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Abstract 
Consider an exchangeable normal vector with parameters μ, σ2, and ρ. On the 

basis of a vector observation some tests about these parameters are found and their 
properties are discussed. A simulation study for these tests and a few 
nonparametric tests are presented. Some advantages and disadvantages of these 
tests are discussed and a few applications are given. 
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1. Introduction 
Statistical studies are often based on independent and 

identically distributed (IID) random variables. In 
applications we may not have such strong assumptions 
on the observations. A weaker assumption is 
exchangeability. Exchangeable random variables were 
first introduced by de Finetti [5] and then considered by 
many researchers, for example, Chow & Teicker [4], de 
Finetti [6,7,8], Feller [10], Fürst [12], and Koch & 
Spizzichino [14]. 

This work is concerned with hypothesis testing for an 
exchangeable normal distribution. The random vector 
X=(X1,…, Xp)´ is said to have an exchangeable normal 
distribution if its distribution is multivariate normal with 
the following mean vector and variance-covariance 
matrix 
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Keywords: Exchangeable normal distribution; Power func-
tion; Robust test; Test of randomness; Uniformly most power-
ful test; Uniformly most powerful unbiased test 

(see, e.g., Tong [21], page 112). We denote this 
exchangeable normal distribution with three parameters 
μ, σ2, and ρ by ENp(μ, σ2, ρ). It is clear that (X1,…, Xp) 
and ), X,(X

pii …
1

are identical in distribution for any 

permutation {i1,…,ip} of {1,…,p}. 
Some statisticians have worked on this distribution. 

For example, Rao [19] has a t-test for μ, McElroy [17] 
considers a regression study with exchangeable normal 
errors, and Arnold [1] extends this study to linear 
models. 

In Section 2, we study some tests about the 
parameters of an exchangeable normal distribution, and 
we plot their power functions. Section 3 is concerned 
with a simulation study and a comparison of these tests 
with a few nonparametric tests. In Section 4 a few 
applications are given for these tests. 

2. Hypothesis Testing 
In this section we introduce some intuitively test 

functions for testing the parameters of an exchangeable 
normal vector X. We also point out some restrictions on 
these tests and find the best ones. 

First we study two tests for ρ. Suppose we want to 

test , when μ is known. It can be proved that 
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denotes the sample mean and variance respectively, and 
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Now, consider the case that σ 2 is known but μ is 
unknown. It can be proved that 
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where  denotes the chi-square distribution with p-1 
degrees of freedom (see Rao [19] page 197). Under 

, we have . If ρ is close 

to 1 then (1-ρ) is close to 0. Thus, we 
reject H
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Table 1 shows intuitively test functions for 
parameters of an exchangeable normal vector and 
Figures 1-4 show their power functions (the graphs and 
the computations are prepared by S-PLUS). We use the 
following abbreviation in this table, K: known, 
P: parameter, Prop: property, UMP: uniformly most 
powerful, UMPU: UMP unbiased. 

Note that, there is no test for anyone of μ, σ 2, and ρ, 
when two of them are unknown. A main reason for this, 
due to the fact that dimension of minimal sufficient 
statistic is less than the dimension of parameter space 
(see Remark 2.1). 

In the following theorem we prove that some of the 
test functions in Table 1 are the best. 

Theorem 2.1. If X=(X1,…, Xp)´ has the distribution 
ENp(μ, σ2, ρ), then the test functions in Table 1 follows 
the properties in the last column of this table. 

Proof. Hypothesis testing for ρ. Let μ be known. 
Without loss of generally assume that μ =0. First 
consider the case p=2. In this case the joint density of 
X=(X1, X2)´ is given by 
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Now we can apply Theorem 3, page 147 of Lehmann 
[15]. The test function  given by 

 is an UMPU test for testing 
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then T´ is an ancillary and as a result independent from 
T2. Therefore, 
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Table 1. Intuitively test functions for hypothesis testing for an ENp(μ, σ2, ρ) 

Hypotheses K. P. Test function Prop. 
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Table 1. Continued 

Hypotheses K. P. Test function Prop. 
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Hypothesis Testing for σ 2. Let (μ, ρ) be known. Fix σ 2 
under H1 and apply the Neyman-Pearson lemma (see 
also Hypothesis testing for ρ). Then we have the 
properties of , and . The proof for the properties of 

, and  is similar to the test functions of μ. 
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Remark 2.1. If μ and σ2 are both unknown we have 
trivial UMPU test for ρ. To prove this fact we observe 
that 
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Figure 1. Power functions for the tests φ1, and φ2, where α = 0.05, μ0 = 0, σ 2 = 1, and ρ = 0.5, for p = 2, 10, 25, 50. 
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Figure 2. Power functions for the tests φ3, and φ4, where α = 0.05, μ = 0, σ0

2 = 1, and ρ = 0.5, for p = 2, 10, 25, 50. 
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Figure 3. Power functions for the tests φ5, φ6, φ7, and φ8, where α = 0.05, μ = 0, and σ 2 = 1, for p = 2, 10, 25, 50. 

