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Abstract
In this paper, a nonlinear inverse problem of parabolic type, is considered. By
reducing this inverse problem to a system of Volterra integral equations the
existence, uniqueness, and stability of the solution will be shown.

1. Introduction

The problem of determining unknown parameters in
a parabolic partial differential equation has been treated
previously by some authors [2,4]. In some applications
the boundary conditions are not all linear [3,6-9], and
the diffusivity is not constant [1]. Moreover, it may
happen that the source-function is also unknown and
one has to determine it from some suitable overspecified
boundary conditions [5].

A very powerful method for solving partial
differential equations is reducing them to a system of
integral equations [1].

In this paper, we consider the following inverse
problem:

Suppose T is a given positive constant, Dy ={(x,

t)0<x<1,0<t<T}, ais a given positive continuous

function of time defined on the interval [0,T] with a
positive minimum A4, g and 4 are given piecewise-
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continuous functions, s is a given continuously
differentiable function, and / is a given two times
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continuously differentiable function, each defined on
appropriate domains. We are seeking the functions u, f,
G and H such that satisfy the following conditions:

u,(x,0) = a(t)u (x,0)+ £ (1))

O<x<l O0<¢<T (1)
u(x,0)=1I(x), 0<x<1 (1.2)
u(0,1)= G(u,(0,?)), 0<t<T (1.3)
u@,t)=H(u,Q11),  0<t<T (1.4)

and the overspecified conditions:

u,(0,/)=g(t), 0<e<T (1.5)
u,(1,8)=h(z), 0<t<T (1.6)
u(%,tj:s(t), 0<t<T (%))

It is clear that for any given functions f; a, g, h, s, G
and H there may be no function u(x,¢) satisfying all of
the conditions (1.1)-(1.7). However, for any given
piecewise-continuous functions f, g and 4 the problem
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(1.1), (1.2), (1.5) and (1.6) has a unique solution u(x,¢).

Now we give the following definition:
If for some choice of the functions f; G and H the
solution u(x,¢) to the problem (1.1), (1.2), (1.5) and

(1.6) also satisfies (1.3), (1.4) and (1.7), then we call the
quadruple (u, f; G, H) a solution to the inverse problem
(1.2)-(1.7).

A physical interpretation for such a problem arises
from the one dimensional conduction of heat in a
homogeneous bar of unit length, one end located at the
origin, when the diffusivity is not necessarily constant,
and the source-function is an unknown function of time.
For given functions /, g, 4, and s there exist suitable
source-function f and suitable radiation terms G and H
such that the overspecified problem (1.1)-(1.7) is
satisfied.

In section 2 we construct a system of Volterra
integral equations equivalent to the direct problem and
prove the existence and uniqueness of the solution to
this system, then we prove the existence of solution to
the original problem. The uniqueness of the solution
will be considered in section 3. In section 4 we prove
the stability of the solution.

2. Existence
In this section, we consider the problem of
determining a solution (u, f; G, H) of problem (1.1)-
(1.7). For this purpose, we introduce the following
transformation

r:z(t)zjota(y)dy . (2.1)
Since
Z'(t)=a(t)>0 (2.2)

z is an increasing function of ¢, and has an inverse w. By
inverse function theorem w is differentiable and

w(@)=[2 ()] = (a(w(2))) " =

%, 0<7r<z(T) @3)
Now, putting
U(x,7)=u(x,w(7)) (2.9)
we have
= 1= iu X
U 2) = (Nl =)

= (6, 0)+ (1) = U (x,7)+ f(W(7)).

By putting 7; = z(T) the problem (1.1)-(1.7) in terms
of U(x,7) becomes
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U, (x,7)=U(x,7)+ f (7))

