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Abstract 
In this paper we study the structure and the commutativity of a ring R, in which 

for each x,y ∈ R, there exist two integers  depending on x,y such that 
[x,y]

1, >≥ nk o

k equals x n or y n. 
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Throughout, R will represent an associative ring with 
center C, and N the set of all nilpotent elements of R. 

A ring R is said to be periodic if for every Rx∈ , 
 for some distinct positive integers m, n. Any 

 is called a potent element if  for some 
integer n > 1. For ,  is 
the usual commutator, and for every positive integer 
k > 1, we define inductively . Also 
we define . 

nm xx =
Rx∈ nxx =

Ryx ∈, yxxyyxyx −== ],[],[ 1

],],[[],[ 1 yyxyx kk −=
xyx =o],[

A ring R is called left (resp. right) s-unital [5] if for 
each  we have  (resp. ). A ring R is 
called s-unital if for each , . If R is an 
s-unital ring, then for any finite subset F of R there 
exists an element e in R such that ex = xe = x for all x in 
F (see [5]). 

Rx∈ Rxx∈ xRx∈
Rx∈ xRRxx ∩∈

By a remarkable result of Jacobson [3], we know that 
if for each   for some integer n > 1, then R 
is commutative. Here we study the commutativity 
behavior of a ring R, which satisfies the following 
property: 

Rx∈ nxx =

(p) for each , there exist two integers , 

 
Ryx ∈, o≥k
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1>n  depending on x, y such that  equals  or 

. 

kyx ],[ nx

ny
o=k RxNote that if R satisfies (p), with  for all ∈  

(and y = x), then by the above mentioned Jacobson’s 
theorem, R must be commutative. However the ring 
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3], xyx == o Ryx ∈,

Rx

 

is a non commutative ring satisfying (p), in fact in this 
ring [  for all . 

In preparation for the proof of our main theorems, 
first we state and prove the following lemmas. 

 
Lemma 1. Let R be a ring which satisfies (p), then each 
element of R is either a potent or a nilpotent element. In 
particular R is a periodic ring. 

 
Proof. Suppose that ∈ , and  for all integers 

, then o  for some  and k . 

nxx ≠
1>n m

k xxx == ],[ 1≥m 1≥

Ree ∈=2 Rx

 
Lemma 2. Let R be a ring which satisfies (p). Then 
every idempotent element of R is in the center of R. 

xea exe−Proof. Let , ∈ , and put =
o≥k akea =],[

1>n naa = nea = o=2a

. It is 
easy to see that for all , . Therefore by 
(p), for some ;  or . Since , 
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and  implies that , hence in any case 
, i.e., 

eea n == o=a
o=a exexe = . Similarly . This shows 

that e is a central element. 
exeex =

 
Lemma 3. Let R be a ring which satisfies (p), then the 
commutator ideal of R is nil. 

 
Proof. Since R is a periodic ring, hence for each Rx∈  
there exists an integer m ≥ 1 such that . 
Therefore, by Lemma (2) and [2] the commutator ideal 
of R is nil. 

mm xx =2

 
Lemma 4. If the commutator ideal of R is nil, then N is 
an ideal. 

 
Proof. See [1]. 

 
Lemma 5. If N is a commutative ideal, then . CN ⊆2

 
Proof. See [5]. 

Now we are ready to state and prove our fundamental 
theorem. 

 
Theorem 1. Let R be a semiprime ring with the 
following property: 

(i) R satisfies (p). 
(ii) N is commutative (i.e. for all , Nba ∈, baab = ). 
Then R is a commutative ring. 
 

Proof. By the above Lemmas, R is a periodic ring and N 
is an ideal with . We claim that  for 
all , . Since 

CN ⊆2 o=2],[ yx
Nx∈ Ry∈ Nyx ∈],[ , therefore 

[ ] [ ] [ ]
[ ] [ ]
[ ] [ ]
.

,,
,,

,,, 2

o=
−=
−=
−=

xyyxxyyx
yyxxxyyx

yxyxxyyxyx

 

Now, since N is a commutative ideal, [ ] [ ] o=yxRyx ,,  
for all , . But R is a semiprime ring, hence 

 for all , . This shows that . 
On the other hand if  then  implies that 

 and therefore , since R is a 
semiprime ring. This shows that  and thus R is 
commutative, by Lemma 3. 

