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Abstract
Seifert Fibre Groups (SF-Gps) have been introduced and their first derived 

groups have been worked out in an earlier paper by the author [2,3]. Now we aim 
to prove that they are residually soluble and residually finite. 
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1 The curvature is defined for all groups with signature and in the case of groups discussed in our work, is equal to the Euler 
characteristic of the group. 

1. Introduction 
Our intention in earlier sections is to show that every 

SF-group is residually soluble. For this purpose we need 
some definitions as well as few lemmas which we will 
bring in §1 and in early parts of §2, prior to the main 
theorem (2.4). Residually finiteness will be worked out 
in §3. The use has been also taken of the following 
theorem, proved by Chin-Han Sah, 1969, [5]: 

 
Theorem 1.1. Let G be a group with signature: 

{ } ⊗....................,.........);(,),2(),1( γmeee K  

then, 
1. G is residually finite; 
2. G is perfect if and only if the following conditions 

hold: 
● i) 0=γ , 
● ii) all ’e(i)’s,  are finite, and ,1 mi ≤≤
● iii) the ’e(i)’s are pairwise co-prime; 
3. if G is not perfect then it is residually finite and 

soluble. 
 

Definition 1.2. If G has the signature ⊗, trivial centre, 
and all ’e(i)’s finite for  m finite, i.e. there are 

 
,1 mi ≤≤

 
Keywords: Resi. Solu. SF-Gps; SF-Groups’ properties 
no elements with e(i) equal to ∞, then the number: 
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is called the curvature1 of G. 
Groups of positive or zero curvature are very limited. 

For a complete list of such groups [5], App. 4, 
§§A7&A8. In the case of m=3, J. Milnor [4] gives the 
detail. We shall also discuss the groups with negative 
curvature which are all Fuchsian groups. 

 
Definition 1.3. Let G be a SF-group with centre >< ζ . 
If the quotient group  has negative curvature, 
then we call it the Fuchsian Projection of G. (And say 
that the SF-signature of G is of Fuchsian Type). 
Moreover, a subgroup S of finite index of a SF-group G, 
is called: 

>< ζ/G

 
a broad subgroup of G if the natural 
homomorphism maps it onto the Fuchsian 
Projection of G; and a deep subgroup of G if 
it contains the centre of G. 

 
Let Γ denote the Fuchsian projection of a SF-group H 

with signature: 

⊗..............}.........;);,(,),,(),,{( 02211 gqqmqmqm rrK  
(Every SF-group has a signature of this type [3]. 
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We next let the prime mark ‘ ′ ’ on the top right-hand 
corner of any group-letter, represent its first derived 
group as usual. 

 
Lemma 1.4. If H is perfect and Γ→H:φ  is the 
natural surjective homomorphism from H onto Γ, then 
the image of H′ under φ  is just Γ′. 

 
Proof. H is perfect then by definition H = H′. So, from 
the presentation of H′ [3] we notice that every element 

 can be written as: Hh∈

[ ] .,1, Handkjforh jjjj ∈≤≤∏= βαβα  

Since Γ is the image of the surjective homomorphism 
φ , then for every element Γ∈γ ,  s.t. ; 
whence we get 

Hh∈∃ γφ =)(h
[ ])(),( jj βφαφγ ∏=  which is an 

element of Γ′. Hence . But  and H 
is perfect, then , i.e. . 

Γ′⊂)(Hφ Γ=)(Hφ
)()( HH ′= φφ Γ′⊂′)(Hφ

On the other hand Γ′ as the derived group of Γ, is 
obviously its subgroup, the two ways inclusions of Γ 
and Γ′ imply that  is equal to Γ′. )(Hk ′φ

 
2. On Residual Solubility of SF-Groups 

Definition 2.1. A group H is called residually soluble if 
for every non-identity element h in H there exist s 
soluble group S and a homomorphism φ  from H onto S 
such that the image of h under this homomorphism is 
different from the identity in S. 

