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Abstract
We have studied the effect of hypothetical Cosmions on the core stability of 

main sequence stars (of populations I and II). Cosmions, with a mass of 4-10 
Gev/c2 and a scattering cross section with nucleons of approximately 10-36 cm2 
could prevail in transporting heat in the stellar cores. Raby [17] showed the 
existence of a local thermal instability caused by the presence of Cosmions in the 
solar core. Here we have used more accurate analytic relations and have 
considered all of the main sequence stars which have captured an efficient number 
of these hypothetical particles from their birth up to the present time. We have 
found a wide range of probable instabilities in the stellar cores for various values 
of Knudsen number, cosmion mass and cosmion cross section. 

 
 
 

 
* E-mail: musa-akrami@hotmail.com 
† The authors are aware of some research findings according to which the differences between the real Sun and the standard model 
Sun are small. For example, recent work by Bahcall, Basu and Kumar on helioseismology shows that “the sound speeds of the real 
and the standard model Suns differ by less than 0.3% for regions of radial width ~0.1 RΘ in the solar core” (see  [2]). But it must be 
said that 1– the solar neutrino problem is not yet solved; 2– the galactic halo contains a lot of dark matter for which the Weakly 
Interacting Massive Particles [WIMPs] are good candidates; and 3– it is possible to consider a scenario in which a special kind of the 
WIMPs, called Cosmion, may solve the solar neutrino problem. We hope the difference between the real Sun and the Sun according 
to scenarios like this would be less than difference between the real Sun and the standard model Sun. 

Introduction 
The Cosmion, a special kind of Weakly Interacting 

Massive Particle (WIMP), has, on one hand, been 
proposed as a candidate for dark matter and, on the 
other hand, as a solution to the solar neutrino problem 
[2,8,9,10,14,21]†. 

These particles, assumed to constitute the galactic 
dark halo, are captured by the sun and other stars, 
 

 
Keywords: Elementary particles; Dark matter; Main sequence 
stars; Interior 
including main sequence stars. With a relative number 
density of about 10-11 in the sun, they can transfer a 

large amount of heat and decrease the central 
temperature to the extent that the computed flux of 
generated solar neutrinos agrees with the observed flux 
[4,16]. 

Cosmions, moreover, may have other effects on the 
structure and evolution of stars, including the 
suppression of stellar core convection and, 
consequently, through depriving the nuclear burning 
region from fresh fuel, bring about the premature death 
of a large number of stars, particularly low-mass main 
sequence stars [5]. 

Cosmions could also cause a local thermal instability 
in the solar core as studied by Raby [17]. They may also 
help to solve the age problem [20]. 
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Many aspects of cosmions have been investigated 
thoroughly, including their mass, cross section, density 
and velocity in the galactic disc and halo, number 
density in the stars, distribution [4,12,13,16], their 
candidates [14,18], their evaporation [11] and their pair 
annihilation [4] and so on. We study the effect of 
cosmions on the core stability of main sequence stars of 
population I in the mass range 0.24MΘ<M*<20MΘ and 
of population II in the mass range 0.24MΘ<M*<1.0MΘ. 
In this investigation we use linear instability analysis 
offered by Baker [3] and used by Clayton [6] and Raby 
[17]. 

In the next section, we present a brief discussion of 
the structure of main sequence stars. This includes 
convenient expressions for the temperature, density, 
pressure, entropy, energy generation rate, opacity, main 
sequence lifespan, chemical composition and mean 
molecular weight of stellar cores. 

The scope of the research is discussed in the 
following section. The limits of this scope are set by 
temperature and pressure of the stars, on the one hand, 
and the number of captured cosmions on the other hand. 

Next, the equations of stellar structure are perturbed 
due to the presence and effect of cosmions. A third 
order algebraic equation is derived , the sign of its real 
solution and the real part of its complex solution 
indicating the stability or instability of the stellar core. 

Then we solve the equation for the stars with both 
negligible radiation pressure and electron degeneracy 
pressure. 

