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Abstract 

Spatial-temporal modeling of air pollutants, ground-level ozone concentrations 
in particular, has attracted recent attention because by using spatial-temporal 
modeling, can analyze, interpolate or predict ozone levels at any location. In this 
paper we consider daily averages of troposphere ozone over Tehran city. For 
eliminating the trend of data, a dynamic linear model is used, then some features 
of correlation structure of de-trended data, such as stationarity, symmetry and 
separability are considered. Next based on the obtained features, an appropriate 
model is proposed. This model can be used for future predictions of ozone in 
Tehran. 
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Introduction 

In recent years there has been a tremendous growth 
in the statistical models and techniques to analyze 
environmental processes that are spatially and 
temporally indexed, such as air pollution data. 
Troposphere Ozone is a secondary pollutant that results 
from photochemical reactions involving nitrogen oxides 
(NOx) and volatile organic compounds (VOC’s). The 
rate of ozone production depends on meteorological 
conditions, primarily sunlight, temperature, along with 
wind speed and direction. Therefore its levels are 
difficult to control. A complete description of the 
chemical processes involving ozone can be found in 
Seinfeld and Pandis [24]. In 1997, the U.S. 
Environmental Protection Agency (U.S. EPA) defined 
the National Ambient Air Quality Standards (NAAQS) 

for ozone in terms of the daily 8-hour maximum ozone 
measurement among the network of monitoring sites 
covering a given area. The new standard is defined in 
terms of the 3-year rolling average is less than 80 parts 
per billion (ppb), (see e.g. epa.gov/air/criteria. html). 

Environmental experts and authorities have a special 
interest in troposphere ozone or ground-level ozone 
because of its adverse health effects and its impact on 
certain agricultural crops. Thompson et al. [26] 
represented a comprehensive overview of statistical 
methods for the statistical adjustment of ground-level 
ozone. Zhu et al. [30] relate ambient ozone and 
pediatric asthma ER visits in Atlanta using hierarchical 
regression methods for spatially misaligned data. Wikle 
[28] provides an overview of hierarchical modeling in 
environmental science. Cocchi et al. [4] followed the 
approach of Huang and Smith [13] by using a tree based 
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partitioning of daily maxima ozone concentrations and 
assumed these maxima are Weibull distributed. Sahu et 
al. [21] presented a very elegant approach, by using 
ozone differentials to explain spatial-temporal patterns 
for ozone in Ohio. 

In this paper, we focus on analyzing troposphere 
ozone for capital city of Iran, Tehran. For statistical 
analysis of spatial-temporal data, it is often necessary to 
specify a spatial-temporal correlation structure by 
covariance function. Ma [19] . The acceptance of some 
assumptions like stationary, symmetry and separability 
of spatial-temporal covariance function, would 
considerably simplify fitting a covariance model to the 
data. But often they are not applicable, for example with 
ozone data, separability is not generally a realistic 
assumption. Nonseparable spatial-temporal covariance 
models have been proposed by Christakos and 
Hristopulos [3], Cressie and Huang [7], Christakos [2], 
De Cesare et al. [8,9], Ma [16, 17, 18, 19], Gneiting 
[11] and Stein [25]. 

Cressie and Huang [7] based their approach on 
Fourier transforms. Gneiting [11] proposed another 
general class of nonseparable, stationary covariance 
functions for spatial-temporal random processes directly 
in the spatial-temporal domain. In both these papers the 
spatial-temporal processes are assumed stationary in 
time and spatial components. Since the trend of the data 
arises bias on the covariance function estimation 
(Cressie [6]), it is necessary to use the de-trended data 
for fitting a valid covariance function. In this paper, we 
use a dynamic spatial linear model for modeling trend 
of ozone data in Tehran city, one of the most polluted 
cities in Iran. Next, according to the obtained features 
for correlation structure of this data, a suitable function 
for covariance structure of the de-trended data is fitted. 

In this paper, first, introduce some basic features of 
the spatial-temporal theory. Next, pertinent exploratory 
analyses of the data is presented. Our proposed model 
for modeling trend of spatial-temporal data is described 
in the Spatial-Temporal Trend section. Then the features 
of correlation structure of the ozone concentration in 
Tehran city are specified and a suitable spatial-temporal 
covariance function is fitted. Finally, Results and 
Discussion are given. 

