎝ ⎠

− − −
×

∑

∑ ∑

 (7) 

If GL  is the likelihood for the whole experiment, we 
must have 1 2= . . .G GL ξ ξ ξ… , and hence after some 
simplification, we obtain  

=1

=1

( )
= ( )

m

iG
i

G i gg
g

t
L C t e

λ
λ θ

− Θ
′

∑
∏  

where, for any function (.)θ , we define 

=1

( ) = ( 1) ( )
G

g g
g

t R tθΘ +∑  and 1= ( 1)(C u u R u− −  

1 2 12)...( )GR R u R R G− − − − − − −… . 
We define 

g1, if at time t , the machine that fails is of type i,
=

0, otherwise,
igb

⎧⎪
⎨
⎪⎩

 

and 
=1

=
G

i ig
g

b b∑  so that ib  is the number of times a 

machine of type i  failed in the whole experiment. 

Clearly, we have 
=1 =1

=
G m

bi
i ig

g i

λ λ∏ ∏ . So we have 

established: 
Theorem 2.1.  Under PSRD, the likelihood is given by 

=1

=1 =1

( )
= ( )

m

im G
bi i

G i g
i g

t
L C t e

λ
λ θ

− Θ
′

∑
∏ ∏  

where 1 1 2 1= ( 1)( 2). .(C u u R u R R u R− − − − − − −…  
)GR G− −… . 

3. Information Matrices under  
Competing Designs 

We now consider the performance of designs under 
various situations. First we consider the PSRD under the 
assumption that ( )tθ  is a known function of t , We 
assume that the iλ ’s are unknown parameters, and 

consider ˆ
iλ ’s, the respective maximum likelihood 

estimators. We have 

=1

=1 =1

= log = log log

log ( ) ( )

m

G G i i
i

G m

g i
g i

l L C b

t t

λ

θ λ

+

+ −Θ

∑

∑ ∑
 

then 

= ( ), = 1, , ,G i

i i

l b
t i m

λ λ
∂

−Θ
∂

…  

Hence, for all i , 

( )
, 1, , .i

i

b
i m

t
λ = =

Θ

�
…  

Furthermore, 
2

2 2

2

= , = 1, , .

= 0, ; , = 1, , .

G i

i i

G

i j

l b
i m

l
i j i j m

λ λ

λ λ

∂
−

∂

∂
≠

∂ ∂

…

…

 (8) 

Define 
2

= ( ) , = 1, , ,G
ij

i j

l
q E i j m

λ λ
∂

− ≠
∂ ∂

…  (9) 

then, from (8) = 0ijq  if i j≠ . Also, we get 

2

1= ( )ii i
i

q E b
λ

. But 
=1

( ) = ( )G
i igg

E b E b∑ . Since 

igb  takes values 0 and 1 only, for all i  and g , we have 
( ) = ( = 1)ig igE b Prob b . 

Theorem 3.1.  let , ( = 1, , )iY i m…  be independent 
random variables having a Weibull distribution with 
survival function ( )tψ  then: 

1

=1

= ( = { , , }) = i
i i m m

j
i

Prob Y Min Y Y
λ

π
λ∑

…  

Proof. 

0
= ( > ; | = ) ( )i i j j y j

Prob Y y j i Y y f y dyπ
∞

∀ ≠∫  

     
0

=1
( > ) ( )i y j

i
i j

m
Prob Y y f y dy

∞

≠

= ∏∫  

     1

1

( )

0
( )

m

i
i

m

i
i

y
i

j y e dy
λ θ

λ

λ
λ θ =

=

−∞ ∑
′= =

∑
∫  □ 
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From Theorem (3.1), it follows that 
( = 1) =ig iProb b π , Since ib  is a Bin(G , iπ ) then  

=1

( ) = , = 1, ,i
i m

i
i

G
E b i m

λ

λ∑
… . 

which is independent of (.)θ . 
We now study the (asymptotic Fisher) information 

matrix (say,Q ), Clearly = ( )ijQ q , where ,i j  
= 1, , m… . we have 

1

=1

1 1= ( , , ).
m

m
i

i

GQ diag
λ λλ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
∑

…  

In [11], a comparison of the (asymptotic Fisher) 
information matrices (or, more precisely, the asymptotic 
variance (ASVAR) matrices) under SRD2 and C2 was 
made. In this paper, we shall consider PSRD against 
PC2. To clarify, PC2 means that we shall consider m  
separate experiments, wherein the ith  experiment 
( = 1, ,i m… ), we test u  machines under progressive 

