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Abstract

In this paper, we apply the differential transform (DT) method for finding
approximate solution of the system of linear and nonlinear Volterra integro-
differential equations with variable coefficients, especially of higher order. We
also obtain an error bound for the approximate solution. Since, in this method the
coefficients of Taylor series expansion of solution is obtained by a recurrence
relation, thus we can use arbitrary number of Taylor series terms to obtain
solutions with desired accuracy. Here we give some preliminary results of the
differential transform and show that the DT method can be easily applied to a
wide class of linear and nonlinear systems. Finally, the accuracy and simplicity of
this method will be verified by solving some examples.
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Introduction

The DT method is an iterative procedure to obtain
Taylor series solutions of differential and integral
equations (see [1]). This method was first introduced by
Zhou [2] in 1986 for solving linear and nonlinear initial
value problems in electric analysis (see also [3]).

Up to now, the differential transform method has
been developed for solving various types of differential
and integral equations. In [4,5], Ayaz presented
extension of DT for solving system of differential
equations and differential-algebraic equations. In [3]
and [6] this method applied to partial differential
equations and in [7] and [8] to the one dimensional
Voltrra integral and integro-differential equations. Also
in [9] the DT method has been developed for solving

two dimensional Volterra integral equations.

On the other hand, the Volterra integral and integro-
differential equation systems (such as system of model
describing biological species living together) have many
interesting applications in applied sciences ( for
example see [10,11]).

Although many methods available for solving the
system of integral and integro-differential equations (for
example see [12,15]), but DT method is simple and
need not much computational works and we can solve
systems by high accuracy. Recently, Biazar and Eslami
developed the DT method for systems of Volterra
integral equations of the second kind [16].

The subject of presented paper is to apply the DT
method for solving system of linear and nonlinear
Volterra integro-differential equations of the second
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kind with variable coefficients. Here we consider a
system of the form

>y (X)D1Y; (x)
—Aljxxok1 X R (DY, )DLy, (t))dt
=f,(x)
422 ()P5y; (x)
[ K (DR (DY, () DRy )t g g
=f,(x)
1 (X)D Y (x)
i J, K ()R (DAY () DIy o ()
=f (x)
with the supplementary conditions
y(xp)=c;, j=1...m, i=01..,m -1 (1.2
where m; =max{a?,...al),a?,...a@P} and af"

denotes the order of differential operator D for

i =12. We also assume that X €[x,, b], where
Xo.0b €eR are finite. Finally we assume that the

problem (1.1)-(1.2) has a unique solution.

Materials and Methods

2.1. Some Results of the Differential Transform

The basic definition of DT and fundamental
theorems about it can be found in [1-8], however for
convenience in this section we review the DT.
Differential transform of order n for the function f (x)

at x, is defined as (see [8])

1[d"f (x)
F(n)==| ——=| 2.1
( ) n!{ dx" lx 1)
and its inverse transform is defined as
f (x)=>Fn)(x —x,)". (2.2)
n=0

The relations (2.1) and (2.2) imply that
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(2.3)

an,[ (X)L (x —x,)",

n=0
0

which is the Taylor series of function f (x).

In the following theorem, we summarize some
fundamental properties of the differential transform (see

[8]).
Theorem 2.1 LetF(n), U(n) and V (n) be the

differential transforms of the functions f (x), u(x) and
v (x) at x, =0 respectively, then we have
a If f (x)=x", then

F(n)=9o,,.
b.If f (x)=sin(ax +b), then
F(n) =2sin(2Z +b).
n! 2
c. If f (x)=cos(ax +b) then

F(n):a—cos(n—”+b).
n! 2

d.If f (x)=e™, then
F(n)=i—n!.
e. If f (x)=u(x)£v (x), then

F(n)=U (n)xV (n).
f.If f (x)=au(x), then
F(n)=aU (n).

g If f (x)=u(x)v(x), then

F(n)=i‘U(k)\/(n—k). O

We also recall the following theorems respectively
from [3] and [8] to apply the DT for the differential and
integral parts of (1.1).