Background: Spatial-Temporal Process 

Let     , , ; , dZ Z t R t R    s s  denotes a 

spatial-temporal random field, where s  represents a site 
in d-dimensional space and t  represents time. In 
general, a spatial-temporal random field can be 
decomposed as 

     , , ,Z t t t  s s s ;    ,  dt R R s  

where  ,t s  represents the mean surface or spatial-

temporal trend, also it is corresponding to large scale 
variations in the process,  ,t s  is a zero mean spatial-

temporal correlated error that explains the spatial-
temporal small scale variations. 
 
Definition 1. The spatial-temporal covariance function 
is defined as 

     1 2 1 2 1 1 2 2,  ;  ,   , ,  , C t t Cov t t    s s s s ; 

    1 1 2 2 , ,  ,   dt t R R s s  

Definition 2. The zero mean spatial-temporal process 

 ,t s  has stationary covariance if 

   1 2 1 2,  ; , ; C t t C us s h ;  ;  du R R h  

where 1 2 h s s  and 1 2 u t t  . 

 

Definition 3. The spatial-temporal process  ,t s  has a 

separable covariance if there exist purely spatial and 
purely temporal covariance functions SC  and TC , 

respectively, such that 

     1 2 1 2 S 1 2 T 1 2,  ;  t ,  t  C  , C t  , tC s s s s ; 

    1 1 2 2 , ,  ,   dt t R R s s  

Definition 4. The spatial-temporal process  ,s t  has 

fully symmetric covariance if 

       1 1 2 2 1 2 2 1, ,  ,  , ,  ,  Cov t t Cov t t         s s s s  

for all spatial-temporal coordinates  1 1,s t  and 

 2 2, s t  in dR R  (Gneiting [11]; Stein [25]). Also, a 

stationary spatial-temporal covariance function is fully 
symmetric if 

C  ,  uh = C (h ,− u ) = C  ( −h , u ) = C  ( −h ,− u ); 

  ,   du R R h  

Exploratory Analysis 

In this paper, we have used the daily averages of 
tropospheric ozone observed during 2009. This data 
were at scale parts per billion (ppb) and have measured 
at 9 different monitoring stations scattered irregularly in 
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Figure 1. Monitoring sites in Tehran city. Figure 2. Box plot of the data at 9 sites. 
 
 

 

Figure 3. Histograms and Normal QQ plots for original, square root and logarithmic data. 
 
 
Tehran city. Fig. 1, shows the geographical locations of 
these 9 stations over map of Tehran city. Between initial 
hourly data, some points were missing observation 
which we imputed them by using of average method, 
that is, missing observations at each station, is imputed 
by daily average of all data at the same station. 

The box-plot of the data in each station, plotted in 
Fig. 2, shows considerable spatial variations in this data 
set. It also shows that the sites 1 and 5 are more and less 
polluted than others, respectively. Because site 1 is in 
central area and messy of this city and site 5 is in 
suburbia out of the city. 

For analysis of spatial-temporal data, it is necessary 

to consider their normality, stationarity and homo-
geneity of the variance. Empirical analysis suggested 
that normality was a reasonable assumption for air 
pollutant data. For considering normality, the histogram, 
normal QQ plot and Shapiro-Wilk test for original, 
square root and logarithm of the data are used. Both of 
this plots and result of the Shapiro-Wilk test showed 
that the original and logarithmic data have asymmetric 
distribution and transformed data by the square root 
transformation has nearly symmetric distribution (Fig. 
3). Also the p-value of Shapiro-Wilk test for the square 
root of the data is more than 0.05 that approve normality 
of the transformed data. Therefore we use normal 
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distribution for the square root of the data. 
Since the spatial domain of consideration is large, 

one could not expect spatial stationarity across this 
domain. For specifying stationarity in mean and 
covariance function can be used the H-scatter plots of 
z (s, t) versus z (s + h, t + u) for the original and 
transformed data that are shown in Fig. 4. In these plots, 
points are interspersed around bisector line asymmetric. 
Therefore there is not stationarity for original and 
transformed data. It can be because of existence of trend 
in the data. 

