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Abstract 
In the present work, we have examined the ability of some different equations 

of state in predicting the Joule-Thomson coefficient, μJ-T, of different fluids. For 
dense fluids, for which density is greater than the Boyle density, ρB, two 
appropriate equations of state, namely the linear isotherm regularity, LIR, and the 
dense system equation of state, DSEOS, have been examined. The results show 
that the DSEOS is in better agreement with the experimental data than the LIR. 
However, only at very high pressures the LIR gives a better result. For low 
densities, densities lower than the Boyle density, twelve equations of state namely 
the van der Waals, Dieterici, Bertholet, Deiters, Virial, Adachi-Lu-Sugie, Kubic-
Marthin, Yu-Lu, Twu-Coon-Cunningham, Song-Mason, Ihm-Song-Mason, and 
the extended linear isotherm regularity, ELIR, have been examined. The results 
show that the Virial, Song-Mason, Ihm-Song-Mason and ELIR are in a better 
agreement than the others. Finally we have recommended an appropriate equation 
of state (ELIR) from which the Joule-Thomson coefficient can be calculated. In 
this way we found that two harmless refrigerants, R-152a and R-32, have the 
largest value of μ

B

 

J-T, which is in accordance with the experimental observations. 
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Introduction 
The Joule-Thomson expansion is widely used for 

liquefaction and refrigeration of gases. The 
determination of the expansion condition is very 
important in the design of low temperature separation 
liquefaction plants and in the transport of natural gas 
processes. The expansion condition indicates whether 
the system is undergoing a heating or cooling process. It 
is also important to obtain μJ-T by using a theoretical 
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method without involving the experimental 
measurement. Such an attempt has been done by 
knowledge of the intermolecular potentials or by using 
the equations of state. Nain and Aziz [1] predicted μJ-T 
for the noble gases on the basis of numerous 
intermolecular potentials at zero pressure. Edalate et 
al.[2] presented a correlation for calculation of the 
adiabatic Joule-Thomson coefficient of pure gases and 
their mixtures, by using the Redlich-Kwong, Soav-
Redlich-Kwong, Peng-Robinson, and Lee-Kesler 
equations of state. Maghari and Matin [3] predicted the 
Joule-Thomson inversion curve from some van der 
Waals type equations of state. 
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In the present work, we evaluated different equations 
of state of predicting the Joule-Thomson coefficient. 
Owing to the fact that the Joule-Thomson coefficient is 
very sensitive to small deviations in temperature and 
pressure, it is a severe test [4] for the accuracy of the 
equation of state. There is no accurate equation of state, 
EOS, valid over an entire range of temperature and 
pressure. Here, the calculation of Joule-Thomson 
coefficient is divided into two different density ranges, 
densities greater than and those lower than the Boyle 
density. Appropriate equations of state for each range 
have been examined and compared. Finally, we have 
used more suitable equations of state to predict μJ-T for 
some refrigerants and from such a prediction we have 
proposed appropriate refrigerants which have a large 
value of μJ-T and a minimal amount of environmental 
damage. 

 
Appropriate Equations of State for 

Dense Systems 
The Joule-Thomson coefficient in terms of 

thermodynamic variables is, 
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where, p, v, T, and cp are pressure, molar volume, 
absolute temperature and specific heat capacity at 
constant pressure, respectively. The method of 
calculation is as follows: 

Using a given equation of state, the expression for 
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Equation 1, along with the experimental value of cp. 
For densities greater than the Boyle density we have 

used the LIR and DSEOS equations of state, because of 
their simplicity and knowledge of mathematical 
expressions for the temperature dependencies of their 
parameters [5,6]. According to the LIR, (Z-1)v2 is linear 
versus ρ2 for each isotherm [5] as, 

( ) 221 ρBAvZ +=−  (2) 

where Z=P/ρ RT is the compressibility factor, ρ =1/v is 
the molar density, A and B are temperature dependent 
parameters as, 

RTBBRTAAA /,/ 112 =−=  (3) 

and A1 and B
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The other suitable EOS for such a density range is the 
DSEOS. It predicts that ρv2 is quadratic versus ρ for 
each isotherm as [6], 

