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Abstract 
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1. Introduction 
Let S  be a locally compact topological semigroup, 

and let ( )M S  denote the space of all bounded complex 
regular measures on S . This space with the convolution 
product and norm ( )Sµ µ=  is a Banach algebra. 
The space of all measures ( )aM Sµ ∈  for which the 
mappings *ss δ µ6  and * xs µ δ6  from s  into 

( )M S  are weakly continuous is denoted by ( )aM S  

(or ( )L S  as in [1]), where sδ  denotes the Dirac 

measure at s . Note that the measure algebra ( )aM S  

defines a two-sided closed L -ideal of ( )M S (see [1]). 
For a locally compact topological semigroup S , let 

0 ( ) : { ( ) : ( ) 0}M S M S Sµ µ= ∈ =  and  

0 0( ) ( ) ( )aI S M S M S= ∩ . 

A semigroups S  is called a foundation semigroup; if 
{supp( ) : ( )}aM Sµ µ∪ ∈  is dense in S . Note that if 

S  is a foundation semigroup with an identity then 
( )aM S  has a bounded approximate identity (c.f. [16]). 

Let S  be a foundation semigroup. Given any 
( )aM Sµ ∈  and *( )aM Sφ ∈ , define the complex-

valued function φ µD  and µ φD  on S  by 

( )( ) ( )ssφ µ φ δ µ= ∗D  and  

( )( ) ( ) ( )ss s Sµ φ φ µ δ= ∗ ∈D . 

It is clear that φ µD  and µ φD  are in ( )bC S , where 

( )bC S  denotes the space of all bounded continuous 
complex-valued functions on S . By Lemma 3.4 of 
[16], for each *( )aM Sφ ∈  and , ( )aM Sµ ν ∈ , 

( ) ( ) ( )φ µ ν ν µ φ µ φ ν∗ = =D D . 
Let S  be a Banach algebra and X  be a Banach A -

bimodule. A bounded linear map :D A X→  is called 
an X -derivation, if 

( ) ( ). . ( ) ( , ).D ab D a b a D b a b A= + ∈  

For every x X∈  we define xad  by 
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ad ( ) . . ( ).x a a x x a a A= − ∈  

It is easily seen that xad  is a derivation. Derivations 
of this form are called inner derivations. The set of all 
derivations from A  into X  is denoted by 1 ( , ),Z A X  
and the set of all inner X -derivations is denoted by 

1 ( , )B A X . Clearly, 1 ( , )Z A X  is a linear subspace of 
the space of all bounded linear operators of A  into X  
and 1 ( , )B A X  is a linear subspace of 1 ( , )Z A X . We 
denote by 1 ( , )H A X  the difference space of 

1 ( , )Z A X  modulo 1 ( , )B A X . 
It is a conjecture raised by Ghahramani, Runde and 

Willis that a semigroup S  for which 1 (( )H M S , 
( ))M S {0}=  must satisfy some form of cancellation 

property; see [8]. In this paper, we study this problem 
for a certain class of topological semigroups and give a 
partially negative answer to this conjecture. 

2. Some Examples and Results 

Let A  be a commutative Banach algebra. The 
spectrum of ,A  denoted by Spec( )A , is the set of all 
multiplicative linear functionals on A . The radical of 
A  is defined by 

Rad( ) {ker ( ) : Spec( )}A Aφ φ= ∩ ∈ . Recall that a 
commutative Banach algebra A  is called semisimple if 
Rad( ) 0.A =  
Example 2.1,  Following Leinert [14], let S  be the 
semigroup of all sequences ( )is x=  of real numbers 

ix  such that 0ix >  for almost all i  with pointwise 
addition. Then 1 ( )SA  is a commutative semisimple 
Banach algebra, and so from Theorem 16.21 of [2] it 
follows that 1 1 1( ), ( ) {0}( )H S S =A A . 
 
Remark 2.2.  Let S  be a locally compact semigroup 
with the semigroup structure of 0st s=  for all ,s t S∈  
where 0s  is a fixed element of S . Clearly for 

, ( )M Sµ ν ∈ , 
0

* ( ) ( ) sS Sµ ν µ ν δ= . Let φ ∈  

( )Spec ( )M S , then ( ) ( )Sφ µ µ=  for all ( )M Sµ ∈ . 