Theorem 2.2 Let F(n), U(n) and V (n) be the

differential transforms of the functions f (x), u(x) and

v (x) in x, =0 respectively, then we have

alIf f (x) =" “(rx),
dx

r=12,--- then

FnN)=(n+)(n+2)---(n+r)J (n+r)
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b If f (x)= , then

F(n)= i(k +)(—k +DU (k +1V (n—k +1). ©

Theorem 2.3 Assume that U (n), V (n), H(n) and
G (n) are the differential transforms of the functions
ux), v(x), h(x) and g(x) respectively, then we
have

a. If g(x)= _"u(t)v(t)dt , then

Xo

G(n)=%:z'ou KV (n—k 1),

24)
n=12.. G(0)=0.
b. If g(x)=h(x)]u(t)dt ,then
Uk -1)
G =YH(Kk)————=,
(M= 20 00— 25)
n=12... G(0)=0. o

2.2. Error Bound

In this section, we obtain an error bound for the
approximate solution. To this end, we define the error
function of the i -th component of y (x) as

& (X)ZYi (X)_yiN (X)’
where y; (x) and y,, (x) are the i -th components of

the exact and approximate solutions of system (1.1),
respectively.

Then the error bound is given by the following
theorem.

3.1

Theorem 3.1 For the error function e, (x) defined by
(3.1) we have

Mi |X |N+1
e (X ) =|Yi (X)=Yin X)) =—F——
i=12..m,
where M; is a nonnegative constants such that
Y& <M, i =12..,m (3.3)
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proof. From Taylor expansion of y, (x) around x =0,
we have

Ly 0 YME) e
Vi) = 2 S S

i=12,..m

where & €(0,x ), hence
(N +1)
yi (gi)XNJrl i=1,2.

yi(x)_yiN (X): (N +1)! yeeerM

and using (3.3) completes the proof. o

Corollary 3.2 With the conditions of theorem 3.1 we
have

Jim Y X)=Yy,(x), i=12..,m m

Corollary 3.3 From the above theorem and structure of
the differential transform method, it is clear that if the
solution y;(x),i =1,2,...,m of equation (1.1) is a
polynomial of degree n, then every approximate

solution obtained by differential transform method of
degree N with N >n will be exact, because in this

casewe have M, =0,i =12,...m. o

Results

In this section, we give some examples to clarify
accuracy of the presented method. For solving the
problem (1.1) — (1.2) by conditions (1.2) by DT method,
we use theorems 2.1, 2.2 and 2.3 to obtain m
recurrence  relations  for Y, (n)Y,(n),--Y,(n)

(differential transforms of the unknown functions
y,(x),y,(x),---,y,, (x) respectively) and solve them

to obtain the unknown values Y,(n),Y,(n),--Y ,(n).
Finally we use the truncated form

yi(x)z%i(n)(x -Xo)", i=12,...,m. 4.2)

to get approximations.
All computations were done by programming in
Maple software.

3.1. Numerical Examples

Example 1. As the first example consider the following
linear system of [15]:
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2xy,(¢) = [ By, (0) + (2x + Dy, ())elt
-1
=x%+X
(4.2)
Xy, (X)—2xy,(x)
- [0 +)y, ) -ty @)dt =-2x°
-1
With the exact solutions y,(x)=x+1 and
y,(X)=-X

The method of [15] transforms the system of integral
equations to a system of algebraic equations with the
help of Taylor series. Then the solution of the algebraic
system yields the Taylor coefficients. For more details
one can see [15].

Now to solve the system (4.2), firstly, we convert it
to the following form:

2(t -1u, (t)
—](3(s ~Du,(s)+ (2 1, (s))ds =t?—t
(t —Du,(t)—2(t —u,(t) (4.3)

—jl.(2(t +8 =2)u,(s)—(s —1u,(s))ds

=23 +6t>—6t+2

where u, (t) =y, t -1, i =12.

Applying DT method on the both sides of (4.3)
yields :
U,(n-D-2J,(n)

—Eniaklu (n-k -1+ U(n -1)

n-1

— 22§k .

+Huz(n -D= 5;1,2 _§n,1

U(n kl)

U,(n-1-U,(n)-2J,(n-1)
U,(n—k —1)
—k

n-1

+2U2(n)—2215k1l

n-1
—225“U (n—k 1)+ 2y ((n-1)

n-1
+125k 1U2(n—k—l)—£UZ(n -1)
n k =0 ' n
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=-25,,+66,,-65,,+2 6, , (4.4)
For n=1,2,....

On the other hand, if we set t =0 in (4.3), we
obtain:
U,(0)=0, U,(0)=1
For simplifying the system (4.4) we consider two
cases n =1 and n > 2. For n =1 we have
—2U1(1)+1:—1 u,(1)=1
: L
U, (1)+2u,(1)=-3 U2(1)=—1

And for n>2 we obtain

U, (n)

:%Kz+§)ul(n_1)+%u2(n 1)

3 2
(4.5)

2(2n-1)

" n(n-1)

-iuz(n—z)—25n3+65n2}
. , ,

U, (n

_2)

Finally solving the above system yields

U,(n)=0, U,(n)=0, n=23,..
or equivalently

u,t)=t, u,t)=1-t
and so

YO =t+1 y, )=t

which are the exact solutions of (4.2). Note that this
result confirms the corollary 3.3.

