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Abstract 
We present a numerical study of a one-dimensional version of the Burridge-

Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. 
Our numerical analysis and computer simulations lead to a set of different results 
corresponding to different boundary conditions. It is shown that we can convert a 
chaotic behaviour system to a highly ordered and periodic behaviour by making 
only small time-dependent perturbations. If part of the system (i.e., both ends) is 
wiggled by imposing the periodic force, then it is possible to approach the nearly 
stable solution even in a system which would otherwise be chaotic. The solutions 
are periodic in both time and space and display effects that are strikingly similar 
to those seen experimentally and numerically by Starrett and Tagg [6], Johnson et 
al. [7] and others. This case is very important in controlling chaos, reducing the 
noise in a noisy system and dynamical lubrication. We observe that for an 
arbitrary disordered set of initial conditions, the system can spontaneously 
organize itself so that the stable nearly periodic solutions emerge in a proper time. 
The average of power input is reduced in a sensitive way and a regular, stable, 
noise-free behaviour appears. The nature of the boundary conditions on the ends 
of the chain has a strong effect on the nature of the solutions and requires the 
parameters to be tuned in a proper way. We also study the possibility of taming 
spatiotemporal chaos with disorder and investigate the effect of broken symmetry 
in the system.  

 
 
 
 

 
* E-mail: sarkarde@azzahra.ac.ir 

Introduction 
The general problem of controlling a chaotic system 

and approaching the ordered behaviour, while clearly 
very important from a theoretical and practical point of 
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Spectral analysis 
view, has, up to 1990, received almost no attention. 
First attempt on controlling chaos reported in 1990 by 

Ott, Grebogi, and York (OGY) [1]. In their method, 
using time delay coordinates [2], they first determined 
some of the unstable periodic orbits (UPOs) that are 
embedded in the chaotic system. Then they examined 
these orbits and chose one which yields improved 
system performance. Finally they applied small time-
dependent perturbations so as to stabilize this already 
existing orbit. 

The first experimental realisation of the OGY method 
was reported by Ditto et al.[3]. In their paper they 
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reported the control of chaos in a physical system, a 
parametrically driven magnetoelastic ribbon. We can 
address the new investigation of the (OGY) method in 
[4] and [5]. Recently, Starrett and Tagg have reported 
[6] the control of an otherwise chaotic pendulum into 
regular, periodic motion by adoptions of the OGY 
method. They have controlled a chaotic pendulum using 
small changes in damping according to feedback rules. 
Johnson et al. [7] have demonstrated with various 
methods the establishment of stable, spatially extended 
wave forms underlying a spatiotemporally chaotic state 
in open flow systems consisting of coupled oscillators. 
They have stablished different spatial wave patterns in 
an unstable system, both in experiment (through 
coupled diode resonator circuits) and numerical 
simulations of a model made up of coupled logistic 
maps. Also, Solé et al. [8] have used a similar method 
for chaos control to apply to small discrete neural 
networks. It was shown that control of unstable periodic 
orbits is reached for a wide set of parameters. In another 
methodology, a feedback control strategy using small 
perturbations is proposed to stabilize the trajectory 
around a desired chaotic phase [9,10]. Petrove et al. [11] 
applied a map based on feedback algorithms to stabilize 
periodic behaviour in the chaotic regime of an 
oscillatory chemical system: the Bleousov-Zhabotinsky 
chemical reaction. More recently, Lu et al. [12] 
proposed an algorithm for control of spatiotemporal 
chaos in an optical system based on the idea of 
stabilization of unstable patterns embedded in 
spatiotemporal chaotic states. They used small time- and 
space-dependent feedback to perturb a variable of the 
system. They demonstrated through numerical 
simulations the controlling chaos in an extended three-
level laser. 

