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Abstract
The computational solution of large scale linear programming problems

contains various difficulties. One of the difficulties is to ensure numerical
stability. There is another difficulty of a different nature, namely the original data,
contains errors as well. In this paper, we show that the effect of the random errors
in  the  original  data  has  a  diminishing  tendency  for  the  optimal  value  as  the
number of constraints and the number of variables increase. The laws of large
numbers in probability theory are mathematical formulations for indicating the
slowing-down tendency of the effect of random errors in the data. This paper was
inspired by the paper of Prekopa [3]. Prekopa [3] proved both weak and strong
laws of large numbers for the random linear programs in independence setting.
We obtain laws of large numbers under negatively associated dependence for
random linear programs and we extend Prekopa's results [3] to the case of
negatively associated random variables.
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1. Introduction
It is well known that the computational solution of

large scale linear programming problems contains
various difficulties. One of the most difficult things is to
ensure numerical stability, i.e., to overcome the effect of
round-off errors in the course of computation. Though
this is a problematic feature of large systems, we have
another difficulty of a different nature, namely that the
original  data  we  are  using  also  contains  errors.  The
question arises whether the effect of these latter type
errors increase or decrease with the size of a random
linear  programming  problem.  We  shall  show  that  the
effect of the random errors in the original data has a di-
minishing tendency for the optimal value as the number

of constraints and the number of variables increase.
The laws of large numbers in probability theory are

the mathematical formulations of the slowing-down
tendency of the effect of random errors in the data when
taking the arithmetic, or more generally, the weighted
mean. Though many theorems (laws) are proved, we
cannot expect to have a complete theory which would
cover all practical situations. Similarly, we cannot
expect that we can build up a "law of large numbers"
theory for random linear programs containing direct
answers to all special problems. At present the existence
of  the  law  of  large  numbers  phenomenon  is  what  we
emphasize for dependence random variables in random
linear programs and theorems are selected so that this
will show up.
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This paper was inspired by the paper of Prekopa [3].
Prekopa [3]  proved both  weak laws and strong laws of
large numbers for the random linear programs in
independence setting. However, many variables are
dependent in actual problems. For example, negatively
associated random variables, its definition is as follows:
Definition.  A finite family of random variables
{ , 1 }iX i n£ £  is said to be negatively associated (NA)
if for every pair of disjoint subsets A  and B  of
{1, 2, , }nK ,

1 i 2 jCov{f (X ,i A),f (X ,j B)} 0 ,Î Î £

whenever 1f  and 2f  are coordinatewise increasing and
such that covariance exists. An infinite family of
random variables is NA if every finite subfamily is NA.

This dependence structure was first introduced by
Alam and Saxena [1] and carefully studied by Joag-Dov
and Proschan [2].

Consider the following random linear programming
problem:
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where the ika , 1, 2, ,i m= K , 1,2, ,k n= K  are
independent random variables, and 0kc > , k =
1, 2, , nK  and ib , 1, 2, ,i m= K  are constants.

We may assume, without loss of generality, that
1kc = , 1,2, ,k n= K , 1ib = , 1, 2, ,i m= K  because

we can divide the i th constant by ib , 1, 2, ,i m= K

and introduce new variables, replacing k kc x  by 1kx = ,
1,2, ,k n= K .  If  the  optimum  value  of  problem  (1)  is

finite with probability 1, then it is also positive with
probability 1.

Assuming the existence of the expectations
(0) [ ],ik ika E a=  together with the random linear

programming problem (1) we consider the deterministic
problem:
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If the optimum value of problem (2) is finite, then it
is also positive.

By independence assumption, Prekopa [3] proved, if
,m n ®¥  subject to some conditions, then the between

the random optimum value m  of problem (1) and the
optimum value (0)m , that corresponds to the expecta-
tions, goes to 0 in probability or almost surely,
depending on our conditions. In this note, we extend his
results in the case of NA random variables.

The main theorems are proved in Section 2. In
Section 1.1, we shall state some preliminaries which are
important in the proof of the main results.

