
J. Sci. I. R. Iran  Vol. 11, No. 2, Spring 2000 

TESTING FOR “RANDOMNESS” IN SPATIAL POINT PATTERNS, USING 
TEST STATISTICS BASED ON ONE-DIMENSIONAL 

INTER-EVENT DISTANCES 
 
 

M. Q. Vahidi-Asl*

 
 

Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 
Islamic Republic of Iran 

 
 

Abstract 
To test for “randomness” in spatial point patterns, we propose two test statistics 

that are obtained by “reducing” two-dimensional point patterns to the 
one-dimensional one. Also the exact and asymptotic distribution of these statistics 
are drawn. 
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1. Introduction 
Data in the form of a set of points, irregularly 

distributed within a region of space, is usually called a 
spatial point pattern. Examples, in different biological 
contexts, include locations of trees in a forest, of nests 
in a breeding colony of birds, or of cell nuclei in a 
microscopic section of tissue. The locations are called 
events to distinguish them from arbitrary points of the 
region in question. 

Figures 1, 2, and 3 show three spatial point patterns 
in a square region, all taken from Diggle [4]. The first 
due to Numata [5], shows 65 Japanese black pine 
samplings in a square of side 5.7 m, the second, 
extracted by [6] from [7], shows 62 redwood seedlings 
in a square of side approximately 23 m, and finally the 
third, due to Crick and Lawrence [3], shows the centers 
of 42 biological calls distributed more or less regularly 
over the unit square. 

Figure 1 shows no obvious structure and might be 
 
 
Keywords: Spatial patterns; Complete spatial randomness; 
Poisson processes 

regarded as a “completely random” pattern, to be 
defined formally below. In Figure 2, on the other hand, 
the strong clustering is apparent, which is termed 
“aggregated” by Diggle [4] to avoid the mechanistic 
connotations of the perhaps more obvious term 
clustered. Patterns such as the ones in Figure 3 are 
called “regular” for obvious reasons. 

The classification of patterns as regular, random or 
aggregated may seem an over-simplification, but it is 
useful at an early stage of analysis. At a later stage, this 
simplistic approach can be abandoned in favour of a 
more detailed, and essentially multidimensional 
description of pattern which can be obtained either by 
identifying different “scales of patterns” or by 
formulating an explicit model of the underlying process. 
Diggle [4] develops methods for the analysis of spatial 
patterns based on stochastic models, which assumes that 
the events are generated by some underlying random 
mechanism. 

The hypothesis of complete spatial randomness 
(henceforth CSR) for a spatial point pattern asserts that 
(i) the number of events in any planar region A with 
area |A| follows a Poisson distribution with mean λ|A|, 

143 



Vol. 11, No. 2, Spring 2000 Vahidi-Asl J. Sci. I. R. Iran 

 
Figure 1 Figure 2 Figure 3 

 
 

(ii) given n events xi in a region A, the xi is an 
independent random sample from the uniform 
distribution on A. 

Most analyses begin with a test of CSR, and there are 
several good reasons for this. Firstly, a pattern for which 
CSR is not rejected hardly merits any further formal 
statistical analysis. Secondly, tests are used as a means 
of exploring a set data, rather than because rejection of 
CSR is of intrinsic interest. Greig-Smith, in the 
discussion of Bartlett [2], has emphasized that 
ecologists often know CSR to be untenable but 
nevertheless use tests of CSR as an aid to the 
formulation of ecologically interesting hypotheses 
concerning pattern and genesis. Thirdly, CSR acts as a 
dividing hypothesis to distinguish between patterns 
which are broadly classifiable as “regular” or 
“aggregated”. 

There are numerous methods for testing a point 
pattern against CSR on top of which is the use of Monte 
Carlo tests [1]. 

Quite generally, let u1 be the observed value of a 
statistic U and let ui, i=2,…, s, be the corresponding 
values generated by independent random sampling from 
the distribution of U under a simple hypothesis H. Let 
u(j) denote the jth largest amongst ui, i=1,…, s. Then, 
under H, 

{ } ,,,1,1
)(1 sjsuuP j K=== −  

and rejection of H on the basis that u1 ranks kth larger or 
higher gives an exact, one-sided test of size k/s. Usually, 
s is taken as 100 in most examples. For complete details 
and other related topics, we refer the reader to Ref. [4]. 
A complete and updated list of statistical tests for 
testing CSR, with less emphasis on Monte Carlo tests, is 
given in chapter 8 of the more recent book by 
Cressie [8]. 