We should mention here that no general methodology 
exists which is suitable for all chaotic systems. 
Nevertheless, the control of chaotic systems has 
generated interest in the scientific community. Since the 
pioneering work of OGY demonstrated that chaotic 
systems could be readily controlled, an enormous 
amount of work has demonstrated that the control of 
chaos provides a powerful tool to manipulate chaotic 
systems. Recent experiments have dramatically 
demonstrated successful tackling in circuit [13], lasers 
[14], and in an experiment by Petrov et al. in chemical 
reaction [11], and in another study they described how 
to control transition between the stable and unstable 
states using a non-linear control surface constructed 
from time series [15]. 

In this paper we follow the numerical study of a one-
dimensional version of the Burridge-Knopoff model 
[16] of N-site chain of spring-blocks with stick-slip 
dynamics. It is shown that we can convert a chaotic 
behaviour system to an ordered and periodic behaviour 

by making only small time-dependent perturbations. We 
derive the system by shaking two ends of the system 
and more to move it with constant velocity. In this case 
the boundary conditions is neither periodic nor free. So, 
by imposing the periodic force, it is possible to 
approach the stable solution. We find that there is a 
narrow window in parameter space in which the system 
settles down to a form of behaviour which is almost 
periodic in time and spatially ordered, independent of 
conditions defining the initial positions and velocities of 
the sliders. The nature of the boundary conditions on the 
ends of the chain has a strong effect on the nature of the 
solutions. We use the system initially with both free 
boundary conditions and periodic boundary conditions; 
note that in each case the parameters should be tuned to 
obtain the suitable pattern. 

 
Results and Discussion 

In our work we use a one-dimensional version of the 
spring-block model. The model studied here is the same 
as the previous ones [17] which is similar in some 
respects to previous earthquake models [18], except that 
we include the viscous force to the velocity-weakening 
frictional force. So, the equations of motion for this 
system, with free boundary conditions, are 
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Here, Vf is a reference velocity which characterizes 
the velocity-dependent of the friction, and γ describes 
the strength of the viscous force. The linear velocity-
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dependent term -γXj with frictional force allows 
dissipation of the kinetic energy that would otherwise 
accumulate as work is done by the pulling springs. The 
main reason for doing this was that we wished to study 
the system for constant pulling force as well as constant 
velocity and the viscous term prevents the velocity from 
increasing without limit. It had very little effect when 
the system was studied at constant pulling velocity. In 
another attempt, we entered an extra term into the 
Equations (1) and (2) for damping force proportional to 
the relative velocity of blocks. We found no crucial 
change in the behaviour of our system. 

We have solved Equations (1) and (2) for different 
values of parameters v, Fo, kc, kp, N. As the parameter 
space is multi-dimensional, we expect to have a rich 
phenomenology. The method of solution, using the 
Runge-Kutta method, is again numerical. We show that 
it is possible to transfer from a chaotic behaviour system 
to an ordered and periodic behaviour by making only 
small time-dependent perturbations. If part of the 
system (i.e., both ends) is wiggled by imposing the 
periodic force, then the system approaches to the stable 
solution by selecting the appropriate parameters. 

 
Control of Chaos 

Deterministic chaos is characterized by long-term 
unpredictability arising from an extreme sensitivity to 
initial conditions. Such behaviour may be undesirable, 
particularly for processes depending on temporal and 
spatial regulation (for example, see [6] and [7]). In our 
work, we address the numerical study of controlling 
chaos by using a different algorithm on the basis of 
step-by-step trial of different parameters. We see that 
our system can be organized in such a way that shows 
ultimately an ordered behaviour which comes from a 
chaotic regime. We drive the system by shaking both 
ends while simultaneously moving the upper plate with 
constant velocity. To do this, we solve the Equations (1) 
and (2) with different boundary conditions by adding 
the extra term for driving force: 

)cos()( KtAtFd += ω . (5) 

