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Abstract

Krein [1] mentioned that for each PD equation we have two extreme operators,
one is the minimal in which solution and its derivatives on the boundary are zero,
the other one is the maximal operator in which there is no prescribed boundary
conditions. They claim it is not possible to have a related boundary value problem
for an arbitrarily chosen operator in between. They have only considered local
conditions and so their claim is justified, particularly, for partial differential
boundary value problems of odd orders. By considering more general (non-local
and global) conditions, we showed this is not necessarily true. With similarly
general conditions as considered in this paper one can define a boundary value
problem for PDEs of odd order and also problems with local conditions will be a
particular case of this general form. In this paper, a mixed problem for a parabolic
equation with general conditions is analytically investigated and, in a closed from,

its unique solution is shown.

1. Introduction
We consider u, =Au+ f(x,t), where t>0, Xe

D cR? and D is bounded, I or dD the boundary of D
is a Lyapunov curve. This problem with different types
of (mainly local) boundary conditions has been resolved
by many authors. But we consider the same problem
with a general type of conditions (non-local and global).

2. The Mixed Problem for the
Parabolic Equation
=Au(x,t)+ f(x,1),

xeDcR2,t>0

ou(x,t)
T (1
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Para-

Za(k)(xl)

X =7k (X))

w20

a<k’(x])u(x1,7k(x]),t)]

by k au(nat)
+Ial kzl[zi K( )(Xl’ 1) =y (m) (2)
S
+K >(x1,m)u(m,yk(m),t)]dm = f;(x,1),
tZO, j:1,2,X1€[al,b1]
u(x,0)=w(x) xeD. 3)

All the coefficients in (2), and the right hand side of
(1), (2) and (3) are real-valued continuous functions.
A e€C, the set of complex numbers, D is DuT. To
denote the real part of a complex quantity, we prefix it
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with Re. The interval [a;, b,] is the projection of D on
the Xx; axis. We also assume that the following
conditions are satisfied:

=D is a bounded domain in R* where each line
parallel to x,-axis cross it at most at two points. I', the
boundary of D is divided in two pieces, the equation of
the lower part is denoted by X, =y,(X;) and the upper

one X, =7,(%), Xela.bl, »(x)<ry(x) for
X € (ag,by).
Using the Laplace transformation [2] or the formal

scheme of Rasulov [3], the mixed problem could be
transformed to the following boundary value problem:

AT (X, )= A0 (x,A)=F(x,4), xeDcR? 4)
0= kzz_:[z_:a(k)(xl Xo=r (%)
ol >(xl>u<xl,7k(xl) 2]
+JbIZ[ZK(k)( Xi» 1) % m=r(m) ®)
k=1 s=1 US

+ K O, )T (o, 71 (), 1y = B (3, 4),
j 2132’ Xl € [alﬂbl]

where, F = —fN(x,/i) —w(X), the complex value A is the
Laplace transform parameter.

Theorem 1. (The essential conditions) If T' is a
Lyapunov curve, then the solution of (4) should satisfy
the following conditions:

1. y U (X—E&,2)
Eu(.f,/l): jru(x,/l)—ndx
~[Ux-<, A)au(m)d (6)
+fDF(x,/1)U(x—§,/1)dx, el
1 8u -
Tor~ = [ [A(&.2) - AT (U (x=£,2)|eos(n,x )dx
+jrB(x,§,z)cos(n,x2)dx (7
U (x—&,1)
- j DF(x,/I)a—dex, Eel
1 o0 _
798" [ [AGCE,2)+ AT (X, U (X =€, 2)|eos(n, X, )dx
+ jr B(x,&, A)cos(n, X, )dx
_J' F(X, /‘L)Md el

X,

®)

where n is the outer unit normal vector on I' and
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BT (x,A) OU (x=&,0)  dl(x,2) 0U (x—&,4)

AX,$,A)= X % oX, %,
©)
B(x,¢ ;L)_aﬁ(x,/i) 0U (x=&,4)  ali(x,4) U (x—£,4)
05— axz aX1 l aXl aXz
(10)

U is the generalized or fundamental solution of (4),
(see [2] for fundamental solution), which is as follows:

U ==L vl -)

where H (gl) is the Hankel function.

