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Abstract 
Applying the variational method, the spinless reduced Bethe-Salpeter (RBS) 

equation is solved for the mesonic systems, and the mass spectra are obtained. The 
method is applied to the Hamiltonian with the Gaussian and hydrogen-type trial 
wave functions, and different potential models are examined. The results for the 
different potentials are in challenge in light mesons, while they are consistent in 
heavy mass region. In spite of this, the consistency for all mesons occurs in 
Power-law (Rosner, …), Logarithmic (Quigg and Rosner), )4.0( GevK

MS
=Λ  and 

)5.0( GevG MS =Λ  potentials and the theoretical results are in general in 
agreement with the experimental data. The inconsistency in light mesons has the 
origin in the nonrelativistic treatment of the potential derivations and the reduced 
form of the Bethe-Salpeter equation. The consistent and non-consistent interquark 
potentials show a distinct behaviour at both short and long distances. 
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Introduction 
The most important task in QCD and hadron physics 

is to understand quark confinement. Due to 
antiscreening effect in QCD vacuum, which is the 
consequence of the color magnetization of the medium 
caused by the gluons, the interaction of the quarks 
becomes weaker at the distance r → 0 (asymptotic 
freedom). On the other hand, the color interaction 
becomes stronger for large r (infrared slavery). As a 
result, perturbation techniques in QCD are not 
applicable in bound state systems and low-energy 
 

 
Keywords: Interquark potential, Quark confinement 
regions. All these may be understood by the non-abelian 
nature of QCD theory. 

Lattice QCD calculations show that the interquark 
potential for a heavy quarkonium in the static limit is 
well described by a linear confining potential, plus a 
short-ranged Coulomb potential [1]. The results seem to 
be consistent with the picture when the linear 
confinement potential is transformed as a Lorentz 
scalar, while the Coulomb potential stemmed from one 
gluon exchange, has feature of the Lorentz vector. 
Indeed a Lorentz vector potential in Dirac equation can 
not confine the particles and the confining term of the 
QCD potential must be a scalar which is the 
consequence of multigluon exchange. Although Lattice 
QCD calculations have had a resounding success in the 
bound states, but the method has some technical 
limitations [2,3]. In quantum field theory, a basic 
description for the bound states is the Bethe-Salpeter 
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equation [4]. However, this equation in general is not 
soluble without important approximations and 
simplifications. Following the development in various 
mathematical formalisms for the relativistic treatment of 
scattering problems for two or many body systems by 
Dyson, Schwinger, Tomonaga and Feynman [5], 
Salpeter and Bethe extended the Feynman’s formalism 
to bound state problems involving several particles. On 
the basis of Feynman’s work, by a suitable choice of 
interpretation of the solutions of Dirac’s equation, Bethe 
and Salpeter obtained 
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which is a relativistic integral-differential equation for 
two particles moving from points 1 and 2 to 3 and 4 
respectively in four dimensional space under the 
influence of interaction G(3,4;1,2) [6]. At the same year 
but before the Bethe and Salpeter’s presentation, Gel-
Mann and Low [7] had derived a similar integral 
equation on the basis of quantum field theory. 
G(3,4;1,2) includes all powers of the coupling constant 
of the interaction and despite each term of the expansion 
can, in principle, be calculated, but no closed expression 
for G(3,4;1,2) does exist. As a result expression (1) is 
not immediately applicable for bound state problem 
when the coupling constant is large. However, a further 
reduction is possible and a tractable approximate 
reduced form can be obtained. Assuming an 
instantaneous interaction [8], the RBS equation for two 
heavy relativistic particles is found to be 
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where )( pϕ  is the relative wave function of two 
particles in momentum space and the Fourier transform 
of ),( kpG′  is instantaneous potential in coordinate 

space, and the Casimir operator )( pi
±Λ  is given by 
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It is the aim of this paper to apply the spinless 
reduced Bethe-Salpeter equation to quark-antiquark 
bound states. 

 
Potential Models 

The RBS equation is a standard eigenvalue equation 
with solutions algebraically and numerically simpler 
than of the full equation. This equation may be cast into 
spin-dependent and spin-independent terms [9]. It is 
simply given by 

)(2222 rUmpmpH ba ++++=  (6) 

where  and 22 −∇=p
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in which VSD (r) and V (r) are spin-dependent and spin-
independent potentials. In Equation (6), r and p are the 
relative coordinate and its conjugate momentum of two 
particles respectively, where ma and mb represent the 
constituent quark masses. 