O<x<l O<z<T (26)
U(x,0)=I(x), 0<x<1 (2.7)
U0,7)=G(u,(0,7)), 0<z<T; (2.8)
UL7)=HU,(L7)), 0<z<T (2.9)
and the overspecified conditions
U,0.7)=g(w(r)), 0sr<F (2.10)
U,L7)=h(wr)), 0<z<T (2.11)
U@ Tj _s(z)  0<r<T. (2.12)
Now putting
F(r)=f(mz)), 0<z<Ty (2.13)
and
U(x7)=v(x,0)+ [ F()dn, 0<x<1,0<7<T, (2.14)
in terms of v we have
v (x,7)=v. (x7) O<x<l O<r<T, (2.15)
v(x,0)=1(x), 0<x<1 (2.16)
v(0,7)=G(v,(0,7)), 0<z<T (2.17)
v,7)=H(v,(L7)), 0<r<T (2.18)
v,(0,0)=g(n(r),  0<r<T; (2.19)
v, (1,7)=h(w(r)), 0<z<Ty (2.20)
v(% r) =s(m(r)), 0<r<T; (2.21)
so v specially satisfies
v.(x,7)=v,(x,7), O<x<l O<z<T; (2.22)
v(x,0)=1(x), 0<x<1 (2.23)
v (0,7)=g(w(7)), 0<7r<T (2.24)
v.7)=h(Mz)), 0<7r<T; (2.25)

Now we extend the function / to a bounded and
continuous function with the same name which has
compact support, and put

pee)=[ k= oW (u)du (2.26)
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where  k(x,1)=

1 —x2 .
exps——; is the fundamental
Vant p{ 4t }

solution of the heat equation. Since &, (—x,/)=—k,(x,¢),
the problem (2.22)-(2.25) has a solution of the form

v(x7)=p(x.0)=2f k(e —n)g(n)dn +2

+Iork(x—1,f—77)!//(77)d n

if and only if [1]

#(z) = g(W(2) = p,(0,2)+ 2] k. (L r—nw(n)dn (2.28)

and

w(7)=h(w(7))= p, (L) + 2] k(LT = n)d(m)dn. (2:29)

This is a system of Volterra integral equations of the
second kind. Putting

Hy(z,n,6(n).w(n)) =
Hy(z,m,v(n),8(n)) =
2k, (Lr—n)y(n)=

rla

and noting that the relation exp(=L)<« is satisfied for
any positive number a, we have

|Hy(z,1,1(17), w1 (1)) = Ho (7,72, 82 (17), w2 (m))

(2.27)

(2.30)

27 (z—n)?

(2.31)
< L(z, il — boll +llva =l
where
2 -1
L(t,n)=—(r—n)7, O<np<r (2.32)
7[2
Now, since
2 4 1
[, Ueamdn=—r(r,-n) =alr;-n)  (233)
1 T
o, is an increasing function and
lima(r)=0 (2.34)
=0

the system (2.28), (2.29) has a unique and stable
solution (¢4,) [1]. Having found ¢ and y we obtain

Ulx7)= plo)=2[ ks, o=n)g(n)dn

+2[ k(x=L = (ndn+ [ F(n)dn

and noting that k(-x,z—7)=k(x,z—7), from (2.12)
and (2.35) and (2.35) we find

(2.35)
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T 1
F(n)dn=s(wW(r))-p| =7
! p( 2 j (2.36)

<2[H( 2.0 ) ) -van
and since
% jork(x, t-n)z(n)dn = —jo’k,] (x,7—1)z(n)dn (2.37)

differentiating (2.36) with respect to z, using (2.26) and
integrating by parts we find

F(r)=s"(m(z)w(z)

—f; k(%—,u, T)l"(,u)d,u (2.38)
-2 Ork”(%—ﬂ, rj {e(n) -y (n)idn
and so
1,
f(6)= 0’ (1)
I k@_ 4 z(t)jl"(,u)d,u (2.39)

[k 5 20 ) ) v
Moreover from (2.36) we find
Ulx,7)=2 Ior{k(x—l, r— n)—k@, r— n)}w(n)dn
)
- 2]0’{/((x, r—n)- k(% r— nj}qﬁ(n)dn

+ p(x,7)

(2.40)

thus

) =2, k=120 )k 5200~ | jwiaan

~p{3.:20)
2 kw04 3 20 gt

+ p(x, z(1))+s(2)
(2.41)

finally from (1.5), (1.6) and (2.41) we obtain
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G(e0) =2 k@ )~k 5. 20 |kt

o320

-2 "k0.20-n)-4{ 3,20~ jsan

+p(0,2(1))+s(¢)
(2.42)

()=} k020 -n)-k 3. 20)-n s

0

2(1) 1
-2kt 3201 ot
+pLz(2))+s(2).