Cressie and Huang [7], Sahu et al. [21] and Huang et 
al. [12] used the plot of standard deviations versus the 
mean of data (over time) for considering homogeneity 
of variance. By plotting the standard deviation against 
the mean of the original data over the 365 time instants 
analyzed, in Fig. 5.a and over 9 sites in Fig. 5.b, 
perceive that variance increases as mean increases. 
Therefore variance of the original data is not homogen. 
But for the square root of data there is no specific 
pattern in Fig. 5.c and Fig. 5.d, so the variance of the 
transformed data is homogen. 

Spatial-Temporal Trend 

For inquiring symmetry and separability of spatial-
temporal covariance function, it is needful that eliminate 
the trend of data. There are variety methods for trend 
modeling. Cox and Chu [5] used a generalized linear 
model approach to estimate trends in daily maximum 
ozone levels. Stroud et al. [23] modeled the trend at 
each time-period as a locally weighted mixture of linear 
regressions. Huerta et al. [14] and Zheng et al. [29] 
applied a dynamic linear model to explain ozone trends. 
Fuentes et al. [10] introduced spectral spatial-temporal 
models, using covariates that have spatial-temporal 
dynamic coefficients and applied ambient ozone data 
provided by U.S. EPA in their article. 

Comparing four different models for trend of the 
ozone data during 2009, Mousavi And Mohammad-
zadeh [20] proposed a dynamic spatial linear model. In 
this section, we used the same spatial-temporal model 
for the transformed data. Then after de-trending the 
data, in the next section, the symmetry and separability 
of spatial-temporal structure of the data are considered. 

Dynamic Spatial Linear Model 

Let the m-dimensional observation vector  t Z

    1, , , ,mZ t Z ts s  at time point t ,  1, ,t n  , 

has multivariate Normal distribution   ,m ttN μ V . 

This model for each t is defined by observation and 
evolution equations: 

Observation equation: 

       ,tt t t 'μ  F θ       ~ 0,m tt N V , 

Evolution equation: 

      1 ,tt t t  θ  G θ  ω     ~ 0,q ttω N W  

where tF  is the q m  design matrix,  tθ   is the 

1 q   state vector,  t  is the observational error vector 

with m m  covariance matrix tV  ,	 tG  is the evolution 

matrix related to the state vector and  tω  is the 

evolution error vector with q q  covariance matrix Wt, 

also  t    and  tω  are independent. This model is  

 
 

 
 

 

Figure 4. H-Scatter Plots for (a) original data and  
(b) square root of data. 
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Figure 5. Variation of standard deviation against the mean of the original data (a,c), and square root of data (b,d). 
 
 
completed with a prior on the initial state vector, 

 0 0 0 0| ~ , ,  θ D  N m C  where 0  D  denotes the initial 

information set, and 0m  and 0C  are known (West and 

Harrison [27]). Assume that the spatial-temporal 
observations have cyclical behavior and the state vector 

can be define as       1 2, ' 'θ t θ t  θ t ' , where q = r + 

2k,  '
1 t  is the 1r   spatial process and 2 1k  -

dimensional vector  '
2 t  describe cyclical of data. 

Coefficients of the spatial process characterized with X 
that inclusive length, width, height and other covariates. 
Corresponding to this partitioning for  t , consider 

design matrix as  
1

' , , ,
kt t t tF X F F  , where each of 

the  , 1, ,
htF h k  , are  2m   matrix that all of 

elements of the first column are 1 and second column 
are 0. Therefore for evolution matrix  tG  can be used a 

block structure with  
1

blockdiag , , ,
kt r r t t G I  G G , 

where each of the blocks 
htG , 1, ,h k  , is a 2 2  

harmonic matrix of the form 

   
   

2 / 2 /
 ,  1, ,

2 / 2 /
ht

cos h p sin h p
G h k

sin h p cos h p

 

 

 
  
  

  

For modeling the spatial dependency of the 
observations, consider the covariance matrix 2

tV V  , 

where  /V exp V    and elements of V  is 

determined by a known spatial correlation function, as 
Matern correlation function. The evolution variance tW  

can be specified either explicitly or through a discount 
factor  0,   , which defines  t tW P , where 

  1( 1 | )t t tP var G t D   . A discount factor of 0   

gives a static model, with the same coefficients for all 
time periods, whereas     implies coefficients 
which are independent over time, i.e. no temporal 
smoothing at all (Stroud et al. [23]). 