One may notice that the definition 2.1. in the case of 
quotient groups is equivalent to say that: 

H is residually soluble if and only if, 

● a) for every non-identity element h there exists a 
normal subgroup N of H such that N does not contain h 
and H/N is soluble; or 

● b) its derived series intersects in the identity only, 
because H/H′ for any group H, is abelian. 

 
Lemma 2.2. Let H be a SF-group with presentation: 

[ ]

>⇔⇔

==< ∏ =

ii
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g
i iiggH

βζαζζ

βαζβαβα

,,&

,:;,,,,
111 K

 

where ζ is a central element, l an integer, and ⇔ 
implies the commutement of two sides. If p:H→Γ is the 
natural projection, we assume that p(H) = Γ is torsion-
free. Then H is residually soluble. 

 
Proof. Take any element t in H other than the identity. 
There are two possibilities according to the element t 
being central or not. 

● 1) t is not central, i.e. . Since Γ is 
residually soluble, by Sah’s theorem (1.1), then there is 
a homomorphism 

Γ≠1)(tp

φ  from Γ onto a soluble group G 
such that . Thus we get a homomorphism ψ 
from H onto G by taking 

Gtp 1))(( ≠φ
poφψ =  which does not kill 

t. 
● 2) t is central, i.e. . Then there exists a 

positive integer  where ζ is a generating 
element of the centre of H. Suppose q is a large number 
greater than kt. Then an epimorphism 

Γ=1)(tp
ktttskt ±= ζ..

→Γ:φ q 

is given by sending one element a1, say, to 1 (mod q) 
and the rest to zero. Denote again poφ  by ψ and ker(ψ) 
by H1. Since H/H1 is abelian then HH ′⊃1 . This is a 
deep subgroup of H of index q with Euler number equal 
to (q) times that of H, assuming that, of course, e(H) is 
not zero ([1], Lemma 7.2, p. 24). As we mentioned 
before, since the factor group of a group with a broad 
subgroup is cyclic, then if we denote the generators of 
H1 other than the powers of central element ζ , by 

,,,,, 11 gg βαβα K  then the factor group of H1 which is 

obtained by killing all , is a cyclic group 
of order divisible by q. Hence 

,, ii βα gi ≤≤1

1Hktt ′∉±= ζ , so 
Ht ′′∉ . Thus the natural map: 

HHHp ′′→′ /:  

is a homomorphism of H onto a soluble group which 
does not kill t. If e(H) was zero, then a homomorphism 
from H onto q could be given by taking ζ onto the 
generator of q and the rest of the elements to zero. 

 
Proposition 2.3. Let G be a group and N a normal 
subgroup of G with G/N soluble. Then G is residually 
soluble if and only if N is residually soluble. 

 
Proof. Solubility of G/N implies that there is a positive 
integer k such that k–th derived group of G/N is just 
identity element only, i.e. 

1)/( )( =kNG  

and this implies that 

.)( NG k ⊂  

Then for any positive integer l we get 

)()1( lk NG ⊂+  

N being residually soluble implies that 

326 



J. Sci. I. R. Iran Mamagani Vol. 11, No. 4, Autumn 2000 

{ }11
)( =∞

=Il
lN , 

then 

{ }11
)1( =∞

=
+Il

kG , 

because 

{ }11
)(

1
)1( =⊂ ∞

=
∞
=

+ II l
l

l
k NG . 

Hence G is residually soluble. 
The other way is obvious, as G being residually 

soluble means that the sequence of its derived 
subgroups intersect in the identity, hence that of derived 
subgroups of N intersect in the identity, thus N is 
residually soluble. 

 
Theorem 2.4. Let H be the SF-group with signature ⊗ 
and Γ its Fuchsian projection. Then 

● a) Γ is perfect if H is perfect; 
● b) H′ is perfect if H is not perfect but Γ is perfect; 

moreover, the Fuchsian projection of H′ is also Γ, and 
H/ H′ is cyclic. 