(2.43)

If we assume that both of functions g and 4 are

bounded and invertible on O0<¢<T, then putting

m=g(t) and n=h(t), equations (2.42) and (2.43)
yield, respectively

(g7 (m))
Gm)=2]" "

k(L z(g 2 (m)) ~ 1)
—k@/2,2(g ™ (m)) - M (m)dn
2l k0,22 m) )

~kQ/2,2(g 7 (m)) - n)}p(n)dn

+s(g7(m)) + p(0,2(g7(m))) - p(Y2,2(g 7 (m)))
(2.44)

and
=2 " k(0,207 -

— k2, 2(h ()~ ) b ()
=2l (0,200 ) - )

—k@/2,z(h 7 (n)) — 1) }p(m)d

+s(h™(n))+ p(L z(h™(n))) - p(/ 2, z(h7(n)))
(2.45)

The above discussion shows the existence of the
solution to problem (1.1)-(1.7) under the assumption
that g and 4 are invertible.

3. Uniqueness
To prove the uniqueness, we consider again, the
problem (1.1)-(1.7), and suppose this problem has two
sets of solutions (uy, f1, G1, Hy) and (u,, f>, G, H,). Then
the equivalence of the problems (2.22)-(2.25) and the
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system of integral equations (2.28), (2.29), and the
uniqueness of the solution to this system of integral
equations proves that u; —u, =0 and f,—f,=0 [1].
So we must only prove the uniqueness of G and H. For
any 0<¢<T, we have

G(¢(0)- Go(e(0)= G 220 )~ 6 2(0.1)
—1y(0,¢)-u,(0,¢)=0
@
and

Hy(h(2)) — Hy((1)) = H{% @ z)j —H, [%(1, t)j

(3.2)
So Gy and G, are equal on the range of g. Similarly

H; and H, are equal on the range of A, and the
uniqueness of the solution to (1.1)-(1.7) is proved.

4. Stability
In this section we prove the stability of the solution
to (1.1)-(1.7). Suppose that (w1, f1, G1, H1) and (u, f>,
G,, H,) are solutions to (1.1)-(1.7) for the given data (/y,
g1, hy, s1) and (b, g2, ha, s7), respectively. Then (2.41)
yields

()=t () < = ()

=1, + v w9,

+ 2=l + sy = s

(4.1)

Similarly we have

Gy (g1(2))— Ga(g2(2))| < %(Z(T))%

=81 +lys w9,

+ 2y~ B[O + sy — 5,

(4.2)

and also

|H (I ()~ Hop (1)) < %(Z(T))%

-0, +lor -l O}

+2|i - 12"52) +ls1 — 82"(70)

(4.3)

where for any bounded function % belonging to
C[0, ] we define the functional norm

n

IR =" sup [ (z)|

k=00<z<a

(4.4)
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and also for any bounded C” function / defined on
(—o0,00) we define the functional norm

D=3 sup [19(z).

Je=0 —°<z<®

(4.5)

So from the stability of the solution to (2.28) and
(2.29) we deduce the stability of the solutions for u, G,
H.

Finally we note that for any nonzero x and any
positive ¢ the relation

70
Ik, (x, 1) < —5 (4.6)
[+
is satisfied [9]. Specifically for x = % we obtain
1
k, (E,t) <560 4.7)

So if a(t) has a positive minimum 4 on 0<¢<T7T, from
(2.39) we have

A(0)- £(0)] <11202(T)
6.~ 2}, +lva vl }

1
+ 2"51 — 8, "(Tl) +h -1, ||£02)

(4.8)

and the stability of the solution to (1.1)-(1.7) is proved.
We summarise the above results in the following
theorem:
Suppose / is a two times continuously differentiable
function which is defined on 0<x<1, a, s, gand 4 are
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given functions on 0<¢<T, g and h are piecewise-
continuous, s is continuously differentiable, and « is a
continuous function which has a positive minimum 4.
Then there exist unique functions u defined on Dy, f
defined on 0<¢<T and unique functions G and H,
where the domains of G and H include the ranges of g
and 4, respectively, and satisfy the problem (1.1)-(1.7).
Moreover this solution is stable.
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