Finally, we present the numerical results as well as a 
summary of the instability modes in the final section. 

 
The Structure of Main Sequence Stars 

The basic equations of stellar structure are as follows 
[6]: 
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in which the usual physical quantities and parameters 
have been used. Main sequence stars burn hydrogen. 
The chemical composition of POP I and POP II stars are 
typically: 

POP I: X=0.70,   Y=0.28,   Z=0.02 

POP II: X=0.76,   Y=0.24,   Z=0.002 

The mass fraction of C, N and O in both cases is 

approximately 
4
ZZONC = . In the following section we 

consider convenient expressions for temperature, 
density, pressure, entropy, energy generation rate, 
opacity, main sequence lifespan of stars, chemical 
composition and mean molecular weight of main 
sequence stellar cores. 

 
Temperature and Density 

For central temperature and density, in the absence of 
cosmions, we use the relations given by Bouquet and 
Salati [4]: 
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The presence of cosmions causes the temperature of 
the stellar core to decrease. In contrast, the central 
density of the stars does not change appreciably. In 
order to calculate the central temperature in the presence 
of cosmions, we use the polytropic expansion of the 
temperature [7]: 
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where ξ1=6.8985 is the first zero of Emden variable in 
the standard n=3 polytropic model and R is the stellar 
radius. Since the cosmionic heat transfer brings about an 
isothermal core and the temperature-radius curve will be 
almost flat through the region where cosmions 
effectively transport heat, the temperature of the stellar 
core can be approximately taken as the unperturbed 
temperature at rW (the cosmion scale height) given by: 
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We neglect the fourth and higher order terms in 
Equation (7). Furthermore, we use the following 
relation between the radius and the mass of a star [4]: 
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where mp is the proton mass. 
 
Pressure 

In general, there are three kinds of pressure in stars: 
gas pressure, electron degeneracy pressure and radiation 
pressure. 

The gas pressure is: 

TkNP A
g ρ

μ
=  (11) 

where μ is the mean molecular weight of the gas, which 
is related to X and Y via [6]: 
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Electron degeneracy can be obtained according to the 
following Equation [6]: 
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where μe is the mean molecular weight per electron: 

Xe +
=

1
2μ  (14) 

Finally, radiation pressure is obtained from: 

4

3
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Entropy 

The entropy in the stellar interior can be calculated 
according to [6]: 
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Energy Generation Rate 

Main sequence stars are hydrogen-burning. We 
consider both PP chain reactions (PPI, PPII and PPIII) 
and CNO bi-cycle. Reeves [19] and Novotny [15] have 
given expressions for energy generation rate. We use 
the convenient relations as given by Novotny [15]: 
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where Tb=T/10b and m, n and l are temperature 

exponents )
ln
ln( ρ

ε
Td

d , and ε (0) is the rate of energy 

generation when there is no helium in the stellar core 

(Y=0). fPP and fCN are screening factors due to the 
presence of electrons and are given by the following 
Equations [15]: 
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We see that in our chosen stellar mass range, the 
central temperature is always less than T8=5. So, 
neglecting Equation (19), we combine (17), (18), (20) 
and (21) to get: 
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Using the tables given by Novotny [15] for εPP(0), 
εCNO(0), m and n, we have derived convenient relations 
for them: 
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Opacity 

Hereafter, we use the parameter Knudsen number 
which is defined as the ratio of the cosmion mean free 
path to the cosmion scale height: 

W

W

r
lKn ≡  

Since the cosmionic heat transfer is dominant in the 
core, the relevant opacity K must be found with due 
attention to the cosmion conduction. For two cases 
Kn>>1 and Kn<<1 the opacity is obtained according to 
following equations [17]: 
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The subscript “0” refers to equilibrium values. For 
Kn~1, TW dose not change, but rW varies as ~ρ–1/4 [17], 
so it can be shown that in this case the opacity will vary 
as )1(~ 243213 KnTT W +−− ρκ . Thus for Kn~1, the 
following relation for κ can be found: 
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Main Sequence Lifespan of Stars 

Among several equations presented for main 
sequence lifespan by different authors we choose the 
following equation given by Clayton [6]: 
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We assume that the age of the Galaxy to be 12×109x 
years. 