Our concern here is to introduce test statistics whose 

exact and asymptotic distributions are known and test 
CSR against data without using any simulation. 
Therefore it may be included among the many simple 
existing tests, nevertheless it proves to be as effective as 
Monte Carlo tests, as emphasized in [4]. In Section 2 we 
introduce these statistics and some theoretical results 
regarding their distribution, and in Section 3 we use this 
method on the data given in Figures 1-3 [4]. 

 
2. Theoretical Results 

Since the statistics to be introduced are based on 
points distributed along a line with exponential 
distribution for the distance between two consecutive 
points, therefore we consider the one-dimensional case 
first. 

Let the points X1,…, Xn+1 be distributed randomly 
along some stretch of a line so that the random variables 

niXXT iii ,,2,1,1 K=−= +  

are iid. The random process  with T{ } 1≥nnT n=Xn–Xn–1, 
n=1,2,…, forms an iid sequence of random variables 
with mean λ–1 if and only if { }  is a labeling of a 
homogenous Poisson process of intensity λ [9]. Here, 
the points 

1≥nnX

{ } 11 +≤≤ niiX  are a restriction of a Poisson point 
process to some stretch of a line. Let c be a constant. 
We place line segments of length c on every point Xi 
along the supporting line of the Xi’s so that Xi is the 
midpoint of this line segment. These lines either overlap 
or there is a “gap” between two consecutive line 
segments. If we denote the gap between Xi and Xi+1 by 
Yi, then we have 

( ) ,,,2,1, nicTY ii K=−= +  

in which x+=max(x,0). This holds because the right half 
of the line of length c centering at Xi extends to the right 
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of this point and the left half of the line of length c 
centering at Xi+1 extends to the left of this point, and 
there is no “gap” between Xi and Xi+1 if and only if 

, and therefore YcTi ≤ i=0. 

Let . We discuss the distribution of U 
first. 

∑ == n
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Theorem 1. If the T1, T2,…, Tn are iid random variables 
with a common exponential distribution with mean λ–1 
then 
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Now by using the iid property of Ti, s we have 
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The statement for h1(z) is obvious. □ 
The application of this result for computing 

probabilities needed in the last section requires tedious 
recursive integrations. An upper bound for the 
probability P(U ≤ u) may be obtained as in the 
following corollary. 

 
Corollary 1. With Ti’s as in Theorem 1, we have 
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Proof. Let u > 0. Then 
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Therefore cj(u)≤min{aj(u),bj} and the result follows. 
Note that aj(u) may be computed using χ2 tables. □ 
The above result gives approximate values of the 

probabilities needed later on in the next section, but as 
is seen, it still requires lengthy calculations, which we 
are trying to avoid. It is fortunate that the asymptotic 
distribution for U is very easy to come by and at the 
same time, as will be shown, very helpful. 

 
Theorem 2. Let T1,…, Tn be iid random variables with a 
common exponential distribution with mean λ–1. Then 
the random variable  has an asymptotic 

normal distribution with mean  and variance 
. 
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hence the desired result. □ 
For arbitrary n, we may use a statistic W whose 

definition and distribution, both exact and asymptotic, 
are very easy to find. 

 
Theorem 3. Let  where T∑ = >= n

i cTi
W 1 }{1 i, s are as in 

Theorem 2 and 1A is the indicator function of the set A. 
Then W has a binomial distribution with a success 
probability of . □ cep λ−=

The above results are readily applicable to “line data” 
or points randomly distributed along a line. The idea of 
exploiting the statistic U above is very simple: if the 
n+1 points are “almost regularly” distributed along their 
supporting line, and c is chosen close to the average 
distance between all of the points, then U will be 
“small”. For points randomly distributed under CSR 
assumption, the value of U should be “moderate” and 
for “aggregated data” or points showing somehow 
clustering, the value of U should be “large”. We now try 
to adapt it to planar data. In the next section, we will use 
the above statistics to test the data referred to in the 
Introduction. 

Consider a rectangle A with sides a and b. The 
hypothesis of CSR is valid in this rectangular region. 

We divide the sides with length a and b to l and m 
equal parts, respectively and draw lines parallel to the 
sides so that the original rectangle is subdivided to m 
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rectangles with sides a and 
m
b  and rectangles with sides 

b and 
l
a . Now consider the “horizontal” rectangles first. 