Due to the complicated nature of interaction 
mechanism in QCD, different methods have been 
employed in solving the problem of bound state 
systems. One of these approaches is the potential 
models which have had a remarkable success in the 
spin-independent domain in the case of heavy 
quarkonium systems. As we mentioned earlier the full 
version of the relativistic Bethe-Salpeter equation is not 
applicable and the kernel involved, is in general 
unknown, while the RBS equation (6) has the desired 
functional from with an interaction potential which may 
be deduced by nonrelativistic calculations. However, no 
one has yet completely succeeded in deriving the 
effective form of the interquark interactions from QCD 
even in the nonrelativistic limit. To fill this gap one may 
postulate that the gross features of the interaction may 
be simulated by a confining potential which assumes 
that the quarks in a bound core move independently and 
satisfies the asymptotic freedom. This is supported by 
the lattice QCD calculations which reveal the existence 
of a linear term in r for confinement. On the other hand 
one gluon exchange interaction gives rise a Coulomb-
type contribution. Hence the simplest QCD motivated 
potential may be represented by a linear combination of 
Coulomb-type interaction and a linear confinement term 
[10], 

r
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which is known as Cornell potential and the coefficients 
given by Eichten and Hagiwara are 
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47.0,19.0 2 == cGevK α  Hagiwara,…(Cornell2)   (10) 
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These potentials are phenomenological potentials in 
correspondence with the empirical evidences. 
Constituent masses for these potentials are given in 
Table 1. On the other hand on the basis of QCD 
concepts Buchmüller and Tye found a family of 
potentials with two free parameters [14]. Exploiting 
these results, Igi and Ono proposed the following 
potentials [15]; 

Different models have been presented by different 
authors. In this work we are going to deal with some of 
them. 

 
Power-law potential of Martin (Power-law 1) [11]; 

)197.01(
,)1)(898.6(064.8)(

1

1.0

fmGev
GevrGevGevrV

=

×+−=
−

 (11) 

arrVrV AF += )()(  (14)  
Power-law potential of Rosner et al. (Power-law 2) 
[12]; argrrdrVrV AF +−+= )exp()()(  (15) 
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Where the asymptotic freedom potential VAF (r) is given 
by 
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Logarithmic potential of Quigg and Rosner [13]; 
([ ]GevrGevGevrV 1ln)733.0(6635.0)( ×+−= )  (13) 

 
 
 

Table 1. Constituent masses and parameters used in different potential models. In all cases ms=199 
Mev and md=9.9 Mev 

Potential MSΛ (Gev) a (Gev 2 ) g (Gev) d (Gev 2 ) mc (Gev) mb (Gev) 

Cornell 1 - - - - 1.84 5.18 

Cornell 2 - - - - 1.32 4.75 

Power-law 1 - - - - 1.80 5.174 

Power-law 2 - - -  1.56 4.96 

Logarithmic - - - - 1.50 4.906 

Potential I: b=23.3 0.31 0.1585 - - 1.494 4.874 

Potential J: b=20 0.1 0.1733 0.3076 0.4344 1.134 4.563 

 0.2 0.1587 0.3436 0.2550 1.322 4.731 

 0.3 0.1443 0.3280 0.0495 1.471 4.868 

 0.4 0.1387 2.903 0.582 1.515 4.910 

 0.5 0.1391 2.955 1.476 1.514 4.911 

Potential K: b=5 0.1 0.1762 0.2753 0.4720 1.120 4.551 

 0.2 0.1734 0.3479 0.5362 1.267 4.684 

 0.3 0.1615 0.4482 0.6020 1.416 4.815 

 0.4 0.1389 0.6219 0.5632 1.604 4.986 

 0.5 0.1137 1.0029 0.7368 1.748 4.118 

Potential G: b=2 0.1 0.1755 0.2849 0.421 1.125 4.553 

 0.2 0.1668 0.2948 0.352 1.264 4.679 

 0.3 0.0956 0.0993 0.1729 1.450 4.849 

 0.4 0.1375 0.2430 0.1311 1.535 4.924 

 0.5 0.1425 0.4275 0.1811 1.583 4.972 
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Figure 1. The consistent confining potentials. The radial distance is in the unit of 1/Gev, and the 
potential energy is in the unit of Gev. 

 
 
 
 

 
Figure 2. The non-consistent potentials. The radial distance is in the unit of 1/Gev, and the potential 
energy is in the unit of Gev. 
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with respect to the variational parameter λ, that is Here γE = 0.5772 is the Euler’s constant and a, b  and 

MSΛ  are the free parameters and 
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)(λE  represents the mass of the system. 
The Fourier transform of the trial wave functions (19) 

and (20) in momentum space which are needed in the 
matrix elements evaluations, are respectively given by The potential (14) is called the potential I and the 

potential (15) with b = 20 is called the potential J, while 
the one with b = 5 is called the potential K. The 
potential (15) with f (r) replaced by 
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is known as the potential G. 