Also note that the above solutions are in complete
agreement with [15], however as mentioned previously
the DT method transforms the system of integral or
integro-differential equations to recurrence relations
which are solvable more simple than of a system of
algebraic equations which done in [15].

Example 2. Consider the nonlinear system of integral
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equations of the form

Xy (x)+y 5" (x)

~Joosty, ©)y )t

) 1, 1
= X "SINX +CO0SX +§COS X —5

(4.6)
y P (x)—sinxy i (x)
— [sinty ", ©)y , (€ )el
0
= sinx (1—cosx)—lcos3x .1
3 3
with the conditions
{yxm=o,yx®=2,rx®=o,fxm=—1(4n
yz(O) =1, ylz(o) =0, yuz(O) =-1 ymz(o) =0

which has the exact solutions y,(x)=Xx +sinx and
y,(X)=cosx .
By applying DT on the both sides of (4.6), we obtain

Y,(n+4)

1
T(n+)(n+2)(n+3)(n+4)

{—sus 2453+ 2cos T 45 4}
n! 2

(4.8)
Y,(n+4)

1
T +D)(n+2)(n+3)(n+4)

$5+56+ Lsin1F_s7-54
nl! 2

for n=12,---.
Where

5 ,(n—k +1)(n—k +2)

k=0

S1=
(n—k +3)(n =k +4),(n -k +4)

5o 1SN L k7 K
_nzz 1005 (14 2)(1 +2)(n —k 1)

k=0 1=0

=k =1+ (1 +2) ,(n -k —1 +1)
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$3=3,, —+ sin N K)7
o~ (n-k)! 2
n n-k
kolzt;klll(n k—)!
kz Iz (n-k-Dzx
COS —C0S —C0S ———
2 2 2

n

SS:kZ;%sinkT”(n—k +1)(n—k +2)
(n—k +3)(n—k +4) ,(n —k +4)

ses:%ZZ Ek(; ki |n—(I +1)(1 +2)

(1 +3) (1 +3) ,(n—k -1 -1)

and by conditions (4.7), we have

V.00, Y.0=2 Y,@=0, Y,3-—

Y,0=1 Y,®=0, Yxaz—g,

Y,(3)=0
also by substituting x =0 in the equations of system
(4.6) we obtain

1

Y, (4) =0, —=
1(4) 2

Y 2(4) =
In this example we solve (4.8) for the cases N =12

and N =16.
For N =12, we obtain the approximate solutions as

1 1
Yoy (X)=2x _§X +ax

7! 9! 11
_ » 1 o4s 1 5
yZN(x)_l—Ex AT
= s_i 10 i 12
8! 10! 12!

each of these is a truncated Taylor’s series of the
corresponding exact solution, which is a approximation
of y, (x).

For case N =16, we have
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1 1 5 1 4 for n=12,---
Yan () =2 —gx M where

1 9 1 11 1 13 1 15 (
=X - —xM o x® - —x
ot T1m° 1310 181 Sl= Z (“ k +1)(n -k +2)

Voo ()= 1oty e e 1os (n—k +3)(n—k +4),(n—k +4)
210 41" 0 8l
1 1 1 1 52=3 LsinXZ (0 _k s n—k +2
VL R VE B VS SV _ZESInT(n_ +)(n-k +2)
10! 121 14! 16! k=t
Table 1 shows the absolute errors at the some points. (n—k +3)(n—k +4) ,(n -k +4)
As we mentioned before, since in DT method the nink1 g
solution obtained is by a recurrence relation, we can SS:—Z Z —sm—(l +D(1 +2)(1 +3)
obtain solution with local arbitrary accuracy. Table 2 nis iz k!
sxho_w(;; the absolute errors in some points away from (—k —1)(n =k =1 +2¥ (1 +3),(n —k —1 +1)
Example 3. We consider in this example a system of s4 n 1 kﬂ (~1)"*
: i ; ; =) | —sin— -~
integro-differential equations as < (k | 2 k oJ (n—K)!
ey P (x)+(sinx +1)y P (x) "1 kn
) S5=ZFCOST(n—k +1)(n -k +2)
- J.sintyl"'(t)yz"(t)dt = (sinx +1)e * +Cosx K=
0 4.9) (n—-k +3)(n =k +4)Y, (n-k +4)
(cosx )y (¥ (x)—e*y{”(x)
—jcosty L)y, (t)dt =e*cosx +sinx —1 Table 1. Numerical results of example 2 for N=12, 16
0 N =12 N =16
with supplementary conditions X  AbsErryl AbsErry2  Abs.Erryl Abs.Erry2
- " 0.2 1.3000e—19 1.0000e—20 0 1.0000e—20
y:(0)=y3(0=y,(0)=y"(0)=1 ) ) )
' ) (4.10) 0.4 1.0769%-15 3.0780e-17  1.0000e-20 1.0000e-20
y.(0)=-y,0)=y ,(0)=-y ,(0)=1 0.6 2.0938e-13 8.9755¢-15 5.0000e~19 1.0000e—20