Proof. In this proof, 0 and U are to represent U (X, 1)
and U (x—¢&, 1), respectively. Using the second Green’s

formula, (6) is obtained. (7) and (8) are obtained
similarly. In the following we show how (7) is obtained.

1

J~ 0% oU dX+I

e
6u6U _lj u—dx—
D ox? ox

2
D oxy ox oX;

[ F(x,z)ﬁdx.
D 5X1

The first integral, after integrating by parts, yields

a—ua—ucos(n X )dx —

ol o™
dx
T ox,

D ox, ox?

o au
-[D OX? 8x J

Integrating by parts in such a way that the highest
derivative in each integral over D and T" is 2 and 1,

respectively, the second integral reduces to the
following:
9
j a—uﬂdx— a—uﬁcos(n X, )dx
D ox3 ox, T ox, o
- a—uﬁcos(n xl)dx+f cos(n X, )dx
T Ox, OX, Xy
R
D ox, OX3

Similarly, for the third term we obtain
—xij 0 —dx =—A[ U cos(n,x,)dx+ A[ A
r D axl

On substituting these three partial results in the first
formula, we obtain
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ou ou ou ou
———cos(n, X )dx+ [ ————cos(n, x,)dx
-[ F'ox, ox cos(n, %) .[r OX, 0% oS )
— a_uﬁcos(n,xl)dx—l—.[ a—uﬂcos(n,xz)dx
T'ox, ox, " ox 0x,

—AIFGU cos(n, xl)olx—jD F(X,A)ZX—de =
1

M ifseD
06,

j [AU AU Jdx = s
— =, iféel
2 04,

Now, from this result, for £ €I", we obtain

LA =I ou v -a—”ﬂ—ﬂ,uu cos(n, X )dx +
20& Tl ox, O OX, OX,

j 6_u8U au Y cos(n, X, )dx — I F(X,X)de
T'| ox, 0X, 6x2 ax1 0%

which verifies (7).

Theorem 2. (Regularization) Assuming 1° holds and T
is a Lyapunov curve, agﬁ)(xl) the coefficients of the

boundary conditions (5) belong to the Holder’s class
fj(xlaﬂ)

and also continuous in [a;, b;] and
differentiable and satisfies fNj (a,4)= fNj (b,,4)=0 for
A complex, and if the kernels of the integrals in (5) are

continuous or at most weakly singular, F(x, A1)

continuous, then with a suitable linear combination of
the conditions (7), (8) and using the boundary
conditions (5) we obtain a regularized condition.

Proof. It is enough to consider the following linear
combination

ou(& A ou(&A
(1)(51)%@:71(51 (l)(fl)—|u (:: )52=m4a)

ou(&,A (&N
(2)(&)%52_72(51 (2)(51: a(g; )52:}’2(51)

For details see [4].®

Theorem 3. (Fredholm) With the same conditions as in
Theorem 2 and if det(A(x,))#0 for each X, €[a;,b,]
then the boundary value problem (4)-(5) is Fredholm,
where

1) (2) ) (2)

ar o % op
0 (2) o (2)
G Gy Gp Ay
det(A(x,)) = det oV o oW (@)
- ap a o
a 2 1) 2)
- 0‘22) ay a5 —ay
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Proof. For details see [4].®

3. The Adjoint Problem
Multiplying the homogeneous part of (4),

T=AT-AT, by @eCP?MD)NnCH(D) and
integrating over D, using integration by parts, we obtain

