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Abstract 

MicroRNAs (miRNAs) are short, endogenous non-coding RNAs that function as guide 
molecules to regulate transcription of their target messenger RNAs. Several methods 
including low-density qPCR arrays are being increasingly used to profile the expression 
of these molecules in a variety of different biological conditions. Reliable analysis of 
expression profiles demands removal of technical variations in data, which is achieved 
via applying normalization techniques. Most normalization techniques have been 
developed for mRNA microarrays and new and modified methods should be used for 
miRNA studies in general and RT-qPCR miRNA arrays in particular, because of low 
number of miRNAs. Here, we introduce a new method based on Procrustes 
superimposition of arrays to be normalized on a reference array. To assess the 
performance of our normalization method, we compared this method to the common 
miRNA normalization methods. Removal of technical variation was assessed by robust 
modeling of mean square error (MSE) in different subsets of real miRNA datasets 
before and after applying normalization. We show that our method outperforms the 
other normalization methods in concurrent reduction of technical variation and retention 
of biological variability. 
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Introduction 

MicroRNAs (miRNAs) are small inhibitory 
endogenous RNAs. They regulate target mRNAs 
through repressing translation or promoting 
mRNA degradation(1, 2). These tiny molecules 
control a variety of cellular processes, and possess 
promising diagnostic and therapeutic 
potentials(3). Their small length and high inter-
molecular similarities has not impeded the use of 
high-throughput profiling technologies to unravel 
their roles in a variety of biological milieus. 
Microarrays(4), low density qPCR arrays(5), bead 
based flow cytometry assay(6), and next 
generation sequencing techniques(7) have all been 
successfully applied to profile expression of these 

molecules. Like other RNA species, qPCR based 
methods are superior to other methods in terms of 
accuracy and sensitivity for the quantification of 
miRNAs(8). 
Even with reliable methods such as qPCR, 
technical variations (experimental error) 
negatively affect the reliability of data. To 
minimize non-biological sources of variation and 
retain true biological variations, normalization 
techniques are applied to raw data(9). Although 
many different housekeeping miRNAs have been 
suggested for the normalization of miRNA qPCR 
data, mean Cq values of samples have been shown 
to provide a superior normalization factor for 
qPCR array data than do housekeeping 
miRNAs(9, 10). In addition, cDNA array 



 

 

normalization techniques have also been applied 
to normalize qPCR array data(11). Due to the low 
number of miRNAs, the assumptions underlying 
mRNA normalization methods can be easily 
violated. This may lead to introduction of 
inaccuracy in high-throughput miRNA data. Each 
miRNA may target some hundreds of mRNAs, 
and misclassifying a single miRNA as (non-) 
differentially expressed is equivalent to wrong 
classification of all its targets. Therefore, the 
removal of experimental error and retention of 
true biological signal are essential requirements in 
miRNA profiling studies. Further, to achieve a 
more precise analysis of differential gene analysis, 
proper removal of experimental error and 
retention of biological variation is necessary. 
Novel normalization methods are needed to 
increase the precision and accuracy of high-
throughput miRNA qPCR array data. 
Herein we propose a novel normalization method 
based on Procrustes superimposition, and assess 
its power to remove experimental error in miRNA 
qPCR data. Procrustes superimposition uses 
translation, rotation, and scaling of data to find the 
closest match between two configurations. 
Generalized Procrustes analysis (GPA) has been 
recently used for single and double channel 
arrays(12, 13). Here we introduce a novel method 
based on Procrustes superimposition (PS). Our 
proposed method is applicable to both single- and 
double channel array data. We assess the 
performance of PS normalization method against 
common normalization methods for miRNA 
qPCR arrays. Our analysis is based on the 
reduction of experimental error by using mean 
squared error (MSE) criterion(4) and retention of 
signal-to-noise ratio(14)  in different subsets of a 
real miRNA dataset. 

Materials and methods 
Datasets 

The miRNA expression profile of 40 human 
tissues was used as dataset A. This dataset 
contained four replicates per tissue(5). The 
experiments had been performed on TaqMan® 

microRNA platform to provide the miRNA 
signature of different tissues. To assess different 
normalization methods, three different subsets of 
this dataset were used in addition to dataset A, as 

follows. Two tissues with the highest degree of 
differentially expressed miRNAs (peripheral 
blood mononuclear cells (PBMC) and placenta) 
were used as dataset B. More than 75% of 
miRNAs were differentially expressed between 
these tissues in raw data. The remaining 38 tissues 
from the original dataset were used as dataset C. 
Finally, four biologically-related tissues, left and 
right ventricles and left and right atria, which also 
have comparable miRNA expression patterns, 
were used as dataset D. 

