Weighted Convolution Measure Algebras Characterized by Convolution Algebras

A. Rejali^{1,*} and H.R.E. Vishki²

¹Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran ²Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, 91775-1159, Islamic Republic of Iran

Abstract

The weighted semigroup algebra $M_b(S, w)$ is studied via its identification with $M_b(S)$ together with a weighted algebra product $*_w$ so that $(M_b(S, w), *)$ is isometrically isomorphic to $(M_b(S), *_w)$. This identification enables us to study the relation between regularity and amenability of $M_b(S, w)$ and $M_b(S)$, and improve some old results from discrete to general case.

Keywords: Weighted semigroup algebra; Arens product; Amenable Banach algebra

1. Introduction and Preliminary Results

For a locally compact Hausdorff topological semigroup *S*, let $M_b(S)$ be the Banach algebra of all complex regular Borel measures on *S*, and let $w: S \rightarrow (0,\infty)$ be a Borel-measurable weight function, such that w^{-1} is bounded on compacta. Then $M_b(S,w) \cong C_0(S,w)^*$, where $C_0(S,w) = \{f: f \ /w \in C_0(S)\}$ was defined in [6]. In this paper we consider $M_b(S, w)$ as the Banach algebra $M_b(S)$ together with a weighted algebra product $*_w$ so that $(M_b(S,w),*,\|\|_w) \cong (M_b(S),*_w,\|\|\|)$ (hereafter, " \cong " is used for Banach algebra isometrical isomorphism), where

$$\mu_{w}^{*} v(E) = \iint_{SS} \chi_{E}(xy) \Omega(x, y) d\mu(x) dv(y),$$
$$\mu^{*} v(E) = \iint_{SS} \chi_{E}(xy) d\mu(x) dv(y),$$

for each Borel subset
$$E$$
 in S , and
 $\Omega(x, y) = \frac{w(xy)}{w(x)w(y)}$ for $\mu, \nu \in M_b(S)$ and
 $x, y \in S$.

We define $M_b(S,w)$ so that the Riesz representation theorem holds for it, that is: $M_b(S,w) \cong C_0(S,w)^*$. It should be noted that the elements of $M_b(S,w)$ need not to be a measure. Let $M_b^+(S,w)$ be the set of all positive regular measures μ on S such that $\mu w \in M_b(S)^+$, where for every Borel set $E, \mu w(E) = \int_E w(x) d\mu(x)$. Now define the equivalence relation "~" on $M_b^+(S,w) \times M_b^+(S,w)$ by $(\mu_1,\nu_1) \sim (\mu_2,\nu_2)$ if and only if $\mu_1 + \nu_2 = \mu_2 + \nu_1$. We denote $[\mu,\nu]$ as the equivalence class of (μ,ν) . The set of all $[\mu,\nu]$ such that $\mu,\nu \in M_b^+(S,w)$ is denoted by $M_b(S,w)$. Note that I(f) =

2000 Mathematics Subject Classification. Primary 43A20, 46H05: Secondary 43A10, 43A15, 46A03.

^{*} Corresponding author, Tel.: +98(311)7932171, Fax: +98(311)6733909, E-mail: rejali@sci.ui.ac.ir

 $\iint_{S} f(xy) d\mu(x) d\nu(y) \text{ for } f \in C_0(S,w) \text{ defines a linear functional on } C_0(S,w) \text{ which corresponds to}$

the equivalence class $[\mu, \nu]$, see [6]. In other words $M_b(S, w) \cong C_0(S, w)^*$.

Let $[\mu_1, \nu_1], [\mu_2, \nu_2]$ be in $M_b(S, w)$. We define convolution product "*" so that $(M_b(S, w), *)$ with the norm $\|[\mu, \nu]\|_w = \|\mu w - \nu w\|$ turns into a Banach algebra, where $[\mu_1, \nu_1]^*[\mu_2, \nu_2] = [\mu_1 * \mu_2 + \nu_1 * \nu_2, \mu_1 * \nu_2 + \nu_1 * \mu_2]$. Also we define the weighted convolution product $*_w$ by:

$$[\mu_{1},\nu_{1}]^{*}_{w} [\mu_{2},\nu_{2}]$$

= $[\mu_{1}^{*}_{w} \mu_{2} + \nu_{1}^{*}_{w} \nu_{2},\mu_{1}^{*}_{w} \nu_{2} + \nu_{1}^{*}_{w} \mu_{2}]$