PO ol ~ 0p
J.D lUpdx _Ir {{a—lgo u a—xj cos(v,X;)

ou _ _O0p
+|— U — [cos(v, X 11
{axzco %} ( 2)} (11)

+ [, 0[aAg - 2plix=0

where vis the outer unit normal on I'=0D .
From (11) we have the adjoint equation as

l*p=Ap—Lg (12)

To obtain the adjoint boundary conditions we force
the first term in (11) to be equal to zero. Hence, we
obtain boundary conditions similar to the following
formula in which no values of the derivatives of
unknown function ¢ on the boundary can appear in the

integral sign

op(xX,A
J‘P Z{Z (k)(xl q);xs )

k=1 s=1

Xy =y (%)
+ B9 ()P 1 5D )
b&
+[ 2 MO 00m)e0m .y (), A)d
Tk=1

j =12, X € [alﬂbl]’

where A (%), A (%), M (x,7) depend on the

coefficient in (5).

Theorem 4. Assuming all the conditions given for the
problem (1)-(3) are satisfied, we obtain some sufficient
conditions for which the problem (12)-(13) is the adjoint
of the problem (4)-(5).

Sketch of proof. The first condition is

1 1 2 2
al(z)_al(l)yl, 0‘1(2)_0’1(1)7§ £0

1 1 2 2

éz) §1)71' aéz) _a§1)7§

A(x) =

for each x, €[a,,b]. Then, under this condition, from

the two linearly independent boundary conditions (5) a
second kind Fredholm system is obtained in which the



Vol. 11, No. 3, Summer 2000

unknowns are k=1,2. Assuming this

%=y (%) 2
2
. .ou .
system is solvable enables us to obtain —|X e (x) 1D
axz 2=/ kWA
terms of U(X,y(X),4) and U'(X,y(X),4). On

substituting k=1,2, in the first term in

(11), integrating by parts, taking factor of all the
coefficients of U in the integral sign, the adjoint
boundary conditions (13) are obtained. For details see
[5].e

u
X 2|Xz =7k(x) °

Remark 1. Comparing problems (4)-(5) and (12)-(13)
the sufficient conditions obtained for the boundary
value problem (4)-(5) to be self-adjoint.

4. Existence and Uniqueness for the Solution of
the Boundary Value Problem

From some results in operator theory (see [1] and [6])
it is clear that if we show the uniqueness of the solution
for the adjoint problem it implies the existence of the
solution for the main problem. Hence, the uniqueness of
the solution of the main boundary value problem (BVP)
is obtained and then the uniqueness of the solution of
the problem is shown.

4.1. Uniqueness Criteria for the Main BVP
Assuming that the problem (4)-(5) has two different
solutions U, and U, then we have

U) =AU, -0,)=0.

As U;, U, satisfy the boundary conditions (2) then

AU, -

U =0, —U, satisfies the following homogeneous BVP:
AT-AT=0 4
@=0, j=12 (14

Now we show that under some certain sufficient
conditions the problem (6) has the only solution U'=0.

To this end, we multiply it by T and integrate over D,
we have

[ (AT —ANudx=0=

ol = ol =
— U cos(v, X;)+——U cos(v, X,) |dx 15
I{axl () + =~ cos( g} (15)
5 2 2
| O+ [dx—4] @ dx =0
Dl 0%y b
Then using (5) and (15) we obtain some certain
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sufficient conditions for the problem (14) to have the
only solution U'=0 in D and hence U; =U, . For details
see [5].
4.2. Uniqueness for the Adjoint Problem

Similar to 4.1 some sufficient conditions are obtained
for the adjoint problem to have unique solution.