0.8 8.8017e—12 5.0314e—13 6.3100e—17 2.8100e—18

and exact solutions y,(x)=e” and y,(x)=e™
1.0 1.5983e-10 1.1423e-11 2.8032e-15 1.5578e-16

Using similar methods to those used in of previous

examples, we obtain 1.2 1.7065e-09 1.4640e-10 6.2114e—14 4.1426e-15
1.4 1.2628¢—08 1.2643e—09 8.5236e—13 6.6333e—14
Y In+4)+Y 2(n+4) 1.6 7.1450e-08 8.1781e—09 8.2362e—12 7.3265¢—13
1 1.8 3.2930e-07 4.2420e—08 6.0878e—11 6.0936e—-12
T (D +2)(n+3)(n +4) 2.0 1.2909e-06 1.8484e-07 3.6423e-10 4.0518e-11
1 nz
-S1-S2+S3+S4+—cos —
n! 2 (4.11) Table 2. Numerical results of example 2 for N=40
Y, (n+4)-Y 2(n+4) ' X Abs.Err.yl Abs.Err.y2
1 6.00 2.3500e—-18 3.3000e —19
= 7.00 1.2970e-15 2.1643e-16
(n+D)(n+2)(n+3)(n+4)
8.00 3.0697e-13 5.8562e-14
55456457458+ ism n_7r 9.00 3.8053e-11 8.1703e-12
n! 2 10.0 2.8318e-09 6.7586e—-10
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S6= Zn;%(n—k +1)(n—k +2)

(n—k +3)(n —k +4)Y ,(n -k +4)
nzl:nzkficos —(| +2)(1 +2)(n—k 1)

n k=0 1=0

(—k =1 +1)(n =k =1 +2) (1 +2) ,(n -k -1 +2)

< 1 kz
S8=)» —————c0s—
é ki(n—k)! 2
and from supplementary conditions we have
1 1
V.0=1 Y.0=1 Y@=, Y.®)=
1 1
V.0=1 Y,0=-1 Y,@=3 Y,@8)=-¢

also by substituting x =0 in the equations of system
(4.9) we obtain

NCEROEEY

Solving recurrence system (7) for N =20, we
conclude that the approximate solutions is of the form

1 1 1 5
X)=1+X + =X+ =X 4.4+ —x
Vi) = 2! 3! 20!
1 1 1
X)=1-X +=X*==x3+- o4 —x%
Y2(x)= 217 31 20!

which is the truncated Taylor’s
solutions.
And for N =30 we have

1
'x et

1
X)=1+X +=x2+
y.(x)= o 3l

y,(x)=1-x SR SVE S WY B

2! 3!
Table 3 shows the absolute errors for this example.
Example 4. We consider the following nonlinear
system of [12]

Y1)+ —2—y,(x)
X +2
~ftoy?

XY, (X)+Y3(6)
~fte—tycosty, )y .0t =f,(x)

(t)dt =, (x)
(4.12)
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where
2k 22k -1 2k+1+2kx 2k -1
f,(x)=1+ K
)= Z[ 2% R (2k +1)! J
1
f,x)==+=
X) =7
(k +2)x** 222k +x ¢ 4 x T
Z( 2k+2 +(_1)k (2k +1)'
k=1 -
with supplementary conditions
yl(o) =1
Y, (O) =1
with  the exact solution y,(x)= smx and
2
X)=——.
yo.()=5—

By the same way of previous examples for
n=12---,N —1 we have

Y,(n+1) :L[—S 1+S2+F,(n)]
n+1 (4.13)

Y,(n+1) = il[ Y, (n-1)+S3+F,(n)]

where

SZ=l sz )y, (n-k -1-1)
NS iz
1 n-1n-k -1n—-k -1 -1 1
S3== 20, —
N o L (26, k,z)”
cos%ﬂY (r)Y,(n—-k -1-r-1)

where F, and F, denote the differential transforms of
f, and f, respectively. And from supplementary
conditions condition