Indeed, if ( )Spec ( )M Sφ ∈ , then for all ( )M Sµ ∈  

0 0

0 0

( ) ( ) ( ( ) )

( ) ( ) ( ).

s s

s s

S Sµ φ δ φ µ δ

φ µ δ φ µ φ δ

=

= ∗ =
 

Now if 
0

( ) 0,sφ δ =  then ( ) 0φ µ =  for all 

( )M Sµ ∈ . This contradiction shows that 
0

( ) 0sφ δ ≠ , 

and so ( ) ( )Sφ µ µ=  all ( )M Sµ ∈ . Therefore 

0
Spec ( ( ))

Rad ( ) ker ( ) ( ) 0.( )
M S

M S M S
φ

φ
∈

= = ≠∩  

This implies that ( )M S  is not semisimple. Also 
1 ( ), ( )( )H M S M S  is not zero (c.f. [8], Example on 

page 387). Thus the hypothesis of semisimplity in 
Theorem 16.21 of [2] is necessary. 

In the following we give examples of a semigroup S  
for which the first order cohomology 1 (( )H M S , 

( ))M S {0}= , but S  is neither left and nor right 
cancellative. This is a partially negative answer to the 
guess of Ghahramani, Runde and Willis in [8]. 
 
Example 2.3.  Let A  be a non-empty set, and let 

{0}S A= ∪ . With the multiplication defined by 
2s s=  and st 0=  for all ,s t S∈  with s t≠ , S  is a 

commutative semigroup. Since for each ,t A∈  the 
function tφ  defined by ( ) 0t sφ =  for s t≠  and 

( ) 1t tφ =  is a semicharacter on ,S  so the set of all 
semicharacters on ,S  separates the points of S . Hence 
by Proposition 4.1.4 of [6], 1 ( )SA  is semisimple. From 
Theorem 16.21 of [2], it follows that 

1 1 1( ), ( ) 0,( )H S S =A A  although S  is not either left 
or right cancellative. 
 
Remark 2.4.  Let S  be a compact, Hausdorff, 
cancellative right topological semigroup, then S  is a 
compact topological group and so 1 (( )H M S , 

( ))M S {0}= . 
Before proving our next theorem we first need to 

prove two lemmas. 
 
Lemma 2.5.  Let S  be a locally compact left zero 
semigroup with Card( ) 2S > . Then S  is a right 
cancellative semigroup for which 1 (( )H M S , 

( ))M S {0}≠  
 
Proof.  Suppose first that S  is a locally compact left 
zero semigroup, then it is clear that S  is a right 
cancellative. Clearly for , ( ),M Sµ ν ∈ * ( ) .Sµ ν ν µ=  
Moreover we have 

1

0

( ), ( )

( ), ( ) : ( ) ( ) .

( )
{ ( ) ( ) }
Z M S M S

L B M S M S L M S M S

=

∈ ⊆
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To see this, take 1 ( ), ( )( )D Z M S M S∈  and 
( )M Sµ ∈ , then 

( ) ( ) ( )

( * )

( )* * ( )

( ) ( ) ( )( ) .

( )S D D S

D

D D

S D D S

µ µ µ µ

µ µ

µ µ µ µ

µ µ µ µ

=

=

= +

= +

 

Thus ( )( ) 0D Sµ = . This implies that ( )D µ ∈  

0 ( ).M S  

Conversely, if ( ), ( )( ),D B M S M S∈  such that 

0( ) ( ),( )D M S M S⊆  then 

( * ) ( )

( ) ( )

( ) ( ) ( )( )

( )* * ( ).

( )D D S

S D

S D D S

D D

µ ν ν µ

ν µ

ν µ ν µ

µ ν µ ν

=

=

= +

= +

 

Now since Card( ) 3,S ≥  there exist 1 2 3, ,s s s S∈  
such that i js s≠  for i j≠ . By the Hahn-Banach 

theorem there exists 0( ), ( )( )D B M S M S∈  such that 

1
( ) 0sD δ =  and 

2 3 1
( )s s sD δ δ δ= − (indeed, by the 

Hahn-Banach theorem there exists D ∈  

( )3 1
( ), ( )s sB M S δ δ−^  that extends the following 

bounded linear map, 

1 2 3 1 1

3 1

1

2 2 2

( ) : 

( ),

s s s s s

s s s

δ δ δ δ λ δ

λ δ λ δ δ

⊕ → −

+ −

^ ^ ^

6
 

where 1 2, .λ λ ∈^  Now, define D ∈  

( )0( ), ( )B M S M S  by ( ) ( ) ( ( ))D D M Sµ µ µ= ∈ . 
By (1), D  is a derivation. If adD ν=  for some 