5. Existence of the Solution for the Mixed
Problem

From the Green’s formula, we obtain the solution of
the BVP (4)-(5) as follows:

T2 Z,[ {au(xl)u(x £2)

=U(x, 1) M} cos(v, X, )dx
OXy
+jDF(x,,1)U(x—§,/1)dx, EeD
where
U =~ H k<)
ouU VI . —&j
= =22 HO(V|x - &) ]
OXj 4 ! (2 él}\/(xl_é)z"‘(xz_fz)z
j=12

From [2], we see that the asymptotical Hankel
functions are as follows: as |z| > o

i(z-2v-") 3
HO(z)= /ie 24 +O(|z| 2)
VA

So, as 4] > o we have

e 2 AxeNE
4 mx=E&iva

Hence, as long as A is on the ¢—

U=

io to C+ioco where

c>0, and we choose +/A such that to have positive
real part then U(x—&,4) >0 as |4| > . The same

happens for Y .
OXy,
0(x,A)—>0 as |i—>o,

Therefore, xeD for

Aelc—
By the inverse Laplace transform, we have

ioo, C +ioo] with positive real part for v .

_ 1 C+ioo e
u(x,t)-ﬁfﬁwe T(x,A)dA (16)

where [C—ioo,C+i] used to represent the straight

Laplace line.
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Clearly, for t =0 we have no difficulty but for t >0,
it may be the case that the integral part of the solution is
undefined. So, to treat this difficulty we continue as
follows:

As our main problem is parabolic, it is clear that its
spectral region only contains A inside a parabola with
vertex (h, 0), for some h e R, which is symmetric about
the real axis and opens to the left like S where S
denotes the curve which is symmetric to S about the
Laplace line and S is an infinite curve lying in a region

Rs of the complex A-plane and that it approaches the

straight lines
cosargd =0

asymptotically [3]. Hence, we can let the straight
Laplace line to be replaced with S .

From the methods discussed in [3] by Rasulov, the
operators of the mixed problem, i.e., of the main
equation and its boundary conditions, can also be
written under the integral sign expressed in (16).

Hence, by the Rasulov methods, the existence of the
solution of the mixed problem is resolved. The
uniqueness of u(x,t) is clearly obtained from (16) and

also the uniqueness of U(x,t).

Theorem 5. From Theorem 4.3 in [5], if w(x) e C*(D)
and w(x) and its first and second derivatives on the

boundary T" are zero, then the solution of the mixed
problem (1)-(3) exists as given in (16) and is also
unique.

Proof. On substituting (16) in (1), we obtain

M_ Au(x)t) —
ot
_ 1 C+io T -
= EL% e [AT(x, A)— Al (x, A)]dA
— L[ (x 2)dz
2 JC-lo
=2 Jocie e f(x,4)d4 +ch—ioo ety (x)dA

C+ioo

— F G+ w0 [ eRda, with 2=c+ic
2

c—ioo
f &% eiag

=f(x,)+y—| e'dde
+y——[",

= f (X, +w(x)est) = f(x,t), t>0.
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So, (16) satisfies (1).
On substituting (16) in the boundary conditions (2),
we obtain

1 C+ioo
lu=—o
J 2711.[

1 C+ioo
2
= fj(Xlst)a

So, the conditions (2) are also satisfied by (16).
For the initial condition, it is enough to use the
conditions stated for (X) in this theorem and

asymptotically apply on U(x,4) in the same lines of

el TdA

C—ioo

= ™ T, (x, A)dA, by (5),

c—io

t>0.

Rasulov [3] to see that the initial condition (3) is also
satisfied by (16).e

Conclusion

Using the property of the fundamental solution of the
equation (4), and the asymptotic property of U and the
method of Rasulov, we showed the existence and
uniqueness of the solution of a mixed problem for
parabolic equation. The essential conditions were used,
after regularization, to show that the BVP (4)-(5) is
Fredholm. The conditions (2) are linear and so general
that the limitations mentioned in the abstract are
resolved. It must be emphasized that with this method,
the solution of the mixed problem is obtained in a
closed form and hence it is useful for any analytical
investigation such as continuity of the solution to the
related data. We think the solution in the form of (16)
can also be useful for obtaining good approximations.
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