Some authors consider M(S, w) as the set of all complex measures μ such that $\mu w \in M_b(S)$, for example see [2], [3] and [4]. It has been shown that, in this case M(S, w) need not be complete in general, see [5]; Nevertheless, as the next lemma demonstrates, if $w \ge 1$ then there is no difference between M(S, w) and $M_b(S, w)$; moreover each of them can be considered as a subspace of $M_b(S)$.

Lemma (1.1). Let w be a weight function on S with $w \ge 1$. Then $M(S, w) \subseteq M_b(S)$, and $(M_b(S, w), *, \|\|\|_w) \cong (M(S, w), *, \|\|\|_w)$. Moreover, $(M(S, w), *, \|\|\|_w)$ is a normed algebra. If w is bounded on compacta, then M(S, w) is norm-dense in $M_b(S)$.

Proof. Since $w \ge 1$, for $\mu \in M(S, w)$ we have $\|\mu\| \le \|\mu\|_w$, which implies $M(S, w) \subseteq M_b(S)$. One may verify that the mapping $[\mu, v] \mapsto \mu - v$ defines an isometric isomorphism from $(M_b(S, w), *, \|\|_w)$ onto $(M(S, w), *, \|\|\|_w)$.

Clearly for each $\eta \in M$ $(S, w) \subseteq M_b(S)$ there exist unique $\eta^+, \eta^- \in M_b(S)$ such that $\eta = \eta^+ - \eta^-$ and $\eta^+ \perp \eta^-$. Since $\eta^+ << |\eta|$ and $\overline{\eta} << |\eta|$, where $|\eta| = \eta^+ + \eta^-$ and M(S, w) is solid, so η^+ , $\eta^- \in M^+(S, w)$. Hence the map is onto. For every $\mu, v \in M_b^+(S, w)$, it is obvious that

 $\left\|\mu_{w}^{*} V\right\| \leq \left\|\mu_{w}^{*} V\right\|_{w} \leq \left\|\mu\right\|_{w} \left\|V\right\|_{w},$

which means $\mu^*_{w} v \in M_{h}(S, w)$.

Also, the inequality

$$\begin{aligned} u_{w}^{*} v &\| = \mu_{w}^{*} v(S) \\ &= \iint_{S} \Omega(x, y) d \mu(x) d v(y) \leq \|\mu\| . \|v\| \end{aligned}$$

Implies that $(M_b(S,w), *_w, \|\|\|)$ is a normed algebra. Let $\mu \in M_b(S)$ has compact support and w is bounded on compacta. Then $\mu \in M(S,w)$, so M(S,w) is dense in $M_b(S)$.

Example (1.2). (i) Let $S=(\mathbb{R}^+, +)$ and $w(x)=e^{-x}$ for $x \in S$. Since w is multiplicative $*_w = *$. Now for the Lebesgue measure μ on \mathbb{R}^+ , $\mu \in M_b^+(S, w)$ but $\|\mu^*_w \mu\| = \mu(S) \mu(S) = \infty$. Note that $w \leq 1$.

(ii) Let $S=(\mathbb{Z}, +)$ and w(n)=1 + |n|, for $n \in \mathbb{Z}$. Then $l_1(\mathbb{Z}, w) \underset{\neq}{\subset} l_1(\mathbb{Z})$, so $(l_1(\mathbb{Z}, w), ||.||_1)$ is not complete. In fact $\sum_{n=1}^{\infty} \frac{1}{n^2} \delta_n \in l_1(\mathbb{Z}) \setminus l_1(\mathbb{Z}, w)$.

Lemma (1.3). Let w_1 and w_2 be weight functions on *S*. Then $*_{w_1} = *_{w_2}$ if and only if $\Omega_1 = \Omega_2$.