Type-II censoring, observing the first 0 = GG
m

 failures, 

where the life time of a machine is assumed to obey the 
Weibull distribution. Notice that the two designs under 
comparison are on the same footing in the sense that the 
total number of failures is the same in both cases, and is 
equal to G . All the theory developed above for the 
PSRD holds for all m , including = 1m . Hence the 
results for the thi  ( = 1, ,i m… ) experiment can be 
derived from the corresponding results for the PSRD by 
taking = 1m , and then replacing 0G  by G . Now, for 

each i , suppose iλ�  is the maximum likelihood 

estimate of iλ  and iiυ�  the asymptotic variance of iλ� . 
Then, (8) gives 

1
2

1= , = 1, , .ii
i

G
i m

m
υ

λ
−� …  

If * ( )V m m×  denotes the ASVAR matrix of 

1( ,..., )mλ λ� � , then clearly, 

* 2 2
1= [ ] ( , , ).m

mV diag
G

λ λ…  

On the other hand, if V  is the ASVAR matrix 
corresponding to PSRD, then 1=V Q − , and hence 

=1
1= [ ] ( , , ).

m

i
i

mV diag
G

λ
λ λ

∑
…  

We compare the traces of the ASVAR matrices. It is 
well known that these are proportional to average 
variance of estimates of all normalized linear 

combinations of parameters. We have 

2

=1
( )

=   

m

i
itrV

G

λ∑
 

and * 2

=1

=   .
m

i
i

mtrV
G

λ∑  Because of the Cauchy-Schwartz 

inequality, and since variance is always nonnegative, we 

have 
2

=12
=1

( )m
m ii

ii m

λ
λ ≥

∑∑ . 

This leads to the following important result. 
Theorem 3.2.  For the ASVAR matrices of the 
estimators of iλ  under two approaches, we have 

*trV trV≤ . 
The above result assures the superiority of the PSRD 

procedures compared to the classical ones with respect 
to the trace of ASVAR matrices.  

4. Total Expected Time under Experiment 

We first define the 'total time under 
experiment'(TTUE) as follows. Suppose, in an 
experiment, n machines are used, and suppose that the 

thj  machine ( = 1, , )j n…  was under observation for a 
time period jτ . Then we say that for this experiment, 

the TTUE equals 
=1

( )n
jj

τ τ= ∑ . Generally, the τ 's are 

random variables. In any case, we define the 'total 
expected time under experiment'(TETUE)' to be ( )E τ , 
where the expectation is taken over the events occurring 
in the whole experiment. The following result is 
obvious. 
Theorem 4.1.  The cumulative distribution function of 

1rt r G≤ ≤  is given by 

,
1:

=1
( ) = 1 ( ) , 0

r
i r i

t rr G
i i

a
F t c t tγψ

γ−− ≥∑  

Where 

1
= =1

= 1 =
rm

r i r i
i r i

G r R and cγ γ−− + +∑ ∏  

and ,
=1

1= , 1 .i r
i j i
i j

r
a i r G

γ γ
≠

≤ ≤ ≤
−∏  
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Table 1.  Values of TETUE for = 3m  , 1 = 1λ  , 2 = 4λ  , 3 = 7λ  for certain values of ( ,U G ) and β  

(U,G) Scheme β = 2.00 β = 1.50 β = 1.25 β = 1.00 β = 0.75 β = 0.50 
(24,24) PSRD 18.420 12.400 9.186 6.000 3.120 1.000 

 PC2 24.950 18.605 14.987 11.143 7.244 3.631 
        
 PSRD 13.025 7.812 5.276 3.000 1.238 0.250 

(24,12) SRD2 13.924 8.276 5.494 3.000 1.116 0.164 
 PC2 16.307 10.959 8.214 5.571 3.229 1.444 
 C2 17.643 11.709 8.598 5.571 2.893 0.944 