If we show these rectangles by A1, A2,…, Am, we project 
all the points inside Aj; j=1,2,…,m on the “base” of the 
rectangle, i.e., the side with length a. If we denote two 
consecutive projections in the rectangle Aj by Xij and 
Xi+1,j and the distance between the points Xij and Xi+1,j by 
Tij, then under CSR 

tm
b

ij etTP
λ−

=> )(  

and therefore Tij has an exponential distribution with 
mean m(λb)-1, and hence we are back to the one-
dimensional case again. Doing the same on all the strips 
A1,…, Am, we may consider the statistic 

∑ +−=
ji

ij cTU
,

)(  

which is the sum of n-m independent identically 
distributed random variables with a common 
exponential distribution with mean m(λb)-1. Using the 
same procedure for vertical strips, we obtain a statistic 

∑ +′−′=
ji

ij cTV
,

)(  

which is the sum of n-1 independent identically 
distributed random variables with a common 
exponential distribution with mean l(λa)-1. Let mn

mac −=  

and ln
lbc −=′ . As for the “linear” data, “small values” of 

U and V simultaneously correspond to the “regular” data 
and “large values” of U and V correspond to 
“aggregated” data. Therefore, we will reject the CSR 
hypothesis whenever 

).()( 2211 vVanduUorvVanduU ≥≥≤≤  

 
3. Application to Certain Data 

We now apply the statistics presented in Theorems 2 
and 3 to the data given in Figures 1-3 of the 
Introduction, but before doing so we note that these 
three sets of data are distributed in a square region, so 
we may take  and lm= cc ′=  in which case U and V 
have the same distribution and therefore we may reject 
the CSR hypothesis whenever 

),max(),min( 1111 vuUorvuU ≥≤ . 

We consider the three cases separately. 
 
3.1. Location of Japanese Black Pine Trees 

Consider the data presented in Figure 1 of the 

Introduction. We take m=n=5. We have doubled the size 
of squares in Figures 1-3 so that we have a square with 
10 cm sides in this case. Therefore, according to 
Theorem 2, 

)2()2(,)2( 22121 cc
U

c
U eneen λλλ λσλμ −−−−− −== . 

To obtain numerical values of μU and σU we need an 
estimate for λ. Under CSR, 65.0ˆ 65 ==

A
λ  is the 

maximum likelihood estimate of λ [4]. 
Also in order to take into account the “gaps” between 

the two events which are the “last” and “first” events in 
two consecutive rectangular strips, we take n=65. This 
is tantamount to “piecing together” all the strips and 
obtaining one strip of 5×10 cm long and 2 cm wide. 
This is reasonable under the CSR hypothesis as long as 
we ignore the edge effects. We will do the same in 
Sections 3.2 and 3.3 without further mentioning. 
Therefore, 

.8.16,9.11

81.4,45.18

11 ==

≈≈

vu

UU σμ
 

We have 

0869.0)9.11( =<= UPp . 

Note that we have a two-sided test here, that the 
attained significant level will be 2×(0.0869)=0.1738, 
and hence the CSR hypothesis is accepted. 

It should be noted that doubling the one-sided 
P-values in asymmetric cases is somewhat controversial 
but is advocated by some authors, including R. A. 
Fisher [10]. We will adhere to this fact without further 
mentioning. 

We now apply Theorem 3 for this set of data. The 
statistic  has a binomial distribution with 

success probability . Here . Since 
n is large enough, we may use the normal 
approximation to the binomial. This time “small values” 
of W correspond to “aggregated” data and “large 
values” of W correspond to “regular” ones. The 
observed value of W here is w

∑ = >= n
i cTi

W 1 }{1
cep λ−= 37.01≈= −ep

1=20 for the horizontal 
strips and w2=23 for the vertical strips. Hence, 

1539.0)02.1()20(),min(( 21 =−<≈<=< ZPWPwwWP  

Therefore the attained significant level is 2(0.1530)= 
0.3078 and the CSR hypothesis is accepted again. 
 
3.2. Locations of 62 Redwood Seedlings 

Proceeding as before, we have, 
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3.28),max(,26,3.28,92.4

,45.18,80.0
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Therefore, 

0228.0)00.2()
92.4

45.183.28()3.28( =>=
−

>≈> ZPZPUP  

Hence the attained significant level is 0.0456 and the 
CSR hypothesis is rejected. 