Proof. Assume that $*_{w_1} = *_{w_2}$. Then $\Omega_1(x, y)\delta_{xy}$ = $\delta_x *_{w_1} \delta_y = \delta_x *_{w_2} \delta_y = \Omega_2(x, y)\delta_{xy}$, for all $x, y \in S$. Thus

$$\Omega_1(x, y) = \Omega_1(x, y) \delta_{xy}(S)$$
$$= \Omega_2(x, y) \delta_{xy}(S)$$
$$= \Omega_2(x, y)$$

Conversely, let $\Omega_1 = \Omega_2$. Then $*_{w_1}$ and $*_{w_2}$ coincide on $l_1(S)$ which is weak *-dense in $M_b(S)$. Thus $*_{w_1} = *_{w_2}$, for $M_b(S)$.

We now state our key lemma as follows:

Lemma (1.4). Let w_1 and w_2 be two weight functions on *S*. Then:

(i) $(M_b(S, w_l), *_{w_2}, \|\|_{w_1})$ is a Banach algebra. (ii) The map

$$\phi: (M_{b}(S, w_{1}), *_{w_{2}}, \| \|_{w_{1}}) \rightarrow (M_{b}(S, w_{2}), *_{w_{1}}, \| \|_{w_{2}})$$

defined by $\phi([\mu, \nu]) \mapsto [\frac{w_1}{w_2}\mu, \frac{w_1}{w_2}\nu]$ is an isometric algebra isomorphism.

Proof. Parts (i) and (ii) follow from the fact that for every $\mu, \nu \in M_b^+(S, w_1)$

$$\begin{aligned} \left\|\mu^{*}_{w_{2}} v\right\|_{w_{1}} &= \mu^{*}_{w_{2}} v(w_{1}) \\ &= \iint_{ss} w_{1}(xy) \Omega_{2}(x, y) d \mu(x) d v(y) \\ &\leq \iint_{ss} w_{1}(x) w_{1}(y) d \mu(x) d v(y) = \left\|\mu\right\|_{w_{1}} \cdot \left\|v\right\|_{w_{1}}, \end{aligned}$$

Also:

$$\frac{w_1}{w_2}(\mu_{w_2}^* v) = (\frac{w_1}{w_2}\mu)_{w_1}^* (\frac{w_1}{w_2}v), \text{ and}$$
$$\left\| \left[\frac{w_1}{w_2}\mu, \frac{w_1}{w_2}v \right] \right\|_{w_2} = \left\| w_1\mu - w_2v \right\| = \left\| [\mu, v] \right\|_{w_1}.$$

Corollary (1.5). Let *w* be a weight function on *S*, then:

(i) $(M_b(S,w), *_w, \|\|_w)$ and $(M_b(S,w), *, \|\|_w)$ are Banach algebras and $(M_b(S,w), *, \|\|_w) \cong (M_b(S), *_w, \|\|)$.

(ii) If w is multiplicative, then $(M_b(S, w), *, \| \|_w) \cong (M_b(S), *, \| \|)$.

Proof. Part (i) follows trivially from 1.4 and (ii) is obtained from (i) and the fact that, if *w* is multiplicative then $\Omega = 1$ and so $*_w = *$.

Two weights w_1 and w_2 on *S* are said to be equivalent (in symbol, $w_1 \sim w_2$) if $\alpha w_2 \leq w_1 \leq \beta w_2$ for some $\alpha, \beta \in \mathbb{R}^+$.

Lemma (1.6). For every pair of weight functions w_1 and w_2 on S, $w_1 \sim w_2$ if and only if $M_b(S, w_1) = M_b(S, w_2)$ and the norms $\|\|_{w_1}$ and

 $\| \|_{W_2}$ are equivalent.

