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Abstract 
Existence of periodic solutions for non-linear third order autonomous 

differential equation (O.D.E.) has not been investigated to as large an extent as 
non-linear second order. The popular Poincare-Bendixon theorem applicable to 
second order equation is not valid for third order equation (see [3]). This 
conclusion opens a way for further investigation. 
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Let us consider the following third order non-linear 
differential equation 

0,0)( >=+′+′′′ axfxax  (1) 

where f(x) is a continuous real-valued function with 
xf(x) > 0. Under this assumption, we shall establish the 
following theorem. 

Theorem. Let us assume that there exist constants 
D > 0, c2 > 0, α and β such that 
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Then there exists at least one ],[
2
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ππω ∈  such 

that Equation (1) has a non-trivial solution satisfying the 
following boundary conditions: 
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Proof. For each [ ]βα ,1∈c , let us define the function 
 as the solution of the following integral 

equation: 
),()( 1ctxtx =

∫ −−−=

+++=
− t dssxfstaatxtF

txtFtactacltx

0
1

21

))(()](cos1[))(,(

)),(,(cossin)(
 (3) 

Obviously, 
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One can easily verify that x(t) satisfies Equation (1). By 
(iii) for Dx ≤ , we obtain 
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Let )()0()( txxtH ′−′= , then clearly we have 
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For Dx ≤ , we obtain the inequalities: 
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Therefore, 0)()(
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Hence, w.l.o.g, we may assume 0)()( 22
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and the obvious continuity of H(t) implies the existence 
of one ),(
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. To complete the proof of the Theorem, 
we introduce the Banach space 
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define the map  by the rule:  
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Then T is a continuous map from B into B. Next, we are 
going to prove that the closed subset K* of B defined by 
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is T-invariant. Since 
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it only remains to prove ml 2* ≤ . For the proof of 

ml 2* ≤ , three distinct cases will be considered. 

 
Case I. ml ≤ : Since D≤*δ , it follows that 
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Case II. : Obviously mlm 2<<
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which implies that  and hence, 
, since by our assumption . 

Therefore, we obtain 
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which clearly means: 
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Case III. mlm −<≤−2 : With similar arguments we 
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Thus, K* is a T-invariant closed subset of the Banach 
space B. Using Schauder’s fixed point Theorem (for 
more discussion on the subject see [1,4], there exists at 
least one element  such that  
i.e. 
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which completes the proof of the Theorem. 
 
Example. Let us consider the equation 0sin =+′+′′′ xxx . 
With taking  ,34,4,1,1,1 2 ===−=−= Dcdβα

1,11 == Mm , all assumptions of the Theorem are 
fulfilled. Hence, there exists [ ]2
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