2
210

2 ρρρ AAAv ++=  (5) 

where A0, A1, and A2 are temperature dependent 
parameters defined as, 

2,1,0ln)( 2 =−++= iTTdTcTbaTA iiiii  (6) 

The values of constants ai, bi, ci, and di may be 
obtained from a least square fit of the experimental 
ρ-v-T data in Equation 5, then the results obtained for 
Ais may be fitted into Equation 6. This EOS is valid for 
densities greater than the Boyle density and dose not 
have any temperature limitation [6]. According to the 
DSEOS, μJ-T is given as, 
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where 
dT
dAA i

i =′ . 

These two equations of state (LIR and DSEOS) are 
compared with the experimental data through their 
ability for predicting μJ-T. Because the experimental 
values of μJ-T are not reported for such a density range, 
we have used Goodwin’s μJ-T reported data for toluene 
which is calculated by an accurate EOS [8]. The values 
of μJ-T for toluene at 1.01325, 70, 250, 700, and 1000 
bar are calculated. The results for 1.01325 bar are given 
in Table 1 and for other isobars are summarized in 
Figure 1 in which percent deviation is plotted versus 
temperature for LIR, Figure 1a and DSEOS Figure 1b. 
The agreement between the DSEOS and Goodwin’s 
reported values is quite well. We may conclude that the 
DSEOS can predict μJ-T in this density range better than 
the LIR. However, the LIR predictions are better than 
those of the DSEOS at high pressure such as 1000 bar, 
especially at low temperatures. 

 
Appropriate Equations of State for Density 

Range Lower than the Boyle Density 
We have also examined the accuracy of some 

different equations of state in low density range for 
predicting μJ-T such as ELIR, five van der Waals type 
equations of state, Song-Mason, and Ihm-Song-Mason. 
In this section, we briefly introduce these equations and

B1 are related to the intermolecular attraction 
and repulsion respectively, while A2 is related to the 
non-ideal thermal pressure. Based on the LIR, μJ-T is 
given as [7], 
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Table 1. The Joule-Thomson coefficient of toulene at 1.01325 bar for given temperature, predicted by 
the LIR, DSEOS, along with the experimental values 

T, K (μJ-T)exp (μJ-T)LIR (μJ-T)exp-(μJ-T)LIR (μJ-T)DSEOS (μJ-T)exp-(μJ-T)DSEOS

 (K bar-1) (K bar-1) (K bar-1) (K bar-1) (K bar-1) 
210 -0.0583 -0.0601 0.0018 -0.0600 0.0017 
220 -0.0573 -0.0595 0.0022 -0.0591 0.0018 
230 -0.0563 -0.0586 0.0023 -0.0577 0.0014 
240 -0.0551 -0.0576 0.0025 -0.0563 0.0012 
250 -0.0539 -0.0567 0.0028 -0.0550 0.0011 
260 -0.0526 -0.0558 0.0032 -0.0536 0.0010 
270 -0.0512 -0.0549 0.0037 -0.0523 0.0011 
280 -0.0498 -0.0536 0.0038 -0.0506 0.0008 
300 -0.0467 -0.0516 0.0049 -0.0475 0.0008 
320 -0.0434 -0.0493 0.0059 -0.0441 0.0007 
340 -0.0398 -0.0469 0.0071 -0.0402 0.0004 
360 -0.0360 -0.0446 0.0086 -0.0360 -0.0000 
380 -0.0319 -0.0423 0.0104 -0.0311 -0.0008 

 
 

  
Figure 1. Deviation plot for Joule-Thomson coefficient predicted by (a) the LIR and (b) the DSEOS versus temperature at 1.01325 
bar (●), 70 bar (■), 250 bar (▲), 700 bar (○), and 1000 bar (□). 

 
 

then compare their validity for predicting μJ-T. The 
method of calculation is the same as that which was 
explained earlier. 

 
ELIR Equation of State 

Recently, the LIR has been extended to lower density 
range (lower than Boyle density). This new equation of 

state [9] is called “extended linear isotherm regularity”, 
or simply “ELIR”. According to which 
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where BB2 and C are the second and third Virial 
coefficients, respectively, A and B are LIR parameters. 