Proof. If $w_1 \sim w_2$, then there exist $\alpha, \beta \in \mathbb{R}^+$ such that $\alpha w_2 \leq w_1 \leq \beta w_2$. Hence $\mu \in M_b^+(S, w_1)$ if and only if $\mu \in M_b^+(S, w_2)$, indeed, $\alpha \|\mu\|_{w_2} \leq \|\mu\|_{w_1}$ $\leq \beta \|\mu\|_{w_2}$, so $M_b(S, w_1) = M_b(S, w_2)$. Conversely: there exist $\alpha, \beta \in \mathbb{R}^+$ such that $\alpha B_{w_2} \subseteq B_{w_1} \subseteq \beta B_{w_2}$, where B_w is the unit ball of $M_b(S,w)$. In particular, $\frac{\delta_x}{w_1(x)} \in \beta B_{w_2}$ and $\alpha \frac{\delta_x}{w_2(x)} \in B_{w_1}$ for all $x \in S$. Thus $\left\| \frac{\delta_x}{w_1(x)} \right\|_{w_2} \leq \beta$ and $\left\| \frac{\alpha \delta_x}{w_2(x)} \right\|_{w_1} \leq 1$; *i.e.* $\frac{1}{\beta} w_2(x) \leq w_1(x)$ $\leq \frac{1}{\alpha} w_2(x)$.

It should be mentioned that all properties involving the Arens regularity and amenability of Banach algebras are unchanged if we move to an equivalent norm on it.

2. The Relation between $M_b(S,w)$ and $M_b(S)$ and Their Second Duals

Baker and Rejali in [1] studied the relation between the (Arens) regularity of $l_1(S)$ and $l_1(S,w)$. They showed that $l_1(S,w)$ is regular, whenever $l_1(S)$ is regular. Let $S=(\mathbb{Z}, +)$ and w(n) = |n| + 1, for $n \in \mathbb{Z}$. Then $l_1(S,w)$ is regular, but $l_1(S)$ is not regular, see [1].

In this section, we generalize the above result for non-discrete semigroups.

Lemma (2.1). $(M_b(S,w)^{**}, \circledast) \cong (M_b(S)^{**}, \circledast_w)$, where \circledast and \circledast_w are the first Arens products induced by * and $*_w$, respectively.

Proof. As we have seen earlier (see corollary 1.5), $\phi: (M_b(S, w), *) \rightarrow (M_b(S), *_w)$ which is defined by $[\mu, \nu] \mapsto \mu w - \nu w$ is an isometric algebraisomorphism. It is not difficult to verify that the second adjoint ϕ^{**} is an isometric algebra-isomorphism from $(M_b(S)^{**}, \circledast)$, onto $(M_b(S)^{**}, \circledast_w)$.

J.C.S. Wong [8] was shown that the dual $M_b(S)^*$ is isometrically order isomorphic to the space GL(S) of all generalized functions on S. An element $f = (f_{\mu})_{\mu \in M_b(S)}$ in the product linear space $\Pi \{L_{\infty}(|\mu|) : \mu \in M_b(S)\}$ is called a generalized function on S, if the following conditions are satisfied:

- (a) $||f|| := \sup \{ ||f_{\mu}||_{\mu \infty} : \mu \in M_{b}(S) \} < \infty.$
- (b) If $\mu, \nu \in M_b(S)$ and $\mu \ll \nu$, then $f_{\mu} = f_{\nu}$,

 $|\mu| - a.e$.

Let $\eta \in M_b(S, w)$, there exist unique η^+ , $\eta^- \in M_b^+(S, w)$ such that $\eta = [\eta^+, \eta^-]$ and $\eta^+ \perp \eta^-$. Put $|\eta| = \eta^+ + \eta^-$. One can define $f = (f_\eta) \in GL(S, w)$ if and only if $f_\eta \in L_{\infty}(|\eta|, w)$ such that $||f||_w :=$ Sup $\{||f_\eta||_{\eta,w} : \eta \in M_b(S, w)\} < \infty$ and if $\eta, \xi \in M_b(S, w)$ and $|\eta| << |\xi|$, then $f_\eta = f_{\xi}$ $|\eta| - a.e.$, where $||f_\eta||_{\eta,w} := ||f_\eta / w||_{\eta,\infty}$ see [6].

Let GL(S, w) be the space of all w-generalized functions on S. Then it has been shown in [4], (see also [8], [6]) that $M_b(S,w)^*$ is isometrically isomorphic to GL(S,w) whose duality is given in [6], explicitly.

Lemma (2.2). For every F, $G \in M_b(S)^{**}$ and $f \in GL(S)$ there exists an $\eta \in M_b(S)$ such that, $F \circledast_w G(f) = (F \circledast G) \Omega(\tilde{f_\eta})$; where $\tilde{f_\eta}(x, y) = f_\eta(xy)$ for $x, y \in S$. The same equality holds for the second Arens product.