Common methods for mirna high-throughput 
data normalization  

The method proposed by Metsdagh (Mts), 
subtracts mean Cq value of a sample from Cq 
values of miRNAs in the sample to find the 
normalized Cq values(9). In the method proposed 
by Pradervand (Prd), the differences in 
background levels are optionally removed. Then, 
the dependence of standard deviation on mean of 
expression values in all samples is removed, and a 
set of low standard deviation miRNAs that have 
high expressions (the invariant set) is determined 
by a mixture model across all samples. 
Normalization coefficients are computed by a 
robust regression method (an M estimator with 
Huber influence function) and are used to scale 
the data(15). This method has been developed for 
miRNA microarrays, and to apply this method to 
qPCR array data, we replaced Cq values with 40-
Cq, performed the normalization and reverted 
normalized data back (40- normalized Cq) 
(Personal communication with S. Pradervand). 
Quantile normalization first sorts Cq values in 
each sample. Then a baseline array is then created 
by taking the mean of Cq values in each rank 
across samples. In the next step, original values in 
each sample are replaced by values of the baseline 
array. Then each sample Cq values are sorted 
back to their original order. This normalization 
makes all samples share a single distribution of 
Cq values. 

Assessing removal of error  

We used mean square error (MSE) criterion to 
assess removal of experimental error after 
different normalization techniques(4, 13). This 
criterion is widely used to compare the 



 

 

performance of different normalization methods. 
As true (theoretical) Cq values are unknown in 
our datasets, we robustly modeled MSE. Briefly, 
miRNAs were ranked according to their average 
Cq values in duplicate samples and sorted into 
groups of thirty miRNAs (17). Differences in 
duplicate Cq values in each group (diffi,b, 1<i<30, 
and 1<b<number of groups) were obtained. 
Subsequently, median (med(diffi,b)) and median 
absolute deviation of diffi,b (MAD(diffi,b), equation 
(a)) were calculated. 

, , ,( ) ( )i b i b i bMAD diff med diff med diff  (a) 

In the next step, med(diffi,b) andMAD(diffi,b) were 
modeled as smooth functions of Cq values. 
Weighted smoothing spline (function 
“smooth.spline” from stats package, R 
language, equation b), and smoothing splines with 
the smoothing parameter selected by generalized 
maximum likelihood (function “ssanova0”, 
package gss, R language, equation c) were used to 
model med (diffi,b) andMAD(diffi,b) respectively. 
Weights used for “smooth.spline” were 
equal to the reciprocal of the squared MAD of 
difference for each group. 

, , 1,med( ) η( )i b med b bdiff Cq   (b) 

, , 2,MAD( ) ξ ( )i b med b bdiff Cq   (c) 

Here and represent the smoothed 
functions.bandb denote the errors of 
estimations (4)Now, MSE can be estimated as 
follows:  

, 2 2
,

ξ̂ ( )
ˆ( ) η( )

0.6745

med i

med i

Cq
MSE Cq  (d) 

Where the factor 0.6745 in the denumerator is 
used as the mathematical expectation of MAD  in 
normal distribution is 0.6745 σ. Estimates in 
eqauation (d) were obtained for 100 different 
points. Fitted functions (equations (b) and (c)) 
were used to obtain estimated values for these 
points. These points were chosen to be between 
minimum and maximum Cq values of two 
replicates. 
The R code for binning and calculating MSE may 
be requested from first author. The first term in 
equation (d) is the smoothed variance and the 
second one is the smoothed squared bias, 

demonstrating precision and accuracy in 
differences of Cq values, respectively. Lower 
values of bias and variance and indicate a superior 
normalization method, and best normalization 
would be the one that leads to unbiased Cq values 
with the lowest MSE value. Bias and variance 
components were calculated for each bin in each 
tissue and average values of bias (Fig. 1), variance 
(not shown) and MSE (Fig. 2) in each dataset after 
applying different normalization methods was 
used to obtain a global view of the performance of 
normalization methods. 
To assess whether normalization methods do not 
reduce biological variability along with reducing 
MSE, we obtained mean sum of squares (MSS) of 
each miRNA between tissues (MSSb, equation e) 
and MSS of each miRNA within tissues (MSSw, 
equation f) for each normalization technique(14). 

                                                               (e) 

                                                                     (f) 

Where R is the number of replicates, T the number 

of groups (tissues), Cq  the mean expression 

value for ith miRNA across all experiments, �̅�� 
the mean expression value of ith miRNA in tissue 
t, ,t rCq the expression in rth replicate of tissue T. 

For each miRNA, MSSb is a measure of variability 
between tissues, and MSSw a measure of 
variability within tissues, and a good 
normalization method should reduce MSSw. 
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Figure 1. Global mean squared bias in difference of Cq values 
in replicates in raw data and after applying different 
normalization methods. 



 

 

Density curves of MSSb and MSSw curves of 
dataset A after different normalizations are shown 
in Figure3. 