Now applying Theorem 3 and noting that w1=14 for 
the horizontal strips and w1=11 for the vertical strips, we 
have μW=22.88, σW=3.80, and therefore 

001.0)12.3()11( <−≤≈≤ ZPWP , 

and the CSR hypothesis is emphatically rejected. 
 
3.3. Locations of 42 Cell Centers 

For this set of data, we have u1=9.3 for the horizontal 
strips and u2=7.5 for the vertical ones, μU=18.45, 
σU=5.99. Hence 

0336.0)83.1()5.7( =−<≈< ZPUP . 

The attained significance level is 2(0.0336)=0.0676, and 
we may be inclined to reject the CSR hypothesis. 

Regarding the other statistic presented in Theorem 3, 
we have μW=15.59 and σW=3.128. Since w1=13 for the 
horizontal strips and w2=18 for the vertical ones, 
therefore 

209.0)812.0()13( =−<≈< ZPWP , 

and this leads to the acceptance of the CSR hypothesis, 
contrary to what we except as a result of applying the 
majority of the tests presented by [4]. 

To investigate the effects of increasing the number of 
the rectangular strips partitioning the region A, we take 
m=l=10. Once again μW=15.54, σW=3.128, w1=10 and 
w2=14. Hence 

384.0)77.1()10( =−<≈< ZPWP , 

and this time the CSR hypothesis is rejected. 
It is interesting to use Theorem 2 again for the new 

partitioning. This time, μU≈36.76, σU≈11.95, u1=26.2, 
u2=18.1, and 

0594.0)56.1()1.18( ≈−<≈< ZPUP , 

so the result hints to the acceptance of the CSR 
hypothesis. Even partitioning the region to m=l=15 
strips does not lead to the rejection of CSR hypothesis 
for this set of data. This may be an indication of the 
weakness of these tests against ”regular” alternatives. 

But referring to the statistical tests discussed in [4], we 
note that some of these tests justify the acceptance of 
this set of data as being completely spatial random. The 
majority of the tests supporting the “regularity” 
hypothesis are specifically based on “small distances”. 
Examining the empirical distribution function plot, a 
complete absence of small inter-event distances is 
observed [4]. Translating this idea in terms of the 
statistic, denoted by W in Theorem 2 of Section 3.2, we 
may consider a variant of this statistic, defined by  

∑ ′≤=′
n

ji
cTij

W
,

}{1  

where c´ is any positive constant. Though there is an 
element of arbitrariness in choosing the value of c´, we 
may note that any reasonable “extreme value” would 
suffice for this purpose. For our examples, we choose 

2
cc =′  where n

mac =  when m=l. W´ denotes the number 
of inter-event distances shorter than c´, and has a 
binomial distribution with parameters n and  
where (λ´)

cep ′′−−= λ1
-1 is the mean of Tij. For the pattern given as 

the location of 42 cell centers in Figure 3, we have 
60.0≈c , 71=′w , 62 =′w , therefore the attained 

significance level is approximately 

)60.3(2)
)61.0)(39.0(42

39.425(2 −<=−< ZPZP  

and the CSR hypothesis is emphatically rejected. 
For the location of Japanese black pine trees given in 

Figure 2, we have 34.0≈′c , , , so the 
attained significance level is approximately 

241=′w 192 =′w

)601.1(2 −<ZP  

which leads to the acceptance of the CSR hypothesis. 

Finally for the locations of 62 redwood seedlings 
presented in Figure 2, we have , 40.0≈′c 381=′w , 

422 =′w , and hence the attained significance level is 
approximately, 

)64.4(2 >ZP  

which leads to the emphatic rejection of the CSR 
hypothesis. 
 
Remark. We should note that even though we have 
used rectangular regions for reducing our test statistics, 
regions of any shape are amenable to this method as 
long as this region can be partitioned to rectangular 
strips of equal heights, but not necessarily equal lengths. 
In fact, no matter what the shape the region, we may 
contain it in a rectangular or square region and generate 
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additional events, the number of which is proportional 
to the area of the added area. This is justified under the 
CSR hypothesis. 

Another advantage of this method is that, we may 
allow the existence of some “excluded” areas in the 
study region, such as lakes in a breeding colony of birds 
or deserts in a country in studying population centers. 
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