 
Five van der Waals Type Cubic 

Equations of State 
The general reduced form of van der Waals type 

cubic equations of state [3] can be expressed as: 
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where Zc is the critical compressibility factor. The four 
parameters U, W, Y1, and Y2 for the cubic equations of 
state are given as follows, 
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where A, B, and λ2 are given below for different cubic 
equations of state. 

Adachi-Lu-Sugie, ALS, equation of state 
A=0.44869+0.04024ω+0.01111ω2-0.00579ω3

B=0.08974-0.03452ω+0.00330ω2

C=0.03686+0.00405ω-0.01073ω2+0.00157ω3

D=0.15400+0.141222ω-0.00272ω2-0.00484ω3

α=0.4070+1.3787ω-0.2933ω2 

λ1=C-D,   λ2=-CD (11) 

where ω is the acentric factor. 
Kubic-Marthin, KM, equation of state 

A=0.421875 
B=0.081946-0.06487ω-0.01157ω2-0.01037ω3

C=0.043γ(0)+0.0713γ(1)[0.000756+0.90984ω+0.1622ω2+
0.14549ω3] 
α(Tr, ω)=α(0)+α(1)[0.000756+0.90984ω+0.16226ω2+ 
0.14549ω3] 
γ(0)=4.275051-8.87889Tr

-1+37.433095Tr
-2-18.05842 Tr

-3

+3.514050Tr
-4

α(0)=-0.1514Tr+0.7895+0.3314Tr
-1+0.029Tr

-2+0.0015Tr
-7

α(1)=0.237Tr-0.786Tr
-1+1.0019Tr

-7

λ1=2C,   λ2=C2 (12) 

Yu-Lu, YL, equation of state 
A=0.468630-0.0378304ω+0.00751969ω2

B=0.0892828-0.0340903ω-0.00518289ω2

C=-1.29917+0.648463ω+0.895926ω2

logα=M (ω)(A0+A1Tr+A2Tr
2)(1-Tr) 

for ω≤0.49 
M(ω)=0.406849+1.87907ω-0.792636ω2+0.737519ω3

A0=0.536843,   A1=-0.39244,   A2=0.26507 
for 1≥ω≥0.49 
M(ω)=0.581981-0.171414ω+1.84441ω2-1.19074ω3

A0=0.76355,   A1=-0.53409,   A2=0.37273 

λ1=B(1+C/C0),   λ2=B2(C/C0),   C0=1m3 (13) 

Twu-Coon-Cunningham, TCC, equation of state 
A=3Zc+B+(1-3Zc)+4B2

B3-(3Zc+1)B2+(3Zc
2-6Zc+2)B-Zc

3=0 
C=1-3(Zc+B) 
α(Tr, ω)=α(0)+ω[α(1)+α(0)] 
α(0)=Tr

0.076554e1.04734[1- Tr
0.304777] 

α(1)=Tr
-0.629327e0.482355[1- Tr

2.38492] (14) 

Deiters Equation of state 
Another van der Waals type equation of state was 

derived by Deiters for a set of spheres interacting 
through a square well potential as [10], 
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The parameters of this equation are given in [10]. 
 

Song-Mason, SM, EOS 
Song and Mason derived an EOS based on a 

statistical-mechanical perturbation theory for both 
spherical [11], and molecular fluids [12]. Their equation 
for non-polar spherical molecules is derived as, 

]1)([)(1 2 −++= +σραρ gTBZ  (16) 

where a(T) is a temperature dependent parameter that 
scales for the softness of repulsive forces and g(σ +) is 
the pair correlation function at contact. The extension of 
Equation 16 to molecular fluid becomes as [12], 

]1))(([)(1 2 −++= ρραρ TbGTBZ  (17) 

where b(T) is the temperature-dependent parameter and 
is analogous to the hard sphere diameter and G(bρ) is 
the effective pair correlation function for molecular 
fluids at contact. 

 
Ihm-Song-Mason, ISM, EOS 

Ihm, Song, and Mason derived an accurate EOS [13, 
14] based on statistical mechanical perturbation theory 
as: 
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Table 2. The Joule-Thomson coefficient for argon at 40 atm predicted from different equations of state. 