We have found that applying this small time-
dependent perturbation at any end (or both ends) of the 
system makes it easier to control the behaviour of the 
system. We tune the parameters, specially the frequency 
and amplitude of the periodic force, then we observe 
that the system displays periodic behaviour and 
disordering die out. In this case the boundary conditions 
are neither periodic nor free. When we are outside the 
parameter window as our previous work with free 
boundary conditions [17], we are able to obtain the 
nearly highly ordered regime and stable behaviour in 
force trace which has lowered the average value of 

power input to the system. This is a very crucial result 
in dynamical lubrication. Figure 1 represents the force 
trace before and after applying the perturbation for the 
value v=0.4 which is originally outside the parameter 
window, for free boundary conditions, in which regular 
and periodic patterns emerge. In Figures 2 and 3 the 
configuration of the chain and real part of Fourier 
transform, respectively, are shown for v=0.4. Also 
Figures 4 and 5 represent the force trace and the 
configuration of the chain for the value v=0.6 which is 
initially outside the parameter window, for periodic 
boundary conditions, where the periodic behaviour 
emerges. We observe the role of coupled frequency in 
breaking the noise and reducing the amplitude and 
average of elastic force effectively. Even inside the 
parameter window of the previous work [17], the role of 
coupled frequency is very crucial. Here, by introducing 
appropriate frequency we can reduce the noise and 
lower the average value of power input with highly 
ordered behaviour. In our simulation the average of the 
driven power has been reduced up to some 15 percent 
(see Fig. 6). The response of the system to small 
variations in parameter is very quick, and orderliness 
emerges in a very short time. Figure 6 shows effectively 
this role of external frequency, where the total elastic 
force plotted versus time for the system with free 
boundary conditions for two different values of ω=0 and 
ω=7.85 when v=0.6. We believe that changing from 
chaotic to ordered behaviour is very important from a 
theoretical and practical point of view; e.g., in 
dynamical lubrication and controlling chaos. 

 
Taming Spatiotemporal Chaos with Disorder 

Finally, it is worth mentioning the possibility of 
taming spatiotemporal chaos with disorder (see [17] or 
[19]). Braiman et al. [19] explored the use of disorder as 
a means to control spatiotemporal chaos in coupled 
arrays of forced, damped, non-linear oscillators. The 
introduction of slight, uncorrelated differences between 
the oscillators (for example, introducing a uniformly 
distribution of pendula lengths) induces ordered motion 
characterized by complex but regular spatiotemporal 
patterns. In our numerical experiments we have studied 
the behaviour of a disordered chain with a random array 
of threshold parameters Fo(j). It is very remarkable that 
it is possible to provide circumstances by tuning the 
parameters in which stable and ordered oscillatory 
solutions which are relatively noiseless emerge 
spontaneously when chaotic behaviour (for free 
boundary conditions) or solitary solutions (for periodic 
boundary conditions) are expected. We demonstrate 
here only the results of the calculation on the system 
with periodic boundary conditions. For the case of free
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Figure 1. Force trace P(t) plotted against time t before and after applying the perturbation 
for the parameters N=100, kc=40, kp=50, Fo=20, and v=0.4 which is outside the parameter 
window for the system with free boundary conditions. The role of imposed frequency in 
reducing the noise and controlling chaos is clearly observed. 
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Figure 2. The configuration of the chain after a long time when v=0.4, A=0.1, and ω=12. 
The other parameters are unchanged. The line is a guide to the eye and longitudinal 
displacements are plotted laterally for clarity of presentation. 

 
Figure 3. The real part of Fourier transform S(ω) of the force trace for v=0.4. Note the 
clear structure with sub-harmonics and following harmonics, correspond to the external 
characteristic frequency ω=12. The small amplitude of the noise is seen. Other prameters 
are Fo=20, kc=40, kp= 50. The inset graph shows the real part of Fourier transform S(ω) of 
the force trace before applying the perturbation, again for v=0.4 which is outside the 
parameter window for the system with free boundary condition. 
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Figure 4. Force trace P(t) plotted against time t before and after applying the perturbation 
for the parameters N=100, kc=40, kp=50, Fo=20 and v=0.6 which is outside the parameter 
window for the system with periodic boundary conditions. The role of imposed frequency 
in reducing the noise and controlling chaos is clearly observed. 