Y.0=1 Y,0)=1

Also by substituting x =0 in the second equation of
system (4.11) we obtain

In this example since the second solution is singular
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in X =2, we solved the recursive equations (4.12) for x =(0,1)i, i=6,7,..,19
high numbers N =150 and N =200. Table 4 shows
the absolute errors in points for N =150, Digits=20 and N =200, Digits=30

respectively.
As mentioned above, this example was chosen from
[12], where the problem has been solved by the Tau

Table 3. Numerical results of example 3 method. In the Tau method [17], we replace the
N =20 N =30 differential and integral parts of the problem by their

X AbsErryl AbsErry2  AbsErryl Abs.Erry? matrix representation and then convert it to
100 100006-19 2.00006—20  1.00006-19 0 corresponding system of linear algebraic equations. In a

similar manner, we convert supplementary conditions to

1.50 1.0480e-16 9.1390e-17  1.0000e-19 2.0000e-20 a linear algebraic system of equations. Finally by

2.00 4.5133e-14 3.7615e-14  1.0000e-19 3.0000e-20 combining these two linear systems of algebraic
2.50 5.0174e-12 3.9944e-12  2.0000e-18 5.0000e—21 equations, we obtain a system of linear algebraic
3.00 2.3682e—-10 1.8006e—10  1.0000e—18 6.4000e—20 equations and solve it to obtain an approximate solution

of the problem. For more details about Tau method see
[12], [17] and [18].
For comparing we report the results of [12] in Table

3.50 6.1899e—09 4.4937e-09  1.1000e—17 8.1340e—18
4.00 1.0400e—07 7.2762e—08  6.4100e—16 4.9840e—16
450 1.2803e—06 8.4671e—07  2.5120e—14 1.8933e-14 5.

5.00 1.2036e—05 7.5931e-06  6.7049e—13 4.8950e—13 Comparing the results of Tables 4 and 5 shows the

high accuracy of the DT method. Also, it is worthy to
note that, the results in [12] (Table 5) were reported up
to x =1, while the results of Table 4 (DT method) are

Table 4. Numerical results of example 4 reported up to x =1.9.

N =150 N =200
X  Abs.Erryl Abs.Erry2 Abs.Erryl Abs.Err.y2
0 0 0 0 0
0.2 3.0000e—20 1.0000e-19  1.3000e—29 1.0000e—29
0.4 3.0000e—20 1.0000e—19  3.0000e—30 2.0000e—30

3.2. Conclusion

In this work, the differential transform method has
been applied for system of nonlinear Volterra integro-
differential equations with variable coefficients. For

0.6 6.0000e-20 2.0000e-19  2.0000e-30 2.0000e-29 illustration purpose, some examples have been solved
0.8 1.0000e—20 1.0000e-19  7.0000e—30 1.0000e—29 by presented method. As the results of examples show,
1.0 5.0000e—20 1.0000e—19 7.0000e—30 1.0000e—29 the method has high accuracy. Also this method has a

simple structure, so it can be applied to solve applied

1.2 1.0000e-20 1.3000e—-19  2.0000e—30 1.3000e—29 . . .
problems in applied sciences.

1.4 5.0000e—20 1.0000e—-19  5.0000e—30 3.0000e—29
1.6 1.4000e—19 1.1629e—-14  1.3000e—29 1.6598e—19

1.7 3.0000e—20 1.4661e—10 1.6000e—29 4.3362e—14 Acknowledgment

1.8 7.0000e—20 1.2320e—06 2.1000e—29 6.3496e—09 The author would like to thank the referees for
19 4.0000e—20 8.6555e-03 1.0000e—30 6.6600e—04 carefully reading of the paper and their useful
suggestions which greatly improved the quality of this
paper.
Table 5. Numerical results of example 4 ([12]) References
X Abs.Err.yl Abs.Err.y2 1.Jang, M. J. and Chen, C. K. and liu, Y. C. Two-
0.0 0 0 dimensional differential transform for partial differential
0.2 1.8423e-26 1.1111e-16 equations. Appl. Math. Comput. 121 : 261-270 (2001).
2. Zhou, J. K. Differential Transform and its Application for
0.4 1.2070e-21 8.1920e-12 Electric Cicuits. Huazhong University Press, Wuhan,
0.6 7.9231e-19 6.1495e-9 China (1986).
. = 3. Ayaz, F. On the two-dimensional differential transform
08 7.8988e-17 7.1583e7 method. Appl. Math. Comput. 143 : 361-374 (2003).
1.0 2.8033e-15 3.0518e-5 4. Ayaz, F. Application of differential transform method to
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