 
Table 2.  Values of TETUE for = 3m  , 1 = 0.5λ  , 2 = 2.5λ  , 3 = 4.5λ  for certain values of ( ,U G ) and β  

(U,G) Scheme β = 2.00 β = 1.50 β = 1.25 β = 1.00 β = 0.75 β = 0.50 
(24,24) PSRD 23.300 16.964 13.379 9.600 5.840 2.560 

 PC2 33.454 27.818 24.530 20.978 17.338 14.113 
        
 PSRD 16.475 10.687 7.684 4.800 2.317 0.640 

(24,12) SRD2 17.612 11.321 8.002 4.800 2.089 0.419 
 PC2 21.865 16.385 13.444 10.489 7.730 5.613 
 C2 23.656 17.508 14.074 10.489 6.925 3.668 

 
Table 3.  Values of TETUE for = 4m  , 1 = 0.25λ  , 2 = 0.5λ  , 3 = 0.75λ , 1.00λ =  for certain values of ( ,U G ) and β  

(U,G) Scheme β = 2.00 β = 1.50 β = 1.25 β = 1.00 β = 0.75 β = 0.50 
(24,24) PSRD 53.808 47.050 42.958 38.400 33.688 30.720 

 PC2 64.252 58.216 54.397 50.000 45.368 43.036 
        
 PSRD 38.048 29.639 24.673 19.200 13.369 7.680 

(24,12) SRD2 40.674 31.397 25.695 19.200 12.053 5.027 
 PC2 41.877 34.225 29.779 25.000 20.247 17.083 
 C2 45.010 36.353 31.041 25.000 18.350 11.727 

 
Table 4.  Values of TETUE for = 6m  , 1 = 0.03λ  , 2 = 0.06λ  , 3 = 0.09λ  , 4 = 0.12λ  , 5 0.15λ = , 6 = 0.18λ  for certain 
values of ( ,U G ) and β  

(U,G) Scheme β = 2.00 β = 1.50 β = 1.25 β = 1.00 β = 0.75 β = 0.50 
(24,24) PSRD 160.782 176.889 194.097 228.571 317.460 725.624 

 PC2 197.429 228.982 261.498 326.667 502.331 1443.76 
        
 PSRD 113.690 111.433 111.479 114.286 125.984 181.406 

(24,12) SRD2 121.537 118.046 116.097 114.286 115.585 118.731 
 PC2 129.032 134.964 143.445 163.333 222.507 552.366 
 C2 136.374 141.300 148.015 163.333 206.883 420.279 
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Proof.  See [1]. □ 
Lemma 4.1.  Under PSRD the TETUE equals, 

0 :
=1

= ( 1) ( )
G

r r G
r

m R E tτ +∑  

Where  
1

1
: ,

=1

=1

1 1( ) = ( ) ( )
r

r
r G i r m

i
i j

j

c
E t a β

β β γ λ

−Γ ∑
∑

. □ (10) 

We now consider PC2 with iβ  equal to β . There 
are m  separate experiments, and each experiment lasts 
until we observe 0G  failures. Let : 0

( = 1, , )r Gt r m…  be 

the time for which the thr  experiment lasts. 
Clearly, : 0

( )r GE t  is obtained from (10) by replacing G  

by 0G  and = 1m . We obtain: 
Corollary 4.1.  Under PC2, for the thi  experiment 
( = 1, , )i m… , we have 

1
1

: ,0
=1

1 1( ) = ( ) ( )
r

r
r G i r

i i r

c
E t a β

β β γ λ
−Γ ∑ . □ (11) 

To compare the TETUE under PSRD and PC2, we 
use (10) and (11). We have: 
Corollary 4.2.  Consider the PSRD and PC2, with iβ 's 
equal to β . Then the total expected time under the two 
designs are respectively 1T  and 2T  with  

1 :
=0

= ( 1) ( ),
G

i i G
i

T m R E t+∑  

0

2 : 0
=1 =1

= [ ( 1) ( )],
Gm

ij ij G
i j

T R E t+∑ ∑  

Where ijR  denotes the number of censored 
machines of type i at time ijt . 
Theorem 4.2. 

i)  When =U G , the following result holds: 
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ii)  For the case of exponential distribution, i.e. when 
= 1β  and for all U ≥  G, we have 

1 2

1 1

, ,
1m m

i
i i i

mG G G GT T
mλ λλ
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= = = =

∑ ∑
�  

where λ  and λ�  are respectively the Arithmetic and the 
Harmonic mean of iλ . Since λ λ≥ � , then 1 2T T≤ . 

