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Abstract 
Krein [1] mentioned that for each PD equation we have two extreme operators, 

one is the minimal in which solution and its derivatives on the boundary are zero, 
the other one is the maximal operator in which there is no prescribed boundary 
conditions. They claim it is not possible to have a related boundary value problem 
for an arbitrarily chosen operator in between. They have only considered local 
conditions and so their claim is justified, particularly, for partial differential 
boundary value problems of odd orders. By considering more general (non-local 
and global) conditions, we showed this is not necessarily true. With similarly 
general conditions as considered in this paper one can define a boundary value 
problem for PDEs of odd order and also problems with local conditions will be a 
particular case of this general form. In this paper, a mixed problem for a parabolic 
equation with general conditions is analytically investigated and, in a closed from, 
its unique solution is shown. 
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1. Introduction 
We consider , where , ),( txfuut +Δ= 0>t ∈x  

2R⊂D  and D is bounded, Γ or  the boundary of D 
is a Lyapunov curve. This problem with different types 
of (mainly local) boundary conditions has been resolved 
by many authors. But we consider the same problem 
with a general type of conditions (non-local and global). 

D∂

 
2. The Mixed Problem for the 

Parabolic Equation 

0,),,(),(),( 2 >⊂∈+Δ=
∂

∂ tDxtxftxu
t

txu R  (1) 

 
Keywords: Non-local conditions; Global conditions; Para-
bolic equations; AMS classification: 35A05 
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Dxxxu ∈= )()0,( ψ . (3) 

All the coefficients in (2), and the right hand side of 
(1), (2) and (3) are real-valued continuous functions. 

C∈λ , the set of complex numbers, D  is Γ∪D . To 
denote the real part of a complex quantity, we prefix it 
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with Re. The interval [a1, b1] is the projection of D  on 
the x1 axis. We also assume that the following 
conditions are satisfied: 

D=:10  is a bounded domain in R2 where each line 
parallel to x2-axis cross it at most at two points. Γ, the 
boundary of D is divided in two pieces, the equation of 
the lower part is denoted by  and the upper 
one , ,  for 

. 

)( 112 xx γ=
)( 122 xx γ= [ ]111 ,bax ∈ )()( 1211 xx γγ <

( )111 ,bax ∈
Using the Laplace transformation [2] or the formal 

scheme of Rasulov [3], the mixed problem could be 
transformed to the following boundary value problem: 

2),,(),(~),(~ R⊂∈=−Δ DxxFxuxu λλλλ  (4) 
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where, , the complex value λ is the 
Laplace transform parameter. 

)(),(
~

xxfF ψλ −−=

Theorem 1. (The essential conditions) If Γ is a 
Lyapunov curve, then the solution of (4) should satisfy 
the following conditions: 
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where n is the outer unit normal vector on Γ and 
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U is the generalized or fundamental solution of (4), 
(see [2] for fundamental solution), which is as follows: 

( )ξλ −−= xiHiU )1(
04

 

where  is the Hankel function. )1(
0H

 

Proof. In this proof, u~  and U are to represent ),(~ λxu  
and , respectively. Using the second Green’s 
formula, (6) is obtained. (7) and (8) are obtained 
similarly. In the following we show how (7) is obtained. 

),( λξ−xU
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The first integral, after integrating by parts, yields 
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Integrating by parts in such a way that the highest 
derivative in each integral over D and Γ is 2 and 1, 
respectively, the second integral reduces to the 
following: 
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Similarly, for the third term we obtain 
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On substituting these three partial results in the first 
formula, we obtain 
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Now, from this result, for Γ∈ξ , we obtain 
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Theorem 2. (Regularization) Assuming 10 holds and Γ 
is a Lyapunov curve,  the coefficients of the 
boundary conditions (5) belong to the Holder’s class 
and also continuous in [a

)( 1
)( xs

jkα
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differentiable and satisfies 0),(
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11 == λλ bfaf jj  for 

λ complex, and if the kernels of the integrals in (5) are 
continuous or at most weakly singular,  
continuous, then with a suitable linear combination of 
the conditions (7), (8) and using the boundary 
conditions (5) we obtain a regularized condition. 
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For details see [4].● 
 

Theorem 3. (Fredholm) With the same conditions as in 
Theorem 2 and if  for each  
then the boundary value problem (4)-(5) is Fredholm, 
where 