Trend of Ozone Data 

Let  ,i jZ ts  denotes the square root of observed 

ozone data, at each spatial location is ,	 1, ,9i   	and 

each time  1, ,365jt   T . For modeling the trend 

of the data, we use the available important 
meteorological variables in monitoring stations, i.e. NO 
and NO2, which have the most impact on production 
tropospheric ozone. The number of days, stations and 
regression coefficients are n=365, m=9 and q=3, 
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respectively. We consider 

   

   

1 2 1

9 2 9

1 , ,

' ,  

1 , ,
t

NO s t NO s t

F

NO s t NO s t

 
   
  

    

 
 
 
 

1

2 3 3

3

 , t

t

t t G I

t


 




 
   
  

, 

where, by noting the evolution equation (4), each 
member of  tθ  is simulated from autoregressive 

model given by 

     1 ,     1,2,3.i i it t t i       

The observation errors are assumed to be Gaussian, 
with mean 0 and covariance 2

t  V V I , where I is 

identity matrix of order 9. Leaving 2  unknown, we 

select a Gamma prior:  2

1
 ~ 0.01 , 0.01Gamma


 so that 

its mean is 1 and its variance is large. Since usual 
selection prior for    is the Uniform distribution 

 ,  U a b , where a and b are minimum and maximum 

values of spatial lag, we used   ~ 0.051,0.315U  

where 0.051 and 0.315 are Transformed numbers by 
Lambert transformation. To complete the model 
specification, we choose a diffuse prior for the initial 
state vector:    0 3 0 |  ~ 0,100D N I , where I is a 3 3  

identity matrix. Next the MCMC algorithm was run for 
10000 iterations. After a burn in period of 5000 
iterations, the Bayesian estimation of the parameters 
were obtained as shown in Table 1 and also 2 0.94R  . 

Correlation Structure of Ozone Data 

To investigate the spatial-temporal correlation 
structure of the data, first we used a nonparametric test 
where proposed by Shao and Li [21] to test for 
symmetry and separability of spatial-temporal 
covariance functions (Behshad and Mohammadzadeh 
[1]). Using this testing for the de-trended data, rejected 
the assumption of separability and didn’t reject the 
assumption of fully symmetry at 5% level. Also H-
scatter plot for the de-trended data appear where there is 
stationary in spatial-temporal covariance structure of 
this de-trended data. Therefore we consider a 
symmetric, nonseparable and stationary spatial-temporal 
covariance function for the ozone data. 

Fitting Covariance Model 

In this subsection we present some models for 
symmetric nonseparable spatial-temporal stationary 
covariance functions that introduced by Cressie and 
Huang [7] and Gneiting [11]. Using method of Cressie 
and Huang [7] three covariance functions in dR R  
were considered as follows 

   

 

2

1 1
22

2

1
,

1  
d

a u
C u

a u b






  
 

h

h
 

 
 

2
2

2 2
2 2

 
, exp

1
1

d

b
C u

au
au

     
   

h
h

 

   2 22 2 2
3 , exp  C u au b cu   h h h

 

where a ൒	0 and b ൒0 are the scale parameters of the 
time and spatial lags, respectively, c ൒	 0, and 

 2 0,0C  . Their approach is novel and powerful but 

depends on Fourier transform pairs in dR . In other 
words, it is restricted to a comparably small class of 
functions for which a closed-form solution to the d-
variate Fourier integral is known. 