 
POP II Stars 

These stars came into existence at the time of galaxy 
formation. Since, according to Equation (30), the main 
sequence lifespan of those POP II stars, which are 
heavier than the sun, is less than the age of Galaxy, all 
these heavy stars have already left the main sequence 
and stars with masses roughly equal to the solar mass 
are just leaving the main sequence. Thus, we consider 
only those POP II stars which are less massive than the 
sun. So their age can be expressed simply as: 

years1012 9
1 XTG ×==τ  (31) 

 
POP I Stars 

Hereafter we consider a typical POP I stars which has 
terminated one half of its main sequence lifespan or half 
the Galactic age, if the star is less massive than the sun. 
Thus we take: 
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Chemical Composition of the Stellar Cores 

Hydrogen-burning causes the hydrogen mass fraction 
X to decrease in the core, the consumed H being 
transformed into He. Assuming that hydrogen-burning 
has been linear with time and neglecting elements 
heavier than helium, if at t=0 (the time of star 

formation) Xc (the central mass fraction of H) is taken to 
have been the same as X(0) (i.e. 0.70 for POP I and 0.76 
for POP II), we get: 
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Mean Molecular Weight at the Stellar Core 

Using Equations (12), (14), (30) and (34) we obtain: 

For POP I Stars with 1≥
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The Scope of Research 

There are some factors and conditions which put 
constraints on the mass range we study. 

 
In Relation with Temperature 

The necessary temperature for starting hydrogen-
burning is about 8×106 °K. Therefore, for both POP I 
and POP II stars, neglecting the effect of difference in 
chemical composition, the lower limit of our research is 

24.0=
ΘM

M . The upper limit for population II stars is 

1 MΘ , because stars heavier than this have already left 
the main sequence. Moreover, we have inevitably 
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divided POP I stars into two groups with mass 1<
ΘM

M  

and 1≥
ΘM

M . 

In this section, we will show that a convenient upper 

limit for the mass of POP I stars is 20≤
ΘM

M . 

Summing up, the mass range for POP II stars is 

99.024.0 ≤≤
ΘM

M  while for POP I stars, the appropriate 

ranges are 124.0 <≤
ΘM

M  and 201 <≤
ΘM

M . 

 
In Relation with Pressure 

In general, low mass stars, with high central density 
and low temperature, have electron degeneracy pressure 
while in the case of heavy stars, which have a low 
density and high temperature, radiation pressure 
becomes considerable. 

For POP I stars with 19.0≥
ΘM

M  and POP II stars 

with 20.0≥
ΘM

M , gas pressure is greater than electron 

degeneracy pressure, so that the latter can be neglected 

in the mass range 24.0≥
ΘM

M . 

Furthermore, if we compare gas pressure and 

radiation pressure, we see that 
radg

g
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P
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≡β  is about 1 

for stars with 1<
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M . As the mass increases, β will 

decrease and 
radg

g
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P
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≡− β1  will increase. For 

example, in POP I stars with masses 24.0=
ΘM

M , 0.99, 

20 and 100, 1–β is equal to 0.00003, 0.0006, 0.185 and 
0.851, respectively. 

As stated before, the upper limit in our calculations 

for stellar mass is 20=
ΘM

M . So by overlooking the 

radiation pressure we obtain a fairly good 
approximation. 

 
In Relation with the Number of Captured Cosmions 

The rate of transferred heat and temperature 
reduction through cosmionic thermal transport depend 
on the number of cosmions that have been captured by 

the star during its lifetime. 
According to Figure 3 in Gilliland et al. [9], 

cosmions with mass mW=5mp, cross section 
σW=10-36 cm2, and a relative number density (relative to 

number density of solar baryons) 11104.1
)0(
)0( −×≅

b

W

n
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can solve the solar neutrino problem. The number 
fraction of captured cosmions in a star is [14]: 
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Using this relationship and following our discussion 
about t, we have (for a 20 MΘ star): 
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in which z is a dimensionless number defined via 
σs=z×10-36 cm2. 