Results and Discussion 

We first describe our own developed 
normalization method. Then we turn to analysis of 
reduction of errors and  

Novel normalizationmethod 

Consider an m×s expression matrix containing m 
miRNAs in s samples, so that the jth column, 
0≤j≤s, in this matrix represents the Cq values of 
miRNAs present in the jth sample in the study. Cq 
values of each column are sorted to create a sorted 
expression matrix (S). An m-dimensional 
“baseline vector” is created from S as follows. 
The ith value of this vector is equal to the mean (or 

alternatively median) value of ith row of S, with 
0≤i≤m. In the next step, S is split to s column 
vectors. Then all sample vectors in addition to the 
baseline vector are merged with a new m-
dimensional vector to create s+1 matrices of m×2. 
The added column lists the ranks of Cq values in 
each sample. Now, a PS, a PS without rotation, or 
a partial PS can superimpose each of sample 
matrices on the reference matrix. The PS 
normalization method was implemented in R 
(v2.15.3, www.r-project.org), a statistical scripting 
language, and is available on request. 

Reduction of bias, variance and MSE 

For datasets A-D, mean squared smoothed bias 
values before and after normalization are shown 
in Figure 1. Smaller values of squared bias denote 
increased accuracy in data. Normalization 
methods tested here increased the accuracy in 
difference of Cq values of replicate samples, i.e. 
shifted the center of distribution of these values 
toward zero. Quantile normalization led to the 
largest decrease in bias, and PS followed quantile 
normalization, The performance of different 
normalization methods in reduction of variance 
component of MSE is depicted in Figure 2. 
Compared to squared bias term, the variance term 
of MSE is not much affected by applying 
normalization methods, and the general trend in 
reduction of MSE closely follows the trend for 
bias. Quantile normalization is an exception to 
this observation, as it increases variance. The 
increase in variance in data means broader 
distribution, and set of Cq values with lower 
precision. PS normalization, on the other hand, 
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Figure 2. Average smoothed MAD in different datasets and 
after different normalizations. 
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Figure 3. Reduction of MSE per tissue in dataset A after different normalizations. MSE value in raw data is subtracted from MSE values 
for each tissue. 



 

 

decreased variance. 
The efficacy of different methods in reducing 
MSE 

is shown in Figure4. The best method is PS, 
except for Prd in subset B. PS is often the most 
efficient method in reducing MSE in replicate 
experiments. Estimated MSE, estimates the 
difference between true and obtained values. 
Generally, when the bias is lower than original 
dataset, lower values of MSE indicate less error in 
data and better normalization. Although quantile 
normalization led to the least biased data, the 
lowering caused increased variance up to the point 
that MSE is increased. Disregarding quantile 
normalization because of increase in MSE, PS is 
the method with the least bias and lowest MSE, 
and is regarded the best method tested here. 
Mean MSE value for each of the original 40 tissue 
after normalizing dataset A is depicted in Figure 
3. PS also performs acceptably in most tissues and 
frequently leads to the least MSE. It should be 
noted that expression data are used for differential 
gene expression identification and subsequent 
downstream analyses. Introduction of error in any 
Cq value of any one tissue, negatively affect the 
differential expression  analysis for that specific 
miRNA between the tissue and all other tissues. 

Retention of signal-to-noise ratio 

Density curves of MSSb and MSSw for dataset A 
after different normalizations are shown in 
Figure3. MSSb, which indicates the variability of 
miRNAs between different tissues, is not reduced 
after PS normalization, while MSSw, the 
variability of miRNAs within replicate samples,is 

lowered by PS normalization, as the peak can be 
seen to shift to lower values (Fig.3). The effect of 
normalization on the ratio of MSSb to MSSw 
should ideally leads to identification of only the 
true differentially regulated miRNAs, the 
knowledge of which is not accessible in this 
dataset. As we are testing whether biological 
variability is maintained after normalizations, we 
expect that MSSb does not decrease for miRNAs. 
It can be concluded that our method does not 
reduce MSE by simply removing the difference 
between all pairs of arrays, and can be applied to 
miRNA qPCR data. 
An acceptable normalization method is expected 
to perform acceptably on data with different 
structures. It should lead to removal of technical 
variation, maintain the differences between 
different biological groups and reduce the 
differences within each biological group in 
different types of expression data. Subsets of data 
we chose to normalize were different in nature: 
dataset D contained highly similar tissues with 
similar expression profiles whereas dataset B 
tissues showed differential expression in majority 
of genes. Dataset B contained only two tissues in 
contrast to 40 tissues of dataset A, and dataset C 
contained more homogenous collection of tissues 
in comparison of dataset A. 
Here we proposed a method that uses Procrustes 
superimposition to remove experimental error in 
high-throughput qPCR data. Our method 
successfully reduces technical variation and other 
non-biological sources of variation in datasets 
with either highly similar or highly different 
tissues. PS normalization led to highest decrease 
in MSE values in 3 of 4 datasets we tested, and 
retained the variability between tissues. PS can be 
considered as a novel method to normalize qPCR 
data. 
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