The approach of Cressie and Huang [7] was taken by 
Gneiting [11], but the aforementioned limitation is 
avoided and very general classes of valid spatial-
temporal covariance models are provided. He applied 
completely monotone functions and positive functions 
with a completely monotone derivative. Using his 
method four covariance functions in dR R  were 
considered as follows 

 
   

2
2

4
2 2 2

 
, exp

11
d

b
C u

a ua u






 
   
   

h
h  

 5 ,C uh  

 
 
 

 
 

2 22 2

2

2 2

11
exp

d

b c a uc au

a u c a u c

 

 


                 

h
 

 
   

2
2

6
2 2 2

 
, 1

11
d

b
C u

a ua u









 
   

   

h
h  
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 7 ,C uh  

 
 
 

 
 

2 22 2

2

2 2

11
 1

d

b c a uc a u

a u c au c

 

 



                 

h
 

where a and b are nonnegative scale parameters of time 
and spatial lags, respectively and 0 ൏c	 ൑	 1.	 The 
smoothness parameters   and   take values in (0,1],  

β is spatial-temporal interaction parameter where take 
values in [0,1], 2  is the variance of the spatial-
temporal process	and	 ൐	0. Kent et al. [15] draw our 
attention on the counterintuitive presence of a dimple in 
the spatial-temporal covariance surface in certain cases. 
That is for a fix spatial lag the temporal covariance is 
not a decreasing function of the temporal lag as one 
would normally expect. So we should be careful in 
applications that the dimple does not accrue at relevant 
lags. 

A weighted-least-squares (WLS) method (Cressie 
[6]) is used to estimate parameters of each of seven 
covariance models‚ by minimizing the criterion given 
by 

   
1

2 2

, ,

2
, ' 1 ,

, ( , | )

( , |

ˆ

)

U
i i i i

i i u i i

C u C u
W

C u








    
    


h h θ
θ

h θ
 

over all possible  θ . Here ,i i h  is the spatial lag 

between stations i and i’, and u is the temporal lag. 

 , ,ˆ
i iC h u  is the empirical correlation given by  

  
  

ˆ 1
,

,
C u

N u



h

h
 

 
    

   
, , , ,

, ,i j i j
i j i j N u

Z t Z Z t Z 
  

       
h

s s  

where 

       


', , , , : ;

;  , 1, , ;  , 1, ,

i i

j j

N u i i j j Tol

t t u i i m j j n

  



 

   

 
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Here   Tol h  is some specified tolerance region 

around  h  , and   ,N h u 	 is the number of 

distinct elements in   , ; 1, , , 1, ,N u L u U    h  . 

Table 2 displays comparable parameter estimates for 
the seven models. Based on the smallest WLS value of 

 W θ , model 4 provides the closest fit to spatial-

temporal covariance of ozone data in Tehran city, which 
its three 3D plot is shown in Fig. 6. 

Results and Discussion 

Since ozone concentration data depend to spatial and 
time locations of observations, we have used a dynamic 
linear model for modeling trend of these data. After de-
trending the data, using the test of Shao and Li [22] 
shows symmetry and nonseparability of spatial- 
 

 
Table 1. Estimation of the model parameters 

Parameter θ1(0) θ2(0) θ3(0) σ λ 

Estimated -0.0295 1.3067 0.1083 0.1584 0.1834 

 
 
Table 2. Estimates of the Parameters of Different Covariance 
Functions 

 Parameter  

Covariance 
model 

a b c α β γ ν W(θ)

C1 0.001 1.252 - - - - - 0.3141

C2 0.001 0.520 - - - - - 0.2463

C3 1.001 1.241 0.998 - - - - 0.2712

C4 0.912 0.613 - 0.992 0.989 1 - 0.1988

C5 0.100 0.088 0.998 0.917 0.672 0.962 - 0.2564

C6 0.946 2.955 - 0.045 0.069 1.772 0.016 0.3487

C7 1.053 1.124 0.128 0.459 - 1 0.258 0.3514

 
 

 

Figure 6. Surface of spatial-temporal covariance of Model 4. 
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temporal correlation structure for the data. The H-scatter 
plot of  ,z s t  versus  , z s h t u  for de-trended 

data, shows stationarity in spatial and time. Therefore, 
correlation structure of these data would be stationary, 
symmetric and nonseparable. In this paper, seven 
symmetric and nonseparable spatial-temporal stationary 
covariance functions are fitted to the data. Among these 
functions, a Gneiting’s model has the smallest WLS 
value for ozone data in Tehran city, which can be used 
as a suitable model for correlation structure of this data. 
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