( )M Sν ∈ , then ( ) ( ) ( ) .D S Sµ ν µ µ ν= −  This 
implies that 

1 1 1

1

0 ( ) ( ) ( )

( ) ,

s s s

s

D S S

S

δ ν δ δ ν

ν δ ν

= = −

= −
 

and so 
1

( ) .sSν ν δ=  Similarly 
3 1s sδ δ− =  

2
( )sD δ =  

2
( ) .sSν δ ν−  Therefore 

3 1 2 1
( )( ),s s s sSδ δ ν δ δ− = −  

and hence 

3 1

2 1

3

3

1 ( )({ })

( ( )( ))({ }) 0.

s s

s s

s

S s

δ δ

ν δ δ

= −

= − =
 

This contradiction shows that 
1 ( ), ( )( )D B M S M S∉ . Thus 

1 ( ), ( ) {0}.( )H M S M S ≠ ,  
 
Lemma 2.6.  Let S  be a left zero semigroup with 
Card( ) 2,S =  then 1 ( ), ( ) {0}.( )H M S M S =  
 
Proof.  Let { }S s, t=  and 1 ( ), ( )( ).D Z M S M S∈  
Then from (1) it follows that 0( ( )) ( ).D M S M S⊆  
Suppose that ( ) ( )s s tD δ α δ δ= −  and 

( ) ( ).t s tD δ β δ δ= −  Set ,t sφ αδ βδ= −  then 

ad ( ) * * ( ).s s s s tφ δ δ φ φ δ α δ δ= − = −  

Thus ad ( ) ( ).s sDφ δ δ=  Similarly ad ( )tφ δ =  
( )tD δ . So .ad Dφ = ,  
A combination of the above two lemmas yields the 

following result. 
 
Theorem 2.7.  Let S  be a left zero semigroup. Then 

1 ( ), ( ) {0}( )H M S M S =  if and only if Card 2S ≤ . 
 
Remark 2.8.  Let S  be a left zero semigroup with two 
elements. Then by Lemma 2.6 we have 

1 ( ), ( ) {0}( )H M S M S = , but by Proposition 2.5 we 

have 1 ( ), ( ) {0}.( )H M S S M S S× × ≠  

3. Derivations on Foundation Semigroups 

Our starting point of this section is the following 
definition. 
 
Definitions 3.1.  If a Banach algebra A  is contained in 
another Banach algebra B  as a closed ideal, then the 
strict topology or strong operator topology (so) on B  
with respect to A  is defined through the family of 
seminorms ( ,)a a Ap ∈  where 

( ) : ( ).ap b ba ab b B= + ∈  

For a topological semigroup S  the strict topology on 
( )M S  with respect to ( )aM S  is simply called the so 

topology or the strict topology on ( )M S . 
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Lemma 3.2.  Let B  be a Banach algebra and A  be an 
ideal of .B  Then *( , )T B so∈  if and only if there exits 
subset { }1 2 na ,a ,..., a  and ' '

1{ ,..., }ma a  of A  and 

1{ ,..., }nφ φ  and ' '
1{ ,..., }mφ φ  of *A  such that for each 

b B∈  

' '

1 1

( ) ( ) ( ). 
n

i

m

i i i i
i

T b a b baφ φ
= =

= + ∑∑  

Proof. Let *) .( ,T B so∈  Then by Theorem 3.1 of 
[4] there exist 1 2 na  ,  a ,...,a  in ,A  such that 

1

| ( ) | ( ) ( ).
n

i i
i

T b a b ba b B
=

≤ + ∈∑  

Let 1 1{( ,..., , ,..., ) : },n nM a b a b ba ba b B= ∈  and 
define the functional 0 :F M 6^  by 

( ) ( )0 1 n 1 nF a b,..., a b,ba ,..., ba T b .=  

Clearly 2
1

n
iM A=⊆ ⊕  A$ and 0F  is well defined and 

bounded. By the Hahn-Banach theorem there is a 
bounded functional F  on 1

n
i A=⊕  such that 

M 0F| F= . 

For all 1 i n≤ ≤  and 1 2,j≤ ≤  define *
ij Aφ ∈  by 

P( 1 )

( ) (0,..., ,...,0) ( ).
j n i

ij a F a a Aφ
− +

= ∈  

Now for any b B∈  we have 

0 1 1

1 1

1 2
1 1

( ) ( ,..., , ,..., )

( ,..., , ,..., )

( ) ( ).

n n

n n

n n

i i i i
i i

T b F a b a b ba ba

F a b a b ba ba

a b baφ φ
= =

=

=

= +∑ ∑

 

The other side is trivial. ,  
The following result is a generalization of 

Proposition 3.3.41(i) of [5] from locally compact groups 
to the case of foundation semigroups with completely 
different technique of proof. 
 