Proof. Let $\{\mu_{\alpha}\}$ and $\{v_{\beta}\}$ be two nets in $M_{b}(S)$ such that $\mu_{\alpha} \underline{w}^{*}$ F and $v_{\beta} \underline{w}^{*}$ G. Then there exists a subnet (μ_{n}) [resp. (v_{m})] of net (μ_{α}) [resp. (v_{β})] so that,

$$F \circledast_{w} G(f) = \lim_{\alpha} \lim_{\beta} f(\mu_{\alpha} *_{w} v_{\beta})$$
$$= \lim_{n} \lim_{m} f(\mu_{n} *_{w} v_{m})$$
$$= \lim_{n} \lim_{m} (\mu_{n} \times v_{m}) \Omega(\tilde{f}_{\mu_{n}} *_{v_{m}})$$
$$= \lim_{n} \lim_{m} (\mu_{n} * v_{m}) \Omega(\tilde{f}_{\eta})$$
$$= (F \circledast G) \Omega(\tilde{f}_{\eta})$$

where $\eta \in M_b(S)$ is so that $\mu_n * \nu_m \ll \eta$, for all *n* and *m*, for example $\eta = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{2^{n+m}} \cdot \frac{|\mu_n|}{1+||\mu_n||} * \frac{|\nu_m|}{1+||\nu_m||}$. Note that, if $f = (f_{\mu}) \in GL(S)$ then for every $\xi \in M_b(S) f(\xi) = \int_S f_{\xi}(z) d\xi(z)$. Also $f(\xi_1) = f(\xi_2)$, whenever $\xi_1 \ll \xi_2$, see [8]).

We now state the main result of this section. Hereafter, our mean by $M_b(S,w)$ is the Banach algebra $(M_b(S,w),^*, \| \|_w)$, which is identified with $(M_{b}(S), *_{w}, \|\|).$

Theorem (2.3). Let $M_b(S)$ [resp. $M_b(S)^{**}$] be regular. Then $M_b(S, w)$ [resp. $M_b(S, w)^{**}$] is regular.

Proof. Let \circledast and \circledast_w denote the second Arens products induced by * and $*_w$, respectively. If $M_b(S)$ is regular, then for every $F, G \in M_b(S)^{**}$, and $f \in GL(S)$ by the above lemma we have

$$F \circledast_{w} G(f) = F \circledast G(\Omega \tilde{f}_{\eta}), \text{ for some } \eta \in M_{b}(S)$$
$$= F \odot G(\Omega \tilde{f}_{\eta})$$
$$= F \odot_{u} G(f).$$

Therefore $F \circledast_w G = F \odot_w G$, so $M_b(S, w)$ is regular.

Suppose $M_b(S)^{**}$ is regular. Let A, $B \in M_b(S)^{**}$. Then by a similar argument as is used in (2.2), one can show that:

$$A \circledast_{w} B(h) = A \circledast (\Omega h_{\xi}), \text{ for some } \xi \in M_{b} (S)^{**}$$
$$= A \overline{\odot} B(\Omega h_{\xi})$$
$$= A \overline{\odot}_{w} B(h),$$

where $\overline{\circledast}_{w}$ [resp. $\overline{\odot}_{w}$] is the first [resp. second] Arens product.

In [1], the authors showed that $l_1(S, w)$ is regular, whenever Ω is 0-cluster, *i.e.* for all sequences (x_n) , (y_m) of distinct elements in *S*,

 $\lim_{n} \lim_{m} \Omega(x_{n}, y_{m}) = 0 = \lim_{m} \lim_{n} \Omega(x_{n}, y_{m}),$

Whenever the both iterated limits exist.

The next statement extend this for non-discrete case.

Proposition (2.4). Let Ω be 0-cluster. Then $M_b(S, w)^{**}$ is regular.