Nx∈ Ry∈
[ ] o=yx, Nx∈ Ry∈ CN ⊆

o=2a CN ⊆

o== 2RaaRa o=a
{ }o=N

 
Theorem 2. Let R be a left s-unital ring which satisfies 
(p), and  is a fixed positive integer. The following 
conditions are equivalent: 

1>m

(i) R is a commutative ring. 
(ii) For each , , ; and for any Na∈ Ry∈ o=],[ mya

Ryx ∈,  if o=],[ yxm , then . o=],[ yx
(iii) For each Ryx ∈,   and o=],[ mm yx o=],[ yxm  

implies that o=],[ yx . 
(iv) For each Ryx ∈,   and mm yxxy )()( = o=],[ yxm  

implies that o=],[ yx . 
(v) For each Ryx ∈, ,  and  

 implies that . 

mmm yxxy =)( −mm(
o=],)[1 yx o=],[ yx

 
Proof. First of all, for any , Rx∈ exx =  for some 

Re∈  (R is left s-unital). Also, by Lemma 1 and [4, 
Lemma 3],  for some integer , and by 
Lemma 2; , hence . Therefore 
R is an s-unital ring. Obviously (i)⇒(ii)-(v). We 
complete the proof as follows. 

kk ee 2= 1≥k
Cek ∈ xRxexex kk ∈==

(ii)⇒(i) Let Nba ∈, , then  for some integer 
 and 

o=nb
1>n aeaae == ,  for some bebbe == Re∈ . By 

(ii),  so , or in fact 
. By repeating this argument we can see that 

o=+ − ])(,[ 1 mnbea o=− ],[ 1nbam
o=− ],[ 1nba

o=],[ ba . Thus N is commutative, and as the Proof of 
Theorem 1 shows: , for all , o=2],[ ya Na∈ Ry∈ . 

Now, let Na∈ , Ny∉ . By Lemma 3, Nya ∈],[ , 
hence  for some integer , 

, by (p). Since  (by above), hence 
. First, let . Considering , 

we have 

n
k yayya ],[]],,[[ = o≥k

1>n o=nya ],[
o=+1],[ kya 1≥k 1],[ −=′ kyaa

o=′ ]],,[[ yya . On the other hand, Na ∈′ , by 
Lemma 3. Therefore, , by (ii). o=′ ],[ mya

Hence, by [4, Lemma 2],  and so o=′− ],[1 yamym

o=′ ],[ ya , by [4, Lemma 2] and (ii). That is  
inductively, 

o=kya ],[
o=],[ ya . Also, it is obvious that if o=k , 

then o=],[ ya . This shows that . Hence for each CN ⊆
Rx∈ ; there exists an integer  such that 

, by Lemma 1. Therefore, by a well-known 
result of Herstein [2], R is a commutative ring. 

1>n
Cxx n ∈−

(iii)⇒(ii). See [5, Lemma 2]. 
(iv)⇒(ii). Let Na∈≠o , . By Lemma 1.2, Ry∈≠o

aeaae == , yeyye ==  for some central idempotent 
element Re∈ . Let aez −= , , then 
by (iv), . 

K+++=′ 2aaez
mmmm yeyyzzzzy ==′=′ )()()(

On the other hand , hence 
 and therefore , or in fact 
. 

zzyzzy mm ′=′)(
mm yzzy =′ o=],[ myz
o=],[ mya

(v)⇒(ii). Let Na∈ , Ry∈  be two nonzero elements 
of R such that . Using the above notations when o=na
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a is replaced by , we have  
, by (v). Therefore, , i.e., 

, or in fact , by (v). 
By repeating this argument, we can easily see that 

. 

1−na =′=′ mm zzyzzy )(
mmm zyz o=− ],[ 1 mm yz

o=− −− ],)[( 11 mmn yae o=− ],[ 1 mn ya

o=],[ mya
 

Theorem 3. Let R be a ring which satisfies (p) and N a 
commutative subset of R. Then R is a subdirect product 
of commutative nil rings and local rings. 

 
Proof. By a well-known result of Birkhoff, R is a 
subdirect product of subdirectly irreducible rings 

. Obviously, each RIiRi ∈, i satisfies (p). Thus  
is a nil ring, or R

ii NR =

i contains a nonzero potent element. On 
the other hand, if  is not a nilpotent element, 
then by Lemma 1,  for some integer . 
Clearly, is an idempotent element which lies in 
the center of R

ii Ra ∈≠o
n
ii aa = 1>n

1−= n
iae

i, by Lemma 2. Since Ri is a subdirectly 
irreducible ring,  must be the identity of R1=e i, and ai 
is a unit of Ri. Since by Lemmas 3,4, Ni is an ideal of Ri, 
hence each Ri is a nil or a local ring. 