137 



Vol. 11, No. 2, Spring 2000 Mohammadpour and Behboodian J. Sci. I. R. Iran 

 
Figure 4. Power functions for the tests φ1, φ1

1, and φ1
2; φ2, φ2

1, and φ2
2; φ3, φ3

1, and φ3
2; and φ4, φ4

1, and φ4
2, where 

α = 0.05, μ0 = 0, σ0
2 = 1, μ = 0, σ 2 = 1, ρ = 0.5, and p = 10. 
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Figure 5. Percentage of rejecting H0 for the test φ1, and Wilcoxon test (left column); and percentage of rejecting H0 
for the tests φ7, φ8, and Runs test (right column), where α = 0.05, μ0 = 0, σ 

2 = 1, p = 10, 25, 50, for ρ∈[0,1). 
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the proof of Theorem 2.1, then we obtain a similar 
result. 
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Remark 2.2. If σ2 is known but μ is unknown, we 
cannot have such an UMPU test for ρ by the method 
given in Theorem 2.1, because the density is not of the 
form (2.1). 

Remark 2.3. As in the case ρ = 0, the test  is not 
UMP. 

1φ

Remark 2.4. The tests , and  are not UMP or 
UMPU, because when ρ = 0 they are not UMP or 
UMPU (see Tate & Klett [20], and Parsian & 
Nematolahi [18]). 
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Remark 2.5. The tests and  are not UMPU. To 
show this fact, compare these tests with  in Figure 3. 
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3. A Simulation Study 
In this section we consider the effect of ρ > 0 on the 

test functions in Section 2. For this purpose we change ρ 
in the interval [0,1) and by simulation we study the 
robustness of these test functions. A good test function 
for μ or σ 2 should be robust when ρ changes in [0,1), 
but not for testing ρ. 

For example, consider , the test function for testing 

, when , and α = 0.05. Figure 5 

(left column) shows the percentage times of rejecting H

1φ

⎩
⎨
⎧

≠
=

01

00

:
:

μμ
μμ

H
H

00 =μ

0 
when μ = 0 for . This test is robust, because 
percentage times of rejecting H

)1,0[∈ρ
0 are approximately 5% 

for all . But, for example, the Wilcoxon test 
(nonparametric test for mean; see, e.g., Gibbons [13]) is 
not robust, i.e. percentage times of rejecting H

)1,0[∈ρ

0 
increases when ρ goes to 1. 

However tests for ρ should not be robust, because 
they are sensitive to the change of ρ. Now consider , 

 and the Runs test (test of randomness; see, e.g., 
Gibbons [13]). Figure 5 (right column) shows the 
percentage times of rejecting H

7φ

8φ

0. At ρ = 0, the 
percentage times of rejecting H0 for these tests are 
approximately 5%. When ρ increases the percentage 
goes up for  and , but not for the Runs test. 7φ 8φ

Remark 3.1. To simulate an ENp(μ, σ 2, ρ), we use the 
Algorithm 8.1.2 of Tong [21] page 183, by an S-PLUS 
function. We generate 2000 times from an ENp(0, 1, ρ) 
for ρ = 0, 0.1,…, 0.9. The complete result of this 
simulation can be downloaded from the author’s 
homepage on the World Wide Web. 

 
4. Applications 

The main result of the previous section was the 
advantage of the following tests ,…, ,  and . 
In this section, we try to answer the following question: 

1φ 4φ 7φ 8φ

Can we use the test functions ,…, , , 
and  in applied problems? 

1φ 4φ 7φ

8φ

Suppose we have the assumption of normality. 
Consider the test functions , and . These test 
functions are useful if the parameter ρ is known, but in a 
real problem ρ is usually unknown and there is no 
estimate or nontrivial test for ρ. Therefore, we cannot 
test for μ or σ

2φ 4φ

2, unless ρ is known. Note that if μ or σ2 is 
known then we can estimate ρ and there is a test for ρ 
( , or ), and so the tests , and  are applied for 
testing μ, and σ

7φ 8φ 1φ 3φ
2, respectively after applying the test , 

or . 
7φ

8φ
In the following, we point out some difficulties and 

restrictions for using tests , and . 7φ 8φ
 

Linear Models 
The error terms in linear models usually have IID 

normal distribution with zero mean and unknown 
variance σ 2. One of the important problems in linear 
models is checking the assumption of IID or ρ = 0. 
Unfortunately, we cannot use test , because the sum 
of estimated errors is zero (see Arnold [1]). 