5. Discussion of Tables 

Total expected time under experiment (TETUE) is a 
very important factor in the composition of the total cost 
of a test procedure. We will analyze and compare the 
values of each one of TETUE's associated with the 
testing procedure and the value of β  which has the 
most effect on the behavior of the hazard function. The 
following tables involve five kinds of parameters, 

, ' , ,s m uβ λ  and G . The range of β  considered is 
between 0.5 and 2. Values of 'sλ  are selected in a 
rather large range (viz. 0.03 to 7.00) so as to cover 
almost all practical situations. Four sets of values of 

'sλ  are selected in this range. These four sets 
respectively correspond to the four tables (1 to 4), the 
four tables correspond respectively to m=3, 3, 4 and 6, 
the case m=3 being repeated twice so as to offer a 
comparison between two sets of values of λ  with the 
same m. Also, in each table, two sets of values of U and 
G are considered; in one of these sets, we have U=G, 
and in the second U=2G, so as to provide a common 
value for all tables, and since G must be divisible by m, 
we take G=12. In [9], a numerical study of the TETUE 
was made for SRD2 and C2. For this purpose four sets 
of values of ,m λ ′ s and β 's were selected. These 
values are displayed below: 
(I)  m = 3 λ = (1, 4, 7) '  
(II)  m = 3 λ = (0.5, 2.5, 4.5 ) '  
(III)  m = 4 λ = (0.25, 0.5, 0.75, 1.00 ) '  
(IV)  m = 6 λ = (0.03, 0.06, 0.09, 0.12, 0.15, 0.18 ) '  

For each of these sets of values of m  and λ , the 
following values of ,U G  and β 's were tried: 

β  = 2.00, 1.75, 1.50, 1.00, 0.75, 050 
( , ) = (24,24), (24,12)U G  
We are using the same sets of values of the above 

parameters for the study of PSRD and PC2. 
Consider now 1T  and 2T . It is seen that the values of 

1T  and 2T  (for fixed U,G, and β ) increase as we go 
from Table 1 to 2 to 3 to 4. This fact is a reflection of 
larger values of m and of smaller values of λ . For large 
value of β , this increase is respectively small, but for 
small β , it is very dramatic. To compare two designs 
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we use the most common classification of Weibull 
distribution which is based on the effect of the value β  
on the hazard function behavior. 

The Weibull failure rate for 0 1β< <  is unbounded 
at 0t = . The failure rate ( )tΛ , decreases , thereafter 
monotonically and is convex, approaching the value of 
zero as t →∞ , or ( ) 0tΛ = . This behavior makes it 
suitable for representing the failure rate of units 
exhibiting early-type failures, for which the failure rate 
decreases with age. When such behavior is seen, the 
following reasons can be considered. 
•Burn-in testing and/or environmental stress screening 
are not well implemented. 
• There are problems in the production line. 
• Inadequate quality control. 
• Packaging and transit problems. 

It is clear that when 0 1β< <  , the design SRD is 
better than PSRD and PSRD is better than PC2, in terms 
of TETUE. 

For 1β = , ( )tΛ  yields a constant value. This makes 
it suitable for representing the failure rate of chance-
type failure and the useful life period failure rate of 
machines. In this case PSRD is the same as SRD but it 
is better than PC2 in terms of TETUE. 

For 1, ( )tβ > Λ  increases as t  increases and 
becomes suitable for representing the failure rate of 
machines exhibiting wear-out type failures. For 
1 2β< <  the ( )tΛ  curve, is concave, consequently, the 
failure rate increases at a decreasing rate as t increases . 
For 2β = , or the Rayleigh distribution case, there is a 
straight line relationship between ( )tΛ  and t , which 
goes through the origin with a slop of 2. ( )tΛ  increases 
at a constant rate as t  increases. 

In this case we have that PSRD is the best among all 
four designs (PSRD, SRD, PC2, C2) in terms of 
TETUE. 
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