● c) H is residually soluble if  Γ is residually soluble. 
 
Proofs. a) (This is fulfilled by the proof of Lemma 1.4). 
b) Γ perfect, then Sah’s theorem (1.1) ensures that g=0 
and all  are relatively prime. Hence H has 
a presentation as follows 

rimi K,2,1, =

We abelianize H, and get  isomorphic to the 
additive group 

HH ′/

,&,,2,1

:;,,,

01

21

>==

=<

∑ =
δ

δ

qgr

gmgggG
r
i i

iir

K

K
 

the order of which is the determinant of the following 
matrix 
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which is equal to: )(
1021 ∑ =

−
r
i m

q
r i

iqmmm K , and gives 

k, the index of H′ in H. Since the natural projection 
maps H′ onto the Fuchsian projection of H then H′ is a 
broad subgroup of H (by Definition 1.3), and we have 
the following equality: 

)()( HekHe ′=  . 

But as e(H) is defined by: 

∑ =−= r
i

i

i

m
qqHe 10)(  

then we have: 

rmmmHe K211)( =′ . 

In a similar way to that argument of the above lines, 
A. M. Macbeath has shown2 that if e(H) is not zero then 
the order of the torsion subgroup H/H′ is equal to 

)(21 Hemmm rK …………………… . 

Then the index of H″ in H′, which is the same as the 
order of H′/H″, must be , and by the 
value of e(H′), is equal to 1. Hence H′ is perfect. 

)(21 Hemmm r ′K

It is very easy and straight forward to see that H′ has 
Γ as its Fuchsian projection. And one can see easily that 
if a group H1 has been taken as a broad subgroup of H 
of index k, then H/H1 is cyclic. In conjunction with that 
we have H/ H′ cyclic and its order the same as . 

c) Γ is not perfect then there are two possibilities: 
Either (c.1) its genus is zero and at least two of its 

periods are not co-prime; 
Or (c.2) its genus is not zero. 
In the case of (c.1) let q be the prime common factor 

of the non-co-prime periods m1 and m2, say. Then Γ has 
the signature 

(qr1, qr2, m3, …, mr; 0) 

where r1 and r2 are the numbers m1/q and mz/q 
respectively. Define a homomorphism: 

→Γ:1φ q 

by putting, 

,1)( 11 =xφ   and  for ,1)( 21 −=xφ 0)(1 =ixφ .3 ri ≤≤  

Let Γ1 denote the , then by using Singerman’s 
theorem and the Riemann-Hurwitz formula ([6] & [3]) 
we get the following signature for Γ

)ker( 1φ

1: 

)0;,,,,,( ][][
4

][
321

q
r

qq mmmrr K  

where  means q periods m][q
im i. 

Next we define a homomorphism  from Γ2φ 1 into the 

 
2 A. M. Macbeath, The Fundamental Groups of the 3-Dimen-
sional Briskorn Manifolds, University of Birmingham, (1976), 
U.K., Unpublished. 
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direct sum of cyclic groups as follows: 
Let 

⎩
⎨
⎧

=
=

,,,2,1
,,,4,3

,, 21 qj
ri

yyy ij
K

K
 

be the generators of Γ1, then define 

→Γ→ 12 :φ 1
3

−q
m ⊕ 1

4

−q
m ⊕ … ⊕ 1−q

mr  

by putting 

0)()( 2212 == yy φφ  and  
⎩
⎨
⎧

=
=

,,,2,1
,,,4,3

)(2 qj
ri

yij
K

K
φ

as shown in Table 1. 
 