To complete the proof it suffices to observe that if 
 is a ring epimorphism, then  concides 

with  the set of all nilpotent elements, of . Let 
 be a nonzero element of , then by 

Lemma 1,  (otherwise, there exists an integer 
 such that , i.e.,  

. This completes the proof. 

∗→ RRf : )(Nf
∗N ∗R

∗∗ ∈= Naaf )( ∗R
Na∈

1>n L=== 2nn aaa == ∗aaf )(

oL=== ∗∗ 2)()( nn aa
 

Corollary 3.1. Let R be non-nil subdirectly irreducible 
ring which satisfies (p). Then char , for some 
prime p. 

npR =

 
Proof. By Theorem 3, R is a local ring with 1. Consider 
2=1+1. By Lemma 1, either , or  for some 
integer . If , then charR is a power of 2. 
Therefore, we may assume that , or in fact has 
char . But as a division ring with a positive 
characteristic, char , where p is a prime 
number. Therefore, in  for some integer . 
This completes the proof. 

o=n2 22 =n

1>n o=n2
o=− 22n

o>= mR
pNR =/
o=npR, 1>n

 
Theorem 4. Let R be a ring of characteristic zero, which 
satisfies (p). Then , where E is the set 
of all idempotent elements of R, and each Re is a local 
ring. 

NReR Ee +⊕= ∈

Proof. Let , then by Lemma 1,  for 
some integer . Clearly  is an idempotent 

element, and 

NRx \∈ nxx =
1>n exn =−1

Rex∈ . Now, suppose that Eee ∈′, . Since 
according to Lemma 2, , we can easily see that CE ⊆

( ) ( ) eeeeee nn ′−+′+=′+∗ 22)(  

for all integers . By Lemma 1, either 
or  for some integer . If  
then by , . Multiplying the last 
equation by 

1≥n o=′+ nee )(  
eeee n ′+=′+ )( 1≥n o=′+ nee )(

)(∗ eeee n ′−=′+ )22(
ee ′− , yields . ee ′=

If , then in view of  we have 
. But char , hence . These 

observations show that if , then 

eeee n ′+=′+ )( )(∗
o=′− een )22( o=R o=′ee

ee ′≠ o=′∩ eRRe . So 
far, we have seen that . To complete 
the proof we need to show that for each , Re is a 
local ring. Obviously,  is an ideal of Re 
(by Lemma 3, 4). Let 

NReR Ee +⊕= ∈

Ee∈
NReNe ∩=

Rex∈ ,  then by Lemma 1, 
 for some integer . Clearly  is a 

central idempotent, by Lemma 2, and it is easy to see 
that 

Nx∉
xxn = 1>n exn ′=−1

ee ′=  (otherwise o=′ee ). Therefore x is a unit of 
Re and the proof is completed. 

In Theorem 4, if o=N  then by Lemma 1, R satisfies 
the Jacobson’s condition, i.e. for any , , 
for some integer . Therefore, in view of 
Theorem 4, we have: 

Rx∈ )(xnxx =
1)( >xn

 
Corollary 4.1. If for each , there exists an integer 

 and char
Rx∈

1)( >= xnn o=R , such that , then R is 
a direct sum of fields. 

nxx =

Note that , if R is a ring with 1, which 
satisfies the Jacobson’s conditions. 

o>charR

 
Remarks. Each one of the conditions in Theorem 1 is 
essential, because: 

 
Example 1. Let  with . Clearly 
R is a semiprime ring and . But R does not 
satisfy (p). 

],[2 yxZR = 1+= yxxy
}{o=N

 
Example 2. Consider the non-commutative ring 

⎭
⎬
⎫

⎩
⎨
⎧ ∈⎥⎦

⎤
⎢⎣
⎡= )2(,, GFcba

c
ba

R
o

 

which satisfies (p). 
In this ring, N is commutative but R is not semiprime. 
 

Example 3. Let , this ring is a non-
commutative semiprime ring which satisfies (p), and N 
is not commutative, because 

)( 22 ZMR =
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22 yxxyButyx
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Example 4. In Theorem 2, the torsion-freeness 
restrictions on commutators can not be deleted. For, in 
the following non-commutative ring 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= )2(,,, GFdcba

a
da
cba

R
oo

o  

o=4x  or , for all 14 =x Rx∈ . 
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