The relative number of cosmions in stars heavier than 
20 MΘ is too low to be efficient in thermal transport and 
in producing any change in the stellar structure. Thus 
stars heavier than 20 MΘ will be excluded from our 
research. In this case we will consider both PP chains 
and CNO bi-cycle in the energy generation rate and 
their parts in energy generation will be determined by 
εPP(0), εCNO(0) and parameters m and n which are 
themselves functions of temperature. 

 
Linear Perturbation Equations 

Following Baker [3], Clayton [6] and Raby [17], we 
expand four parameters r, p, T and L about the time-
independent equilibrium solutions to the first order in 
the infinitesimal dimensionless perturbations r´, p´, l´ 
and t´: 
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( )[ ]tMhMLtML ,1)(),( 0 ′+=  (46) 

Putting Equations (43-46) in the stellar structure 
Equations (1-4), we obtain the linear perturbation 
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equations. By properly combining the linearized 
equations, we then obtain a single third order, ordinary 
differential equation: 
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Since Equation (47) is homogeneous in r´, we 
express its time-dependence as r´=ξest. 

Substituting r´ and its derivatives in Equation (47) 
the following third order algebraic equation is obtained: 
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Solutions of Equation (60) are easily found: 
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Obviously, instability occurs if S0 > 0 or ReS± > 0. 
 

Unstable Modes, Ignoring Radiation Pressure 
For a perfect gas in which Prad=Pe.d.=0, we have (16 

and 51-55): 

10 =α  (67) 

10 =δ  (68) 

μ
ν kN A−=0  (69) 

μ
μ kN A

2
5

0 =  (70) 

Using Equations (27-29), (58) and (59) we get: 

1
1
23 2

0

2
0 >>

+
+= Kn

Kn
Kn

Tκ  (71) 

15.5 <<= KnTκ  (72) 
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1~
4

15 KnT =κ  (73) Taking δ=−
26
DAB  and expanding, we get: 

1
1

2
2
0

2
0 >>

+
−

= Kn
Kn
Kn

Pκ  (74) 

1
1
25.1 2

0

2
0 <<

+
+−= Kn

Kn
Kn

Pκ  (75) 

B
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⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

32727

31213
31213

δδ

 (85) 

Thus, using Equations (65) and (66), we simply have: 

1~
14

3
2
0

2
0 Kn

Kn
Kn

P +
−

−
=κ  (76) B

DS −≈0  (86) 

BiA
B

DS ±−≈± 22
 (87) In order to calculate εT and εP we neglect with good 

approximation the derivatives of fPP, fCN, m, n, εPP(0) 
and εCNO(0) with respect to T. Thus, according to 
Equations (22), (56) and (57) we find: 

1=Pε  (77) 

We are now ready to calculate the instability 
conditions for various values of Knudsen number, 
cosmion mass and cosmion cross section. 

1
0

,0

0

,0 −+=
ε

ε
ε

ε
ε CNOPP

T nm  (78) 

Here we must pay attention to Knudsen number-
cosmion mass-cosmion cross section relations. A 
convenient relation has been given by Bouquet and 
Salati [5]: 

Note that 

CNOPP ,0,00 εεε +=  (79) 

2.0

236

5.1
1

10
3

−

Θ
−

− ⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
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⎝

⎛
⎟
⎠

⎞
⎜
⎝
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M
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cmm
mKn cap

W

P σ
 (88) 

Now A, B and D can be found: 

0

0

2
3

1)4(3

με

εκκ
kTNA

A

TTP −−−−
=  (80) 

To study instability for different values of cosmion 
mass, we fix σcap=4×10-36 cm2. Thus we have: 

2
0σ=B  (81) 

