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Abstract 
As a sequel of the recent works, we would like to discuss another stage for the 

solution of the mixed problem which considers the concepts of well operated 
conditions applicable to the solution of mixed problem, i.e. the existence and 
uniqueness of the solution must always conformable with some assumptions. 

 
 
 
 

 
* E-mail: gkaphysu@pnu.ac.ir 

Introduction 
It is well known in classical mathematical courses 

that the partial differential equations for parabolic or 
hyperbolic usually are Cauchy type problems, or mixed 
problems (i.e., Cauchy problem with boundary 
conditions). For an elliptical equation, the boundary 
conditions are considered by some other problems such 
as, Dirichlet and Neumann problems or in a specific 
case, the Poincaré problem [1-3]. They have suggested 
that, for an elliptical equation, conditions of the mixed 
problem are local boundary conditions, as petrovskii in 
his consideration has pointed out [4]. However, there is 
a  possibility to apply such problems for a mixed 
problem with non-local boundary conditions transfering 
the mixed problem to the spectral problem form, [5]. 
The transformed boundary problem (spectral problem), 
under some conditions, will be in the form of the second 
type Fredholm’s integral at a half cylinder space [6]. 

In the final study the existence and uniqueness of the 
 
 
Keywords: Well operated spectral problem; Mixed boundary 
conditions; Local boundary conditions 

solution for the spectral problem has been treated, and 
the boundary equations for domain D were defined [7]. 

 
Analytic Solution of the Schrödinger Equation 

The present study considers existence and uniqueness 
of the solution for the Schrödinger equation at half 
cylinder space with some assumptions to find a well 
operated solution. To obtain this, it is necessary to find 
an asymptote for a adjoint problem [the boundary value 
problem correlated to mixed problem]. However, the 
mixed problem has been recently quoted [6]: 
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To solve such a problem as proposed by Courant and 
Vladimirov [1,2], the Laplace transformation should be 
carried out, using a method suggested by Rasulov [8]. 
The transformed form of the mixed problems could be 
written as follow: 
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and the transformed boundary condition is: 
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using the Helmohtz equation, 

0),(~2),(~ =+Δ λμλλ xu
h

ixux  

where the general solution for the above equation is 
proposed in [2] as: 
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0  is the Hankel function, and 

the asymptote of the Equation (6) obtained by [2] as 
following: 
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where λ2 is the imaginary part of λ, for |x-ξ| → 0 the 
Equation(6) could be written as following: 

L+−=− ξ
π

λξ xixU ln2),(  (8) 

Any solution for Equation (4) at a defined region of the 
domain D would be written as below [6]. 
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The solution of (4) and (5), that is (9) should satisfy the 
boundary value. 
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The above conditions have been used to handle the 
problem in the previous work, [6], again, to give a 
solution for the mixed problem (1-3) by the reversed 
Laplace transformation, the condition proposed by 
[1,2,8] in the form of: 
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where c>0 and is a constant and ũ(x,λ) is the solution of 
the boundary value problem, by these assumptions and 
using the following relation: 
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h
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where δ(x-ξ) is the Dirac delta function. In this case, the 
last term of the right hand side in (10) can be calculated 
as following: 
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By the above conditions the following remarks can be 
elucidated: 
 
Remark 1. If )()()( )3()4( DCDCx ∩∈ψ  and the 
following equation 
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is maintained, then, the asymptotic relation of (121) will 
be as following: 
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Remark 2. According to Remark 1 for the Equation (9), 
Remark 2 will be elucidated: 
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Assume that for t > 0 the (11), its derivative and 
second derivative to x in term of x1 and x2 are converged 
and also (11) is finite for t → 0. Now, if the (11) is 
substituted in Equation (1) we could drive an equation. 
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This relation concludes that (11) satisfies Equation (1). 
If (11) is substituted at boundary conditions (3), the 
following relation is possible: 
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that is, (11) also satisfies the boundary conditions. 
However for f(λ)=λ-n-1  which has been pointed by [9], 
the reversed Laplace transforniation of the above 
relation is: 
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If the first term of asymptotic relation of ũ(x,λ) is on the 
form of the above relation, then (11) can be written as 
following: 

(15)              )()(
2
1

),(~
2
1)0,(

0

0

xdxeLim
i

dxueLim
i

xu

t
ic

ic
t

ic

ic
t

t

ψλ
λ

ψ
π

λλ
π

λ

λ

==

=

∫

∫

∞+

∞−
→

∞+

∞−
→

 

i.e., (11) satisfies the initial condition (i.e. (2)). As 
pointed in [8], from the asymptotic relation of (7) it is 
clear that for λ2>0, exponential terms inU(x-ξ,λ) tends 
to zero, and when  |λ|→∞, (11) shows that the upper 
part of the Laplace asymptotic line bends towards the 
left side of imaginary axis, so that, the variable λ on this 

carvture moves: 
if Rel λ < 0   |λ|→∞   and t > 0 then   |eλt| = et Relλ →0. 

This treatment is not possible for the lower part of 
the Laplace asymptote line as shown in asymptotic 
relation of (7) if λ2<0 then, the exponential term of the 
U(x-ξ,λ) will not tend to zero. This means that, there 
exists a possible specific value just close to imaginary 
axis on the lower part (spectral problem). If |λ|→0 
towards the lower part of the Laplace asymptote line, 
the U(x-ξ,λ) tends to zero gently, in other words, 
behaves as Fourier coefficient. 

Substituting relation (12) at (9) and (10) with Γ∈x  
and , and considering that, the dependent term to 
δ is zero we obtain a solution for the U(x-ξ,λ). The other 
terms of  Laplace operator, which U(x-ξ,λ) has those 
terms, non of its derivative could be written using 
partial integral. To obtain the asymptotic relation for the 
last term of Equation (9) in the form of Remark 1, we 
should repeat the operation as necessary. The required 
asymptotic relation from second term on the right side 
of Equation (9) can be obtained by substitution of the 
ũ(x,λ) and repeat the same stages, to maintain the 
asymptotic relation. 

D∈ξ

 
Conclusion 

The problem has been considered, by taking an 
advantage of Ferdholem’s Integral [6]. In the present 
study, the transformed form of the boundary value 
problem can be written as relations (4) and (5). The 
solution for the tranformed problem proposed as 
Equation (9). With the conditions of Remarks 1 and 2 a 
well operated solution for the mixed problem would be 
elucidated, that is a conformable and unique solution of 
the problem. 
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