(μJ-T) T, K 
(K atm-1) 383.15 353.15 313.15 273.15 233.15 193.15 153.15 

EXP 0.2043 0.243 0.308 0.392 0.513 0.698 0.970 
EOS        
ELIR 0.1942 0.233 0.297 0.379 0.494 0.668 0.789 
Virial 0.1941 0.233 0.298 0.381 0.499 0.684 0.953 
ISM 0.1950 0.234 0.299 0.386 0.509 0.693 0.993 
SM 0.1932 0.232 0.297 0.386 0.510 0.700 1.037 
Deiters 0.3225 0.354 0.409 0.489 0.622 0.924 -1.400 
vdW 0.2395 0.273 0.327 0.398 0.493 0.626 0.764 
Dieterici 0.3477 0.390 0.459 0.544 0.653 0.780 0.711 
Bertholet 0.0684 0.106 0.173 0.269 0.420 0.664 1.166 
ALS 0.0528 0.057 0.064 0.072 0.082 0.90 0.070 
TCC -0.0436 -0.035 -0.020 -0.001 0.024 0.051 0.050 
YL -0.0028 -0.003 0.020 0.054 0.104 0.166 0.173 
KM 0.0776 0.086 0.102 0.121 0.145 0.172 0.130 
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where λ is an adjustable parameter. 
These equations of state along with the known van 

der Waals, Dieterici and Bertholet are examined for 
predicting μJ-T. 

 
Experimental Test 

We have calculated μJ-T of argon for the temperature 
range of 153. 15-383.15 K at 40 atm, the experimental 
values of cp are taken from [15]. The results are shown 
in Table 2 and are compared with the experimental data 
[16]. This table shows that four equations of state, 
namely the Virial, SM, ISM, ELIR give a better result 
than the others. The van der Waals type equations of 
state predict μJ-T with a very large deviation from the 
experiment. The Dieterici, Deiters, Bertholet and van 
der Waals equations of state have also deviations, which 
are more significant for Deiters and Bertholet at high 
temperatures. However, these equations of state give 
better results than van der Waals type equations of state. 
In this way, we select the more accurate equations of 
state, namely the Virial, SM, ISM, and ELIR and 
examine their validity for different isobars. 

Figures 2 and 3 show the results of μJ-T for Ar at 160 
and 200 atm obtained using four selected equations of 
state. Even though these equations of state are in 
agreement with the experimental data at high 
temperatures, the Virial EOS shows a large deviation at 
low temperatures, at which it diverges. However, we 

have used the Virial, ELIR, SM, and ISM, using 
Boushehri and Mason Correlation [17], to calculate μJ-T 
for different compounds such as C2H6 [18], C3H8 [19], 
CO2 [20], and C7H8 [8], for which the results are shown 
in Figures 4-7. Figure 4 shows the comparison between 
the experimental data of μJ-T for CO2 with those 
calculated from four selected equations of state in terms 
of temperature at 15 bar. As it is clear all four equations 
of state agree with the experimental data. Figure 5 
shows prediction of the ISM, Virial, and ELIR for 
toluene for the temperature range of (530-600 K) at 20 
bar. As shown the result of ISM is more accurate at least 
at high temperatures. Figure 6 shows the value of μJ-T 
versus pressure for 373.15 K isotherm of ethane (C2H6). 
The results show that the Virial EOS is more accurate, 
except at high pressures. Figure 7 is prediction value of 
μJ-T for propylene at 398.15 K. The results show that all 
three equations of state give good agreement with the 
experiment at low pressures. 

Therefore, we may consider these four equations of 
state namely, ELIR, SM, ISM, and Virial to calculate 
μJ-T for refrigerants, because of the fact that they give 
the most accurate value for μJ-T at low densities. Since 
almost all refrigerants are generally polar and the SM 
and ISM equations of state are proposed for the non-
polar and slightly polar compounds [21], we didn’t use 
them to calculate μJ-T for such compounds. Therefore, 
we have calculated μJ-T for several refrigerants only by 
using the Virial and ELIR equations of state. These two 
equations of state have been tested for some different 
refrigerants such as R-22 [22], R-23 [23] and R-32 [24].  
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Figure 2. μJ-T versus temperature for Ar obtained by the ISM, 
SM, Virial and ELIR at 160 atm. 