Theorem 3.3.  Let S  be a foundation semigroup. Then 

1 ( )SA  is so-dense in ( )M S .  
 
Proof.  We may isometrically imbed ( )M S  into 

*( ) .bC S  By Lemma 2.5 of [1], with the weak* 
topology on *( ) ,bC S 1 ( )SA  is dense in *( ) .bC S  
Now suppose ( ).M Sµ ∈  Then there exists a net ( )αµ  
in 1 ( ),SA  such that αµ µ→  in the weak* topology. 

Now let *( )aM Sφ ∈  and ( ),aM Sν ∈  then 

( * ) ( ) ( ) ( * ).α αφ µ ν µ ν φ µ ν φ φ µ ν= → =D D  

Therefore by Lemma 3.2 for any *( ( ), )T M S so∈  
we have ( ) ( ).T Tαµ µ→  So 1 ( )SA  is weakly dense 

in the locally convex space ( )( )M S ,so .  Since 1 ( )SA  

is convex, by Theorem 3.12 of [15] we have 
1 ( ) .

so
Sµ ∈ A ,  

 
Proposition 3.4.  Let S  be a foundation semigroup 
with identity. Then ( ) ( )( )a aD M S M S⊆  for any 

1 ( ), ( )( )aD Z M S M S∈  
 
Proof.  Let ( )eα  be a bounded approximate identity for 

( )aM S ,  then for each ( ),aM Sµ ∈  

( ) lim ( * )

lim( ( )* * ( )) ( ).a

D D e

D e D e M S

αα

α αα

µ µ

µ µ

=

= + ∈
 

,  
Recall that S  is said to be left compactly 

cancelletive if 1C D−  is a compact subset of S  for all 
compact subsets C  and D  of ,S  where 

1 { :  for some  }.C D x S cx D c C− = ∈ ∈ ∈  

Right compactly cancellative locally compact 
semigroups are defined similarly. A semigroup which is 
both left and right compactly cancellative is called 
compactly cancellative. 

Let A  be a Banach algebra. A pair ( )L, R  of 
operators L  and R  on A  is called a multiplier if for 
each ( ) ( ) ( ) ( )L ab L a b, R ab b, aR,a b A =∈ =  and 

( ) ( )aL b R a b.=  The set of all multipliers on ,A  

denoted by ( )M A  with the multiplication defined by 

( )
1 1 2 2

1 2 2 1 1 1 2 2

( , )( , )

( , ) ( , ), ( , ) ( ) ,

L R L R

L L R L R L RR M A= ∈D D
 

is a Banach algebra that called the multiplier algebra of 
.A  
In the proof of the following lemma we have been 

inspired by that of Theorem 3.3.40 of [5]. 
 
Lemma 3.5.  Let S  be a compactly cancellative 
foundation semigroup with identity, Then the multiplier 
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algebra of ( )aM S  is isomorphic with ( )M S .  
 
Proof.  For ( ),M Sµ ∈  define 

( )L µ ν µ ν= ∗  and  

( ) ( ( ))aR M Sµ ν ν µ ν= ∗ ∈ . 

Clearly ( , )L Rµ µ  is a multiplier of ( )aM S .  We 
show that the mapping ( , )L Rµ µµ 6  is an 
isomorphism from ( )M S  onto the multiplier algebra 
of ( )aM S .  Let ( )eα  be a bounded approximate 

identity for ( )aM S ,  and ( )L, R  be a multiplier of 

( )aM S ,  then ( )( )L eα  is a bounded net in ( )M S . 
By Banach-Alaoglu's Theorem, passing to a subnet if 
necessary, we can assume that there exists ( ),M Sµ ∈  
such that ( )L eα µ→  in the weak* topology. Let 

( )aM Sν ∈  and 0 ( ).C Sφ ∈  By Lemma 1 of [12], 

0 ( ).C Sφ ν ∈D  So 

lim , ( )* lim , ( )

,

,

, ( ) ,

L e L e

L

α αα α

µ

φ ν ν φ

ν φ µ

φ µ ν

φ ν

〈 〉 = 〈 〉

= 〈 〉

= 〈 ∗ 〉

= 〈 〉

D

D
 

and hence ( )* ( )L e Lα µν ν→  in the weak* topology. 
Now, since ( * ) ( )L e Lα ν ν→  in the norm topology, 
we have .L L µ=  Similarly .R R µ=  The remainder of 
proof is trivial.   ,  
 
Proposition 3.6.  Let S  be a compactly cancellative 
foundation semigroup with identity, Then 

1 1( ), ( ) ( ), ( ) .( ) ( )aH M S M S H M S M S=  

Furthermore each 1 ( ), ( )( )aD Z M S M S∈  has a 

unique so-weak* continuous extension 1D Z∈  
( )( ), ( )M S M S . 
 