 

Table 1. Defining the homomorphism in section c 
of Theorem 2.4 

2φ  1
3

−q
m  1

4

−q
m  K  1−q

mr
 

y31 (1,0,…,0), (0,0,…,0), ,K  (0,0,…,0) 

y41 (0,0,…,0), (1,0,…,0), ,K  (0,0,…,0) 

M  M  M  M  M  

yr1 (0,0,…,0), (0,0,…,0), ,K  (1,0,…,0) 

y32 (0,1,…,0), (0,0,…,0), ,K  (0,0,…,0) 

y42 (0,0,…,0), (0,1,…,0), ,K  (0,0,…,0) 

M  M  M  M  M  

yr2 (0,0,…,0), (0,0,…,0), ,K  (0,1,…,0) 

MM  M  M  M  M  

y3(q-1) (0,0,…,1) (0,0,…,0), ,K  (0,0,…,0) 

y4(q-1) (0,0,…,0), (0,0,…,1) ,K  (0,0,…,0) 

M  M  M  M  M  

yr(q-1) (0,0,…,0), (0,0,…,0), ,K  (0,0,…,1) 

y3q (-1,-1,…,-1), (0,0,…,0), ,K  (0,0,…,0) 

y4q (0,0,…,0), (-1,-1,…,-1), ,K  (0,0,…,0) 

M  M  M  M  M  

yrq (0,0,…,0), (0,0,…,0), ,K  (-1,-1,…,-1)
 

 
Since, if we denote the )(2 ijyφ  by tij, then the 

relation ∑ tij = 0 is satisfied, and every element tij has 
the correct order, hence this is a homomorphism from Γ1 
onto the finite group on the right-hand side. 

Let Γ2 denote the . The index of Γ)ker( 2φ 2 in Γ1 is N, 
say, and equals to . By using the 
Singerman’s theorem and Riemann-Hurwitz formula we 

get the following signature for Γ

1
43 )( −q

rmmm K

2: 

( )2
][

2
][

1 ;, grr NN  
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Finally, let 

2,,2,1,
,,2,1

,2,1
g

andNj
i

zij K
K

=
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⎨
⎧

=
=

νβα νν , 

be the generators of Γ2; and let  be a homomorphism 
from Γ

3φ
2 into the group 

1
1

−N
r  ⊕ 1

2

−N
r  

defined by: 

);,0()(

),0,()(
,0)()(

223

113
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jj

jj

tzand

tz

=

=
==

φ

φ
βφαφ νν

 

such that 

).(mod01),(
1

i

N

j
ijiij mtandmt ≡= ∑

=
 

If Γ3 denotes the , then the index of Γ)ker( 3φ 3 in Γ2 
is . Once more we must use Singerman’s 
theorem as well as the Riemann-Hurwitz formula to get 
the following signature for Γ

1
21 )( −Nrr

3: 

(–   ;g3)noperiods , 
where 

[ ])()()(2/ 1
213 Γ−= − χqrrNg N . 

Thus Γ3 is a surface group. 
Now let  for i = 1,2,3. H)(1

ii pH Γ= −
3 is residually 

soluble by Lemma 2.2, and H2/H3 is abelian hence it is 
soluble, then H2 is residually soluble by Proposition 2.3. 
So by the same argument H1 and H both are residually 
soluble. 

In the case of (c.2) we have g ≥ 1. 
Let 

;,,2,1, rixi K=  and  gba ,,2,1,, K=ννν

be the generators of Γ and define a map: 

→Γ:1ψ 2
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by 

Denote  by Γ1. By using Singerman’s 
the

where 

be the generators of Γ1. 
: 

.,0)(

,1,0)(
,1)(

,,0)(

1

1

11

1

νψ
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iallforxi

=
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=
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)ker( 1ψ
orem and the Riemann-Hurwitz formula (or 

otherwise) we get the following signature for Γ1: 

);,,,,,,,( 12211 gmmmmmm rrKK  

.121 −= gg  
Let 

1,,2,1,,
and;2,1

,,,2,1
gk

j
ri

v kkij K
K

=
⎩
⎨
⎧

=
=

βα  

Define a homomorphism

→Γ12 :ψ
1m ⊕ 

2
 … ⊕ m ⊕

rm  

by 

and 

 

Denote  by Γ2. Then Γ2 as the following 
sig

periods

,1),(
;2,1

,,,2,1
,)1()(2 =
⎩
⎨
⎧

=
=

−= iii
j

ij mtwhere
j

ri
tv

K
ψ  

.,0)()( 22 kallforkk == βψαψ

)ker( 2ψ  h
nature: 

(–   ;g2)no  , 

wh . Thus Γ2 is torsion-free. 