0))(det( 1 ≠xA ],[ 111 bax ∈

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

=

)2(
21

)1(
21

)2(
22

)1(
22

)2(
11

)1(
11

)2(
12

)1(
12

)2(
22

)1(
22

)2(
21

)1(
21

)2(
12

)1(
12

)2(
11

)1(
11

1 det))(det(

αααα
αααα
αααα
αααα

xA  

Proof. For details see [4].● 
 

3. The Adjoint Problem 
Multiplying the homogeneous part of (4), 

uuul ~~~ λ−Δ= , by )()( )1()2( DCDC ∩∈ϕ  and 
integrating over D, using integration by parts, we obtain 
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where ν is the outer unit normal on . D∂=Γ
From (11) we have the adjoint equation as 

ϕλϕϕ −Δ≡*l  (12) 

To obtain the adjoint boundary conditions we force 
the first term in (11) to be equal to zero. Hence, we 
obtain boundary conditions similar to the following 
formula in which no values of the derivatives of 
unknown function ϕ  on the boundary can appear in the 
integral sign 
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Theorem 4. Assuming all the conditions given for the 
problem (1)-(3) are satisfied, we obtain some sufficient 
conditions for which the problem (12)-(13) is the adjoint 
of the problem (4)-(5). 

 
Sketch of proof. The first condition is 

0)(
2

)2(
21

)2(
221

)1(
21

)1(
22

2
)2(

11
)2(

121
)1(

11
)1(

12
1 ≠

′−′−

′−′−
=Δ

γααγαα
γααγααx  

for each [ ]111 ,bax ∈ . Then, under this condition, from 
the two linearly independent boundary conditions (5) a 
second kind Fredholm system is obtained in which the 
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unknowns are )(
2
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coefficients of u~  in the integral sign, the adjoint 
boundary conditions (13) are obtained. For details see 
[5].● 

 
Remark 1. Comparing problems (4)-(5) and (12)-(13) 
the sufficient conditions obtained for the boundary 
value problem (4)-(5) to be self-adjoint. 

 
4. Existence and Uniqueness for the Solution of 

the Boundary Value Problem 
From some results in operator theory (see [1] and [6]) 

it is clear that if we show the uniqueness of the solution 
for the adjoint problem it implies the existence of the 
solution for the main problem. Hence, the uniqueness of 
the solution of the main boundary value problem (BVP) 
is obtained and then the uniqueness of the solution of 
the problem is shown. 

 
4.1. Uniqueness Criteria for the Main BVP 
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Then using (5) and (15) we obtain some certain 

sufficient conditions for the problem (14) to have the 
only solution 0~ ≡u  in D and hence 21

~~ uu ≡ . For details 
see [5]. 
4.2. Uniqueness for the Adjoint Problem 

Similar to 4.1 some sufficient conditions are obtained 
for the adjoint problem to have unique solution. 

 
5. Existence of the Solution for the Mixed 

Problem 
From the Green’s formula, we obtain the solution of 

the BVP (4)-(5) as follows: 
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From [2], we see that the asymptotical Hankel 
functions are as follows: as ∞→z  
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where ],[ ∞+∞− icic  used to represent the straight 
Laplace line. 
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Clearly, for  we have no difficulty but for , 
it may be the case that the integral part of the solution is 
undefined. So, to treat this difficulty we continue as 
follows: 

0=t 0>t

As our main problem is parabolic, it is clear that its 
spectral region only contains λ inside a parabola with 
vertex (h, 0), for some R∈h , which is symmetric about 
the real axis and opens to the left like S  where S  
denotes the curve which is symmetric to S about the 
Laplace line and S is an infinite curve lying in a region 

 of the complex λ-plane and that it approaches the 
straight lines 

δR

δλ =argcos  

asymptotically [3]. Hence, we can let the straight 
Laplace line to be replaced with S . 

From the methods discussed in [3] by Rasulov, the 
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equation and its boundary conditions, can also be 
written under the integral sign expressed in (16). 
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So, (16) satisfies (1). 
On substituting (16) in the boundary conditions (2),  
we obtain 
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So, the conditions (2) are also satisfied by (16). 
For the initial condition, it is enough to use the 

conditions stated for )(xψ  in this theorem and 
asymptotically apply on ),(~ λxu  in the same lines of 
Rasulov [3] to see that the initial condition (3) is also 
satisfied by (16).● 

 
Conclusion 

Using the property of the fundamental solution of the 
equation (4), and the asymptotic property of u  and the 
method of Rasulov, we showed the existence and 
uniqueness of the solution of a mixed problem for 
parabolic equation. The essential conditions were used, 
after regularization, to show that the BVP (4)-(5) is 
Fredholm. The conditions (2) are linear and so general 
that the limitations mentioned in the abstract are 
resolved. It must be emphasized that with this method, 
the solution of the mixed problem is obtained in a 
closed form and hence it is useful for any analytical 
investigation such as continuity of the solution to the 
related data. We think the solution in the form of (16) 
can also be useful for obtaining good approximations. 
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