Proof.  From Lemma 3.5 the set of all multipliers on 

( )aM S  is equal with ( )M S . On the other hand, by 
Lemma 1 of [12] we have 0 0( ) ( ) ( ).aM S C S C S° ⊆  
Also, let ( )eα  be a bounded approximate identity for 

( )aM S .  As in Lemma 2.1 from [12], 

0|| || 0 ( ( )).e f f f C Sα ∞ →− ∈D  

Thus 0 0( ) ( ) ( )aM S C S C S=D  by Cohen 
factorization theorem. Similarly, 0 ( ) ( )aC S M SD  

0 ( )C S= . Therefore ( )0C S  is a neo-unital ( )aM S -
module. By Propositions 1.9 and 1.11 from [10] the 
proof is complete.   ,  

4. Derivations on Clifford Semigroups 
An element e  of a semigroup S  is called an 

idempotent if 2e e= . We denote be SE  the set of 
idempotents in .S  Recall that a semigroup S  is a 
Clifford semigroup if it is an inverse semigroup for 
which each idempotent is central (cf. [9], 4.2). By 
Theorem 4.2.1 of [9], S  is a semilattice of groups and 
if { : },e SS G e E= ∪ ∈  then for , ,e f E∈  e f≤  if 
and only if ,ef f=  and moreover for every 

, , .e f efe f E G G G∈ ⊆  
 
Lemma 4.1.  Let S  be a topological Clifford 
semigroup, and 1 ( ), ( ) ,( )D Z M S M S∈  then 

1
0( ) ( ).( )D S M S⊆A  

 
Proof.  Suppose that .

Se E eS G∈= ∪  Let ,x S∈  then 

there exists e E∈  such that .ex G∈  If H  is a 
subgroup of eG $G_e$ generated by x  and ,e  then 
H  is abelian and therefore 1 ( )HA  is amenable. We 
note that ( )M S  is a 1 ( )HA -bimodule and the 

restriction of D  on 1 ( )HA  denoted by xD  is a 
derivation. Thus xD $ is inner. That is there is 

( )x M Sµ ∈  such that .
xxD ad µ=  Therefore for any 

,x H∈  we have ( ) * *x x x x x xD δ δ µ µ δ= −  and so 
that ( ) * * .x x x x xD δ δ µ µ δ= −  Thus ( )( )xD Sδ  

0= . This implies that 1
0( ) ( ).( )D S M S⊆A ,  

The following theorem is a generalization of 
Proposition 7.1 of [8]. 
 
Theorem 4.2.  Let S  be a compactly cancellative 
foundation Clifford semigroup with identity and 

( )1 ( ), ( )aD Z M S M S∈ , then ( )( )aD M S ⊆  

0 ( )I S . 
 
Proof.  By Proposition 3.6, D  has a unique extension 

1 ( ), ( ) .( )D Z M S M S∈  Using Theorem 3.3 and 
Lemmas 3.6 and 4.1 we obtain 
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*

*

1

1

0 0

( ) ( ) ( )

( )

( ) ( ).

( ) ( ) ( )

( )

so

a

weak

weak

D M S D M S D S

D S

M S M S

⊆ =

⊆

= =

A

A  

On the other hand by Proposition 3.4 
( )( ) ( ),a aD M S M S⊆  thus ( )( )aD M S ⊆  0 ( )I S .,  

 
Remark 4.3.  (a) Let T  be a compact foundation 
semilattice with identity, for example {1, 2, , },T n= …  
where n ∈`  with the . { , } ( , ).k l max k l k l T= ∈  Let 
$G$ be any locally compact group. Then S T G= ×  
with the product topology and coordinatewise 
multiplication defines a foundation semigroup (See [7], 
Page 43) with identity that is compactly cancelllative. 
Let { }tG t G= ×  for .t T∈  It is clear that tG  is a 
group with the identity ( )Gt ,e .  Clearly e

e T

S G
∈

=∪  and 

S  is a Clifford semigroup. Furthermore SE =  
{( , ) : }.Gt e t T∈  By Theorem 4.2, if 