Different parameters calculated by Igi and Ono are 
represented in Table 1. The extent of asymptotic 
freedom for the relevant potentials displayed in Figure 1 
and Figure 2 may be compared. 

 
Results and Discussion 

The results of variational calculations with two 
different trial wave functions are tabulated in Table 2 
and Table 3 for a wide range of the mesonic systems. 
The mass spectra are obtained employing the spinless 
Bethe-Salpeter equation and they are compared with the 
experimental spin-averaged energies [17]. The best fit 
for the potentials J, K, and G occur at GevMS 3.0=Λ , 

GevMS 4.0=Λ , and GevMS 5.0=Λ  respectively. 

 
Calculation Scheme 

One of the powerful techniques in solving 
nonrelativistic bound state problems, is the variational 
method. The extensive application of the method rests 
on the existence of a definite lower bound to the energy 
eigenvalue spectrum. 

The RBS equation does not possess the negative 
energy solutions, hence the variational method can be 
applied. The solutions are variationally stable. We apply 
the method to the Hamiltonian (6) with the Gaussian 
and hydrogen-type wave function [16] for a variety of 
the mesonic systems 
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The results obtained by the Gaussian wave function 
are in general slightly higher than those obtained by the 
hydrogen-type wave function. The mass spectra in light 
and heavy-light sectors are in general inconsistent with 
the experimental findings. However, the consistency for 
all of the cases in Power-law (Rosner,…), =Λ MSK(  

, Logarithmic (Quigg and Rosner) and )4.0 Gev

)5.0( GevG MS =Λ  potentials is remarkable. The 
agreement between variational and experimental results 
in these cases is encouraging and it can be deduced that 
the light quarkonium systems are much more sensitive 
to the form of the interaction and the nature of 
confinement. However, lower discrepancies between 
our computational results and the experimental data in 
light sectors in the case of hydrogen-type wave function 
emphasizes on the importance of the trial function. 

Here μ and ν are the variational parameters and the 
subscripts G and H denote the Gaussian and hydrogen-
type wave functions. 

The Gaussian wave function emphasizes on 
confinement of the quarks and has a stronger fall off at 
large r, while the other trial wave function is more 
effective in short range due to Coulomb attraction. 
Consequently we try each trial function separately. The 
stationary value of the expectation value of the RBS 
Hamiltonian under the variation of the variational 
parameters determines the ground state energy 
spectrum. This can be achieved by minimizing 

)(λ
ψψ
ψψ EHH ==  (21) 

A comparison between the consistent potentials 
displayed in Figure 1 and those shown in Figure 2 
reveals an important characteristics of the confining 
potentials. These two groups of potentials behave 
completely different. We observe generally in the 
consistent potentials the tendency that the potentials 
which have higher (lower) values in the short range, 
have also higher (lower) values in the long range, while 
the situation is reversed in the second group of the
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Table 2. The meson spectra predicted by a variety of the potentials for hydrogen-type trial wave function. The results are in Gev 
and ν is the variational parameter 

Model   Meson   
  dd  ds  ss  dc  sc  cc  db  sb  cb  bb  
Cornell 1 m 1.136 1.193 1.247 2.582 2.626 3.898 5.845 5.884 7.077 10.152 
 ν 2.073 1.995 1.925 1.605 1.549 1.033 1.310 1.260 0.804 0.552 
Cornell 2 m 1.183 1.240 1.294 2.143 2.189 3.024 5.472 5.512 6.283 9.424 
 ν 2.075 2.001 1.933 1.625 1.570 1.229 1.360 1.309 0.951 0.629 
Power-law 1 m 0.360 0.419 0.476 1.779 1.823 3.074 5.078 5.118 6.307 9.480 
 ν 2.215 2.106 2.012 1.561 1.504 1.105 1.353 1.305 0.915 0.714 
Power-law 2 m 0.748 0.810 0.869 1.951 1.997 3.031 5.264 5.303 6.264 9.410 
 ν 2.415 2.250 2.118 1.602 1.532 1.115 1.317 1.264 0.888 0.658 
Logarithmic m 0.854 0.914 0.972 1.997 2.043 3.031 5.314 5.354 6.278 9.446 
 ν 2.314 2.183 2.070 1.660 1.593 1.167 1.360 1.308 0.942 0.705 