8φ

 
Time Series 

This case is similar to the case of linear models. 
However, in this case, the sum of estimated errors is not 
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zero, so we can check the assumption of independence. 
Note that if we subtract the mean of observations from 
them (this transformation is usually used in time series, 
see, e.g., [2,3]) then the mean of estimated errors is near 
zero, so we cannot use test . Dufour and Roy [9] 
introduce some tests for checking independence 
assumption in exchangeable time series. 

8φ

 
Statistical Quality Control 

Suppose a process is generated by a system. If we 
cannot reject the assumption of normality then we can 
use the test functions , and , when variance or 
mean of the system is known, respectively. For an 
application of these tests see Section 7.2.1 of Leitnaker, 
Sanders and Hild [16]. 

7φ 8φ

 
Acknowledgements 

The authors would like to thank the referees for their 
helpful comments. They are also grateful to the Shiraz 
University Research Council for supporting this work. 

 
References 

1. Arnold, S. F. Linear models with exchangeably distri-
buted errors. Journal of the American Statistical Asso-
ciation, 74, 194-199, (1979). 

2. Brockwell, P. J. and Davis, R. A. Time Series: Theory 
and Methods. Springer-Verlag, Berlin Heidelberg New 
York, pp. 306-314, (1991). 

3. Brockwell, P. J. and Davis, R. A. ITSM for Windows: 
User’s Guide to Time Series Modeling and Forecasting. 
Springer-Verlag, Berlin Heidelberg New York, pp. 36-42, 
(1991). 

4. Chow, Y. S. and Teicker, H. Probability Theory. (2nd ed.), 
Springer-Verlag, New York, 182, 220-226, (1987). 

5. de Finetti, B. Funzione carattenisbica di un fenomeno 
aleatorio. Memorie R. Accad. Lincei, 4(5), 86-133, 
(1930). 

6. de Finetti, B. Teoria della probabilita. Einaudi, Torino, 
(1970). (English Translation, Theory of probability, Vol. 
II, Wiley, New York, pp. 211-224, (1974-75).) 

7. de Finetti, B. Probability, Induction, and Statistics. 

Wiley, New York, Vol. 8, p. 160, (1972). 
8. de Finetti, B. Foresigh: Its logical law its subjective 

sources. Breakthroughs in Statistics Vol. I, Kotz, S. and 
Johnson, N. L. (eds.), Springer-Verlag, New York, pp. 
134-174, (1992). 

9. Dufour, J. M. and Roy, R. L’Echangeabilite en series 
chronologiques: quelques resultats exacts sur les 
autocorrelations et les statistiques portemanteau. Cahiers 
du C.E.R.O. 28(1,2,3), 19-39, (1986). 

10. Feller, W. An introduction to probability theory and its 
applications, Vol. II, Wiley, New York, pp. 228-230, 
(1971). 

11. Ferguson, T. S. Mathematical statistics: A decision 
theoretic approach. Academic Press, New York, p. 230, 
(1967). 

12. Fürst, D. de Finetti: A scientist, A man. Exchangeability 
in probability and statistics. Koch, G. and Spizzichino, F. 
(eds.), North Holland, Amsterdam, 7-20, (1982). 

13. Gibbons, J. D. Nonparametric statistical inference. 
Mercel Dekker, New York, pp. 1-200, (1985). 

14. Koch, G. and Spizzichino, F. Exchangeability in 
probability and statistics. North-Holland, Amsterdam, 
Vols. VII-XIII, (1982). 

15. Lehmann, E. L. Testing statistical hypotheses. (2nd Ed.), 
Wadsworth, California, pp. 145-151, (1991). 

16. Leitnaker, M. G. Sanders, R. D. and Hild, C. The power 
of statistical thinking: Improving Industrial Processes. 
Addison-Wesley, New York, Vols. 66-68, No. 281, pp. 
485-499, (1996). 

17. McElroy, F. W. A necessary and sufficient condition that 
ordinary least squares estimators be best linear unbiased. 
Journal of the American Statistical Association, 62, 1302-
1304, (1967). 

18. Parsian, A. and Nematolahi, N. Tables of Critical values 
for some likelihood ratio tests. Computational Statistics 
Quarterly, 3, 181-192, (1990). 

19. Rao, C. R. Linear statistical inference and its 
applications. (2nd ed.), Wiley, New York, pp. 197-200, 
(1973). 

20. Tate, R. F. and Klett, G. W. Optimal confidence intervals 
for the variance of a normal distribution. Journal of the 
American statistical Association, 54, 674-682, (1959). 

21. Tong, Y. L. The multivariate normal distribution. 
Springer-Verlag, New York, pp. 91-122, (1990). 

141 


	1. Introduction 
	2. Hypothesis Testing 
	3. A Simulation Study 
	4. Applications 
	Linear Models 
	Time Series 
	Statistical Quality Control 
	Acknowledgements 
	References 