1 ( ), ( ) ,( )aD Z M S M S∈  then 0( ) ( ).( )aD M S I S⊆  
(b) The proof of the Theorem 4.2 shows that if S  is 

a compactly cancellative foundation semigroup with 
identity such that S  is a union of groups, then 

0( ) ( ).( )aD M S I S⊆  
 
Lemma 4.4.  Let { : }e SS G e E= ∪ ∈  be a topological 

Clifford semigroup and 1 ( ), ( ) .( )D Z M S M S∈  If 

Se E∈  and supp( ) ,eGµ ⊆  then supp( ( ))D µ  

j e jG≤⊆ ∪ . 
 
Proof.  Since e  is central, so 

( ) ( ) 2 ( )e e e e eD D Dδ δ δ δ δ= ∗ = ∗  and hence 

( ) 2 ( ) 2 ( ).( )e e e e e e eD D Dδ δ δ δ δ δ δ∗ = ∗ = ∗  Since 
supp( ) ,eGµ ⊆  we have 

( ) ( * ) ( )* * ( )

( )* .

e e e e e

e

D D D D

D

µ µ δ µ δ µ δ

µ δ

= = +

=
 

Thus 
supp( ( )) supp( ( )* ) .e j

j e

D D Se Gµ µ δ
≤

= ⊆ = ,∪  

The following theorem is indeed the main result of 
this paper. 
 

Theorem 4.5.  Let { : }e SS G e E= ∪ ∈  be a topo-
logical Clifford semigroup such that SE  is finite and 

each jG  is closed. Then 1 ( ), ( ) {0}.( )H M S M S =  
 
Proof.  Let 1 ( ), ( ) .( )D Z M S M S∈  Each Se E∈  
defines a bounded derivation : ( ) ( )e eD M G M S6  

by ( ) ( ),e e eD Dµ µ=  where ( )e M Sµ ∈  is given by 

0( | ) ( ( )).
e

e
e G eS G

f d f d f C Sµ µ= ∈∫ ∫  

By Lemma 4.4, ( ) ( ).( )e e j e jD M G M G≤⊆ ∪  
Since each jG  is closed and SE  is finite, so each jG  
is also open and hence ( ) ( ).j e j j e jM G M G≤ ≤∪ = ⊕  
Thus we have 

( ( )) ( ) ( ).e e j e j j e jD M G M G M G≤ ≤⊆ ∪ = ⊕  

Therefore we can decompose eD  across 
( )j e jM G≤⊕  as ( ) ( ),j

e e e e
j e

D Dµ µ
≤

= ∑  where 

( )j
e eD µ  denotes the j  th projection of ( )e eD µ  on 

( )jM G .  Since ,j e≤  so je j,=  and hence j
eD  is a 

derivation from ( )eM G  into ( )jM G .  We call each 

associated derivation from ( )eM G  to ( )eM G  the 
principle component of D  on eG . By [13], if G  is a 
locally compact group, then 

1 ( ), ( ) 0.( )H M G M G =  By using the method of 
Theorem 3.2 of [3], we get a bounded derivation 

# ,D D ad ξ= −  where ( )M Sξ ∈  and #D  has zero 
component on each  ( ).e SG e E∈  If e u≤  and 

( ),u eM Gµ ∈  then # #( ) ( )e u e uD Dδ µ δ µ∗ = ∗  and 
supp( ) .e u e u eu eG G G Gδ µ∗ ⊆ ⊆ = . So we can apply 
the argument of Theorem 3.2 of [3] to obtain # 0.D =  
Hence D  is inner.   ,  
 
Example 4.6.  Let n ∈`  and {1, 2, , }T n= …  with the 

. { , } ( , ).k l max k l k l T= ∈  Suppose G  is a locally 
compact group. Then S T G= ×  with the product 
topology and coordinatewise multiplication defines a 
Clifford semigroup that satisfies the hypothesis of 
Theorem 4.5 Therefore 1 ( ), ( ) {0}.( )H M S M S =  
 
Remark  4.7.  Let S  be a left zero semigroup with at 
least three elements. Then { },s SS s∈= ∪  but 
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1 1 1( ), ( ) {0}( )H S S ≠A A  by Lemma 2.5. Therefore 
Theorem 4.5 is not valid in general for every semigroup 
S  which is a union of groups. 
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