Potential I: MSΛ = 0.31 m 0.950 1.006 1.061 2.071 2.117 3.100 5.361 5.401 6.321 9.460 

 ν 2.099 2.018 1.944 1.592 1.535 1.174 1.354 1.305 0.944 0.962 

Potential J: MSΛ = 0.3 m 0.934 0.992 1.049 2.043 2.090 3.057 5.352 5.392 6.297 9.453 

 ν 2.181 2.088 2.006 1.630 1.571 1.195 1.378 1.325 0.955 0.702 

Potential K: MSΛ = 0.4 m 0.703 0.761 0.818 1.936 1.982 3.065 5.236 5.277 6.298 9.459 

 ν 2.167 2.079 1.996 1.605 1.546 1.161 1.376 1.324 0.947 0.711 

Potential G: MSΛ = 0.5 m 0.740 0.798 0.854 1.952 1.998 3.061 5.258 5.298 6.295 9.449 

 ν 2.163 2.075 1.992 1.603 1.544 1.152 1.368 1.316 0.927 0.678 
Exp m 0.667 0.794 1.004 1.973 2.075 3.067 5.313 5.410 – 9.448 

 
 

Table 3. The meson spectra predicted by a variety of the potentials for Gaussian trial wave function. The results are in Gev and μ is 
the variational parameter 

Model   Meson   
  dd  ds  ss  dc  sc  cc  db  sb  cb  bb  
Cornell 1 m 1.174 1.227 1.279 2.620 2.661 3.934 5.896 5.933 7.130 10.228 
 μ 0.351 0.364 0.377 0.478 0.495 0.709 0.544 0.565 0.900 1.313 
Cornell 2 m 1.217 1.270 1.322 2.174 2.217 3.048 5.516 5.553 6.321 9.480 
 μ 0.352 0.365 0.377 0.451 0.466 0.601 0.530 0.550 0.767 1.166 
Power-law 1 m 0.410 0.465 0.517 1.815 1.855 3.083 5.119 5.154 6.315 9.478 
 μ 0.341 0.359 0.375 0.493 0.510 0.707 0.567 0.587 0.859 1.117 
Power-law 2 m 0.806 0.864 0.920 2.000 2.042 3.056 5.318 5.353 6.289 9.425 
 μ 0.308 0.330 0.351 0.475 0.495 0.692 0.577 0.600 0.874 1.204 
Logarithmic m 0.907 0.964 1.018 2.038 2.080 3.049 5.360 5.396 6.295 9.451 
 μ 0.325 0.344 0.362 0.472 0.490 0.663 0.565 0.586 0.829 1.129 

Potential I: MSΛ = 0.3 m 0.988 1.041 1.093 2.102 2.144 3.111 5.399 5.435 6.334 9.463 

 μ 0.352 0.366 0.380 0.473 0.490 0.654 0.556 0.577 0.821 1.142 

Potential J: MSΛ = 0.3 m 0.976 1.031 1.084 2.079 2.122 3.075 5.395 5.432 6.317 9.468 

 μ 0.338 0.353 0.367 0.460 0.478 0.641 0.544 0.566 0.805 1.114 

Potential K: MSΛ = 0.4 m 0.746 0.801 0.853 1.971 2.013 3.077 5.277 5.313 6.312 9.470 

 μ 0.340 0.355 0.370 0.473 0.491 0.667 0.554 0.573 0.815 1.093 

Potential G: MSΛ = 0.5 m 0.782 0.837 0.889 1.989 2.031 3.079 5.302 5.339 6.319 9.471 

 μ 0.340 0.355 0.370 0.468 0.485 0.662 0.547 0.567 0.825 1.138 
Exp m 0.667 0.794 1.004 1.973 2.075 3.067 5.313 5.410 – 9.448 
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potentials, that is the potentials with higher values in the 
short range have lower values in the long range and vice 
versa. In comparison with the experimental data the 
Cornell potentials and the power-law potential of Martin 
with two different behaviour in the short range 
asymptotic region and long range confining region 
produce higher and lower mass spectra respectively. 

Our calculation in real systems exhibit the validity of 
the RBS equation, also known as the nopair equation, 
when the criteria outlined by M. G. Olsson, S. Veseli 
and K. Williams are satisfied [18]. They have discussed 
on the conditions under which the difference in the 
results obtained by the RBS and the full Salpeter 
equations is nonsignificant. The critical factors are 
found to be the constituent mass, the physical state and 
the nature of the interaction. Hence, the inconsistency in 
light sectors for most of the potentials has root in the 
nonrelativistic treatment of the potential derivations as 
well as the other factors. 
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