 
Figure 5. The configuration of the chain after a long time when v=0.6, A=0.1, ω=10, and 
K=2. The other parameters are unchanged. The line is a guide to the eye and longitudinal 
displacements are plotted laterally for clarity of presentation. 
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Figure 6. Force trace P(t) Plotted against time t before and after applying the perturbation 
for the parameters N=100, kc=40, kp=50, Fo=20, A=0.4, ω=7.85, and v=0.6 which is 
inside the parameter window for the system with free boundary conditions. The role of 
imposed frequency in reducing the average of elastic force is clearly observed. 

 
Figure 7. The force trace for a chain with a disordered array of threshold parameters Fo(j). 
The pulling velocity v is 2.75 and the chain stiffness kc is 100. The other parameters are 
N=100, and kp=50. The trace is quiet for long time intervals. 
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Figure 8. The force trace for a chain with a disordered array of threshold parameters Fo(j) 
for different set of parameter values. For the first graph the pulling velocity v is 1.1 and 
the chain stiffness kc is 84.8 and leaf spring constant is 106, which makes the 
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k

α . The inset graph shows the force trace for the parameters v=1.2, kc=96 and 

kp=120, again with the same vlue for α=0.8. The trace is quiet for long time intervals. 
boundary conditions refer to Figure 12, in Ref. [17]. We 
use a random distribution of Fo(j) so that the men value 
is 27.5 and the standard deviation is 8.8. Under normal 
conditions where v is equal to 0.6 and all other 
parameters are unchanged, P(t) is extremely broad and 
noisy at all times. But if we increase the value of v to 
2.75 and increase kc to 100, then we find another 
window where the force trace settles down to rather 
stable, quiet behaviour after a long time (Fig. 7). Also, 
in another attempt we find that as long as we fix the 
quotient 8.0==

p

c
k
kα  then there is a window for driving 

velocity in which the smooth shape of force trace and 
almost spatial ordered behaviour emerges. For example, 
Figure 8 shows this fact for the set of values of kc=84.8, 
kp=106 and v=1.1 and the set of kc=96, kp=120 and 
v=1.2. 

Conclusion 
In this report, we have shown the possibility of 

controlling chaos in a rather simple driven non-linear 
dynamical system: i.e., the spring-block model. It is 
shown that we can convert a chaotic behaviour system 
to a highly ordered and periodic behaviour applying 
only small time-dependent perturbations. The strategy 
for observing the quiet periodic behaviour is to force the 
ends of the system to oscillate with a suitable frequency 
as the system is driven from outside with constant 

velocity. Our method is based on the step-by-step trial 
of parameters. There are some other methods for 
controlling the behaviour of a system, some of which 
are based on time delay coordinates [1] and some of 
them on feedback mechanism [20,21], or other methods 
[22]. We believe that this process is very crucial from a 
theoretical and practical point of view; e.g., in 
dynamical lubrication and reducing the noise and 
controlling chaos. It seems that using this strategy we 
can apply small spatially localized or distributed 
perturbations to control chaotic behaviour of the system 
outside the nearly periodic regime. If this is explored 
and understood more, there are potentially great 
practical advantages, some of them, as mentioned, 
would be noise reduction and wear reduction. Some 
type of intervention in a chaotic system, as mentioned in 
[6], could have great utility in controlling industrial 
processes where changing the built-in parameters of the 
system would be expensive or impossible. 

The system has an interesting adoption and selection 
behaviour and seems under very different circumstances 
(for a given set of parameters) to organize itself in a 
short time and select an ordered mode of motion. As the 
system is a driven non-linear friction, there is hope to 
find at least phenomenologically, a better understanding 
of friction; moreover it is also tempting to explore the 
microscopic origin of non-linear friction in a driven 
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system. 
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