4.03
2

144
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4312
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εκκσ kTND
A
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Similarly, we can choose a constant value mW=5mP 
for cosmion mass and vary σcap=4×10-36 cm2; 

4.0
22

9
125

⎟
⎠

⎞
⎜
⎝

⎛
=

Θ

−

M
MzKn  (90) 

Using Equations (86) and (87) for instability conditions 
(S0 > 0 and ReS± > 0), Table 1 can be obtained for main 
sequence stars of difference masses. In this table: 

As 15

7

0 10~ −×
T

A με ,  and 7103~ −×CB ρ

22

7

0 103~ −×CT
D ρμε

, among all the terms of U and W, 

only three terms AB, D and B3/2 are considerable and the 
rest can be ignored: 
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Results and Discussion 
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⎛
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BDABW  (84) 
Explicit results for all instability modes of main 

sequence stellar cores were obtained, distinguishing six 
conditions Kn0

2–BI>0, Kn0
2–BII>0,… and Kn0

2–BVI<0.
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Table 1. Instability conditions for various values of Knudsen number, cosmion mass and cross section 

Parameter 
varied Instability τ ~τff << τrel

⇔ Kn >> 1 
τ ~τff >> τrel
⇔ Kn << 1 

τff <<τ < τrel
⇔ Kn ~ 1 

S0 > 0 Kn0
2–BI > 0 Kn0

2–BIII > 0 Kn0
2–BV > 0 

Kn 
ReS± > 0 Kn0

2–BII <0 Kn0
2–BIV < 0 Kn0

2–BVI < 0 

S0 > 0 0)(144)( 4.3 >×− −

ΘM
MBI

m
m

p

m  0)(144)( 4.3 >×− −

ΘM
MBIII

m
m

p

m  0)(144)( 4.3 >×− −

ΘM
MBV

m
m

p

m  

mW
(σcap=const.) 

ReS± > 0 0)(144)( 4.3 <×− −

ΘM
MBII

m
m

p

m  0)(144)( 4.3 <×− −

ΘM
MBIV

m
m

p

m  0)(144)( 4.3 <×− −

ΘM
MBVI

m
m

p

m

 

S0 > 0 0)(
125

9 4.2 >×− −

Θ

−

M
MBIZ  0)(

125
9 4.2 >×− −

Θ

−

M
MBIIIZ  0)(

125
9 4.2 >×− −

Θ

−

M
MBVZ  

σcap
(mW=const.) 

ReS± > 0 0)(
125

9 4.2 <×− −

Θ

−

M
MBIIZ  0)(

125
9 4.2 <×− −

Θ

−

M
MBIVZ  0)(

125
9 4.2 <×− −

Θ

−

M
MBVIZ  

 
 

We called the corresponding instability modes I, II,… 
and VI, respectively. For the sake of brevity, we 
summarize the results as: 

1. Instability modes I, IV, V and VI occur for 

population I stars in the mass range 524.0 ≤≤
ΘM

M  for 

various values of the cosmion mass and cross section. 
2. The same instability modes occur for population II 

stars in the mass range 7.024.0 ≤≤
ΘM

M . Mode II 

occurs for population II stars heavier than 0.7 MΘ. 
3. For heavy population I stars (M >5MΘ), instability 

modes I, II and V occur. 
We conclude that cosmions with a mass of 4-

10 Gev/c2 and scattering cross section 0.2-11×10-36 cm2, 
previously suggested to constitute the Galactic halo and 
to solve both dark matter and solar neutrino problems, 
may cause thermal instabilities in the core of the sun 
and many other main sequence stars which have 
captured an efficient number of cosmions. 

It should be stressed that the analysis followed in this 
paper was a local one and only linear perturbations were 
taken into account. A more exact investigation must 
consider both a global analysis and nonlinear dynamical 
effects. 

Such a wide range of instability modes, if present 
weaken the cosmion hypothesis in the mass and cross 
section region which is interesting in the context of the 
dark matter and solar neutrino problems. 
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