Proof. Let $A, B \in M_b(S)^{****}$ and $h \in M_b(S)^{***}$. Then there exist sequences (F_n) , (G_m) in $M_b(S)^{**}$ such that,

$$A \circledast_{w} B(h) = \lim_{n} \lim_{m} \widehat{F}_{n} \circledast_{w} \widehat{G}_{m}(h).$$

The assumption of Ω being 0-cluster implies that $A \oplus_w B = 0 = A \oplus_w B$, for all $A, B \in M_b (S)^{****} \setminus M_b (S)^{**}$; Indeed, as in the proof of 2.2, there exists a $\xi \in M_b (S)^{**}$ such that $A \oplus_w B (h) = A \oplus_w B (\Omega h_{\xi})$

= 0, for each $h \in M_b(S)^{***}$.

Corollary (2.5). Let Ω be 0-cluster. Then $M_b(S, w)$ is regular.

Proof. This is an immediate consequence of 2.4.

Theorem (2.6). Let $M_b(S, w)$ [resp. $M_b(S, w)^{**}$] be amenable and $w \ge 1$. Then $M_b(S)$ [resp. $M_b(S)^{**}$] is amenable.

Proof. Let $\phi: (M_b(S), *_w) \to (M_b(S), *)$ be defined by $\mu \mapsto \mu/w$. Then $\frac{\mu *_w v}{w} = \mu/w * v/w$, for $\mu, v \in M_b(S)$, *i.e.* ϕ is a continuous homomorphism with $\phi(M_b(S)) = M_b(S, w)$ which is dense in $M_b(S)$. Therefore amenability of $M_b(S, w)$ implies that of $M_b(S)$, (see [7], for the notion of amenable Banach algebra). The same argument may be used for the second dual ϕ^{**} of ϕ to show that, amenability of $M_b(S, w)^{**}$ implies that of $M_b(S)^{**}$.

Remark (2.7). If we define

 $M_{a}^{l}(S,w) = \{[\mu,\nu] \in M_{b}(S,w): \mu w - \nu w \in M_{a}^{l}(S), (where <math>M_{a}^{l}(S) = \{\mu \in M_{b}(S): x \to \overline{x}^{*}\mu \text{ is weak-continuous}\}, \text{ see [3]})$ then it has been shown that $M_{a}^{l}(S,w)$ is a closed solid left ideal of $M_{b}(S,w)$; (for more details see [5]). In particular, $(M_{a}^{l}(S,w), *, \|\|\|_{w})$ is a Banach algebra. Similar to what we have seen in corollary (1.5), it can be identified with $(M_{a}^{l}(S,w), *_{w}, \|\|\|)$. And also $(M_{a}^{l}(S,w)^{**}, \circledast) \cong (M_{a}^{l}(S)^{**}, \circledast_{w})$, see Lemma (2.1). So, one can repeat the results (2.3), (2.4), (2.5) and (2.6) with M_{a}^{l} in stead of M_{b} , which of course

gives a new proof for corollary 9 of [6].

Question. Does the conclusion of 2.6 hold without $w \ge 1$?

Acknowledgment

This research was supported by Isfahan University under project No. 850507. Also it was partially supported by Center of Excellence for Mathematics at the University of Isfahan.

References

- Baker J.W. and Rejali A. On the Arenes regularity of weighted convolution algebras. J. London Math. Soc., 40(2): 535-546 (1989).
- 2. Dales H.G. and Lau A.T.M. The second dual of Beurling algebras. *Mem. Amer. Math. Soc.*, 177, No. 836 (2005).
- Dzinotyiweyi H.A.M. Algebras of measures on C.distinguished topological semigroups. *Math. Proc. Camb. Phil. Soc.*, 84: 323-336 (1978).
- Lashkarizadeh Bami M. Function algebras an weighted topological semi-groups. *Math. Japon*, 47(2): 217-227 (1998).
- Rejali A. The Analogue of weighted group algebra for semitopological semigroup. J. Sci. I.R. Iran, 6(2): 113-120 (1995).
- Rejali A. Arenas regularity of weighted semigroup algebras. *Japonical Journal of Scientiae Mathematiae Japonia*, 319-327 (2004).
- Runde V. Lectures on amenability. Lecture Notes in Mathematics No. 1774, Springer-Verlag Berlin (2002).
- Wong J.C.S. Abstract harmonic analysis of generalized functions on locally compact semigroups with applications to invariant means, *J. Austral. Math. Soc.*, A 23: 84-94 (1977).