 
 

 
Figure 4. Comparison between the experimantal Joule-
Thamson coefficient with those calculated from ISM, SM, 
Virial and ELIR for CO2 at 15 bar. 

 
 

The results are shown in Figure 8 that reveals the Virial 
and ELIR can predict μJ-T with a good agreement with 
the experimental data. Similar calculations have been 
done for these refrigerants for different pressure and 
temperature ranges, and also for other refrigerants. The 
results are almost similar to those shown in Figure 8. 
But, when the deviation from the experimental data for 
Virial equation of state at high densities becomes 

 
Figure 3. Same as Figure 2 for 200 atm. 
 

 
 

 
Figure 5. Comparison of the ISM, Virial and ELIR for 
predicting the Joule-Thamson coefficient for toluene with the 
experimental data (●) at 20 bar. 

 
 

significant, the ability of the ELIR becomes remarkable. 
Therefore, we have used only this equation of state to 
predict the Joule-Thomson coefficient for the ozone 
friendly refrigerants such as R-23, R-32, R-152a, 
R-134a [25]. Figure 9 shows the calculated value of μJ-T 
from the ELIR versus temperature at 0.5 MPa for the 
mentioned refrigerants. As it is obvious two ozone safe 
refrigerants, R-152a and R-32 have the largest value of 
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Figure 6. μJ-T versus pressure at 373.15 K for C2H6 obtained 
by four selected equations of state and experimental values(●). 

 
 

 
Figure 8. The Joule-Thamson coefficient for R-22 at 5 bar(●), 
R-23 at 10 bar (■), and R-32 at 5 bar (▲) and the calculated 
values predicted by the ELIR (—) and Virial (……). 

 
 

μJ-T in the entire temperature range. 
 

Conclusion 
In the present work, we have compared the validity 

of some different equations of state in predicting the 
Joule-Thomson coefficient. Our results for densities 
greater than the Boyle density show that the DSEOS 

 
Figure 7. Same as Figure 4 for propylene at 398.15 K. 

 
 
 

 
Figure 9. Joule-Thamson coefficient predicted by ELIR for R-
32, R-23, R-152a and R-134a at 0.5 MPa (points are the 
experimental data). 

 
 

gives better results in comparison with the LIR except at 
very high pressures. Such a result may be expected due 
to the fact that in the derivation of the DSEOS, the 
thermal pressure is treated in exact, while it is assumed 
to be constant in the LIR derivation [5]. Therefore, we 
may expect that all properties which are related to the 
temperature derivatives of pressure such as μJ-T given by 
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the DSEOS becomes more accurate than that given by 
the LIR. 

In the low density range, four equations of state, 
namely the Virial, ELIR, SM, ISM give more accurate 
results, therefore we recommend them for the 
calculation of μJ-T. Since the Joule-Thomson coefficient 
calculation is mainly important for refrigerants, which 
are mostly polar, the ELIR and Virial equations of state 
are appropriate for such a calculation. We have also 
examined these two equations for some refrigerants. 
The results show that the ELIR is in better agreement 
with the experimental data than the Virial, especially at 
high densities. Owing to the fact that the ELIR works up 
to the Boyle density (ρB is about twice of the critical 
density), at which the Virial equation diverges, such a 
result is expected. Therefore, we may conclude that by 
using the ELIR EOS we may obtain the most accurate 
value of μJ-T for refrigerants. We have also shown the 
predictions of the ELIR for R-134a, R-23, R-132, and 
R-152a, (Figure 9) which are in a good agreement with 
the experimental data. It is obvious from this figure that 
the value of μJ-T for R-152a and R-132 are the largest, in 
the entire range of temperature, which is in accordance 
with the ELIR prediction. Therefore, this EOS can be 
used to predict the thermodynamic state at which μJ-T 
has an appropriate value, without getting involved in 
experimental measurements. 
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