2 be luble by 
Le

ument to (c.1) we get the results that 
1

3. Residual Finiteness of SF-Groups 
Defini  if its 

H 

lement h∈H under the projection map 
p, 

sm 

ere, )(12 Γ−= χmg
Let H  Then H)( 2

1 Γ−p . 2 is residually so
mma 2.2. 
By a similar arg

H  (the inverse image of Γ1 under the map p), and 
finally H are both residually soluble. 

 

tion 3.1. A group G will be residually finite
subgroups of finite index intersect just in identity, i.e. 1. 

 
Theorem 3.2. Every SF-group H is residually finite. 

 
Proof. Regarding the definition 3.1, for the SF-group 
to be residually finite it suffices to prove that for any 
element h∈H other than the identity, there exists a 

normal subgroup Kh of finite index in H such that h does 
not belong to Kh. 

There are two possibilities according to the image of 
any non-identity e

is different from or equal to the identity in Γ. 
If Γ≠1)(hp , since Γ is residually finite [5], then 

there exists a finite group G and a homomorphi
G→Γ:φ  such that Ghp 1))(( ≠φ  for any non-identity 

element h of H. Hence the composition of the maps φ  
oted by and p, den ψ , is a map from H onto G which 

does not kill h. Thus hK=)ker(ψ  is a subgroup of fini  
index in H which do  not contain h. 

If Γ=1)(hp , then w mζ  for some integer m. 
Since every plane discontinuous gro

te
es

e ge h =
up has a surface 

gr te inde

⎨
=∏ =

g l

gg

1

11

.,:relations

,;,,,,:ators

ν νν ζβα

ζβαβα K
 

This group admits a homomorphism ρ onto cyclic group 
of order l defined by: 

l≡=

t 

oup group of fini x [3], then Γ has a 
subgroup Γ

 as a sub
1, say, of finite index l in Γ which is a 

surface group. This gives )( 1
1 Γ−p  a presentation as 

follows: 

⎪⎧gener

[ ]⎪⎩

).(mod0)()(
),(mod1)( l≡

νν βραρ
ζρ

 

If m is not a multiple of l, t n ρ does not kill ζ m. 
If m is a multiple of l, then we proceed as follows: 

ple 
of

1

k
k

≡
≥≡==

he

Let k be an integer greater than m but not a multi
 it. Define a map τ from )( 1

1 Γ−p  onto Zk by: 

).(mod0)(
2),(mod0)()()(

),(mod1)( 1 k≡

ζτ
νβτατβτ

ατ

νν ,  

Denote  by H1 and  by H2. Then we 
get: 

=  and 

H2 as a deep oup of   H1. 

ul p(H2) is a surface 
gr

)( 1
1 Γ−p )ker(τ

,: 21 kHH

 subgr

By Riemann-Hurwitz form a 
oup of genus: 

,1)1( +−=′ gkg  

and by Bailey-Neumann theorem, the Euler number of 
H2 is k times that of H1, i.e. 

).()( 12 HekHe =  
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( [1] for details.) Then H2 has the presentation: 

⎧

=−

′′

.

;,,,,:

1
1

11

ξ

ζδγδγ

μ

gggenerators K
 

Since m is not a multiple of kl, so H2 has a norm  
subgroup of finite index which does not include ζ m, by 
above argument. 

Uncharacteristically Euler. Ph.D. Thesis, 
 of Birmingham, UK, (1977). 

[ ]⎪⎩
⎨

== −′

=∏ ,&,: 1 ζδδζζγγζδγ μμμμ μμ
klgrelations

⎪
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