1.1. Preliminaries

It should be pointed out that, throughout this section,
the letter C  is used indiscriminately as a generic
constant.
Lemma 1.  (Shao [4]) Let 2p > ,  { , 1 }i i nx £ £  be  a
sequence of negatively associated mean zero random
variables with | |piE x < ¥  for every 1 i n£ £  and let
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The following corollary is a result of Lemma 1.
Corollary 1.  Let 2p > ,  { , 1 }i i nx £ £  be a sequence
of negatively associated mean zero random variables
with | |piE x < ¥  for every 1 i n£ £  and let
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Lemma 2.  Let { , 1 , 1, 2, , }ik i m k nx £ £ = K  be  an
array  of  mean  zero  random  variables  with

| |pikE Kx £ < ¥  for 2p >  and satisfying the
following conditions,

( )i   { , 1, 2, , }ik k nx = K  is  a  sequence  of
negatively associated for each 1, 2, , .i m= K

( )ii   { , 1,2, , }ik i mx = K  is  a  sequence  of
negatively associated for each 1, 2, , .k n= K

( )iii   Let ,m n ®¥  in  such  a  way  that  the
following condition is satisfied

0 m
n

a b< £ £ < ¥ , (3)
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where a  and b  are constants. Under these conditions
we have
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Proof of Lemma 2. It  is  enough  to  prove  that  for  any
0e > ,
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whenever ,m n ®¥  while (3) holds. In fact if we apply
(6) to the array , 1 , 1, 2, ,ik i m k nx £ £ = K  so that ikx
is replaced by ,ikx-  then we obtain
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(6) and (7) together imply (4). Applying (6) and (7) for
the transpose of the array , 1 , 1, 2, , ,ik i m k nx £ £ = K

we obtain (5).
Let us now prove (6). By Corollary 1 we have,
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This proves the lemma. ■
Lemma 3.  Under the assumptions of Lemma 2, for

6,p >  we have,
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Proof of Lemma 3.  We obtain similarly to the proof of
Lemma 2, the following inequality
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where 0e >  is a fixed number. Applying Corollary 1,
we conclude that
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If we consider the sequence ,m n  as ,m n ®¥  if n
is fixed, then the number of elements ,m n  in the
sequence is at most nb  in view of (3). If we take into
account this fact, (10) implies that
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By the Borel-Cantelli lemma it follows from this that
except for at most a finite number of ,m n  we have
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Applying this for the random variables ikx-  instead
of the random variables ,ikx  we obtain that except for at
most a finite number of ,m n  the following relation
hold:
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These imply (8). Interchanging ,m n  in (11) and (12)
we see that (9) is also proved. This completes the proof
of the lemma. ■

2. Results
Now we turn to the proof of the laws of large

numbers for random linear programs for NA random
variables. In the sequel we will use the notation

(0)
ik ik ika ax = - , 1, 2, ,i m= K , 1,2, ,k n= K .

Theorem 1.  Suppose that in connection with problem
(1) the following conditions are satisfied:

( )i   There exists positive integers 0 0,m n  such that
for every 0 0,m m n n³ ³  the random linear
programming problem (1) has a finite optimum value
m  with probability 1; also, problem (2) has a finite
optimum value (0)m  and (0)m d£  where d  does  not
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depend on m  or n .
( )ii   The random variables , 1ik i mx £ £ , k =

1, 2, , nK  satisfy the conditions of Lemma 2.
( )iii   For every 0m m³ , 0n n³  problem (2) and its

dual have an optimal solution pair (0)x =
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where 1 2,L L  are constants. Then
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Proof of Theorem 1.  First we prove
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Since the random linear programming problem (1)
has a finite optimum value m  with probability 1,
similar to the proof of equation (3.21) in Prekopa [3],
we can get the following inequality easily;
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Relation (16) will be proved if we prove that both the
left-hand side and the right-hand side of (17) tend to
zero in probability. Let us consider the right-hand side
of (17). Define the random variables

(0)
ik ik knh x l= , 1, ,i m= K ; 1, ,k n= K . (18)

These random variables satisfy the conditions of
Lemma 2 because the ikx  do and because (13) holds.
Thus by Lemma 2 we have
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The left hand side of (17) can be treated in an
entirely similar way. Hence (16) follows. To prove (15)
we mention first that by (i), there exists a constant M,
such that for ,m n  large

( ) 1.P Mm £ = (19)

We remark that 0m ³ . Thus (16), (19) and the
boundedness of the sequence (0)m  imply the limit
relation (15). This completes the proof of Theorem 1. ■
Theorem 2.  Under the assumptions of Theorem 1, for

6,p >  we have,
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when , .m n ®¥
Proof of Theorem 2.  The inequality (17) is satisfied
with probability 1. On the other hand ( )i  ensure that
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where ikh  is obtained by (18). Thus the random
variable on the right-hand side of (17) tends to 0, almost
surely.  The  same  reasoning  can  be  applied  to  the  left-
hand side of (17). Hence
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1 1 0 . .a s
m m
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To prove (20), we remark that the boundedness of (0)m
and the conditions of Theorem 1 are enough to derive
(20). Thus Theorem 2 is proved.
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