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Abstract 
In this paper we review some recent ideas of synchronization theory. We apply 

this theory to study the different synchronization aspects of uni-directionally 
coupled pair of chaotic one-dimensional Gaussian maps. 
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1. Introduction 
The first observation of a synchronization 

phenomenon is attributed to C. Huygens in 1673 [10] 
during his experiments for developing improved 
pendulum clocks. Two clocks hanging on the same 
beam of his room were found to oscillate with exactly 
the same frequency and opposite phase due to the 
coupling in terms of the almost imperceptible 
oscillations of the beam generated by the clocks. In 
recent years, the synchronization of coupled chaotic 
systems has become an area of active research. The 
motivation for these investigations derived from 
possible applications of this phenomenon to secure 
communications [7], the long-term prediction of chaotic 
systems [18], controlling chaos [12], the model 
verification of non-linear dynamics [4], or the 
estimation of model parameters  [16]. 

The most important feature of non-linear systems 
exhibiting chaotic motion is extreme sensitivity to initial 
conditions. This feature, known as the “butterfly effect”, 
would seem to defy synchronization among dynamical 
variables in coupled chaotic systems. Nonetheless, 
coupled systems with certain properties of symmetry  
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may exhibit synchronized chaotic motion  [13]. Most 
frequently, a situation is studied where the complete 

system consists of coupled identical subsystems. Many 
different examples of this type have been introduced 
[6], [17] and [18]. In these cases, the synchronization is 
easy to detect. It appears as an actual equality of the 
corresponding variables of the coupled systems as they 
evolve in time. Geometrically, this implies a collapse of 
the overall evolution onto the identity hyperplane in the 
full phase space. As suggested in Ref. [15], we refer to 
this type of synchronization as an identical 
synchronization (IS). 

A more complicated situation arises when coupled 
non-identical chaotic systems are investigated. For 
essentially different chaotic systems, the phase space 
does not contain any trivial invariant manifolds from 
which one can expect a collapse of the overall 
evolution. The central questions in this case are (i) how 
to generalize a mathematical definition of chaotic 
synchronization for such systems and (ii) how to detect 
it in a real experimental situation. Recently, two 
approaches have been suggested in order to answer 
these questions. One of them [22] uses the concept of an 
analytical signal and introduces an instantaneous phase 
and amplitude for the chaotic process. The 
synchronization appears as locking of the phases of 
coupled systems, while the amplitudes remain 
uncorrelated. This type of synchronization is identified 
as a phase Synchronization. Another approach  [2] is 
based on the concept of the functional relationship 
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between the variables of the coupled subsystems. This 
approach can lead to the existence of a function that 
maps (asymptotically for t → ∞) states of the drive 
system to states of the response system. This type of 
synchronization is called generalized synchronization 
(GS). In this case the chaotic dynamics of the response 
system can be predicted from the drive system. There 
are some other approaches, which are discussed 
elsewhere, [13]. 

In this study, first, we briefly describe the main ideas 
defining the concept of GS. With the help of PHASER 
software [14] we show that for system of chaotic 
Gaussian maps GS may appear in two different 
synchronization states, referred to as weak 
synchronization (WS) and strong synchronization (SS). 
Lyapunov exponents of linearized chaotic system are 
the most common tools for study the stability of the 
synchronization manifold. We use this tool to show the 
(in)stability of the synchronization manifold for 
different values of coupling strength parameter, which 
exists in the system of Gaussian maps. We end up this 
study with the conclusions of our study. 

 
2. Definitions and Geometry of Synchronization 

Consider a coupled pair of one-dimensional Gaussian 
maps: 

)(1 nn xfx =+  (1) 

)],()([)(1 nnnn yfxfcxfy −+=+  (2) 

for , plus a coupling term 
where c is the scalar coupling 

strength. The coupling acts like negative feedback. If we 
set c=0, a=3.5 and b=0.5 we get independent chaotic 
systems. The dynamical

])(exp[)( 22 bxaxf nn −−=
)],()([ nn yfxfc −

 variables (  and ) in each 
system remain uncorrelated with each other. Now if we 
take , we see a new behavior set in. In this case, 
as we will see, for different values of  in this 
interval 

nx ny

)1,0(∈c
0≠c

0→− nn yx  for large n. we now have a set of 
synchronized, chaotic systems. The dynamical variable 
in one system is equal to its counterpart in the other. 
More importantly, we can get an idea of what the 
geometry of the synchronous attractor looks like in 
phase space. Typical figures displaying synchronous 
systems usually look like Figure 1, just a 45° line 
showing that a variable from one system equals its 
counterpart in the other system of all time. Systems (1) 
and (2) are called derive and response systems, 
respectively. 

Two identical systems are in IS if the attractor lies on 
a hyperplane which its dimension is strictly less than the 
full phase space dimension. If two different systems are 
coupled identical synchronization is in general not 
possible, but other types of synchronization may be 
observed. For chaotic systems Afraimovich et al. [2] 
gave the first definition for what was later called GS by 
Rulkov et al. [23]. In this definition Afraimovich et al. 
called two systems synchronized if in the limit t → ∞ 
( ∞→n ) a homeomorphic function exists mapping 
states of one system to states of the other. Later the 
assumption of a homomorphism was relaxed and two 
systems are said to be in synchrony if there states x and 
y are asymptotically related by some function H so that 

0→− y(t)H(x(t))  for t → ∞. This definition of GS 
was used in Refs. [9] and [15]. 

For non-identical driving and response systems, the 
map differs from identity, which complicates the 
detection of GS. To recognize GS in a real experimental 
situation, Rulkov et al. [23] suggested a practical 
algorithm based on the assumption that H is a smooth 
(differentiable) map. The algorithm was tested on 
artificially constructed examples with a prior known 
map H. Subsequent progress of GS theory was achieved 
in recent publications [1], [15], [19], [20], [21] and [24]. 
Depending on the properties of the map H, two different 
types of GS where discovered [19], namely, SS and WS, 
which are characterized by a smooth and a non-smooth 
map H, respectively. 

Now in the following section we will detect different 
synchronization of coupled Gaussian maps (1) and (2). 

 
3. Synchronization of Gaussian Maps 

Consider again the system of chaotic Gaussian maps: 

])(exp[ 22
1 bxax nn −−=+  (3) 

])(exp[])(exp[)1( 2222
1 bxacbyacy nnn −−+−−−=+  (4) 

As deriving and response subsystems, respectively with 
an auxiliary response subsystem 

])(exp[])(exp[)1( 2222
1 bxacbzacz nnn −−+−−−=+  (5) 

Note that the auxiliary response subsystem (5) is 
identical with the response subsystem (4). We 
emphasize that subsystem (5) does not influence the 
dynamics of the original response and deriving 

252 



J. Sci. I. R. Iran Erjaee Vol. 12, No. 3, Summer 2001 

 

Figure 1. Typical figure of synchronization between two systems. 
 
 

subsystems (4) and (3). It serves only to detect the WS 
of the system. 

To illustrate the experimental observation of GS for 
this system we have used the software PHASER [14]. 
This software enables us to solve and illustrate the 
(chaotic) solutions of above system for different values 
of c in different two-dimensional coordinates ,  
and  versus n (t). As we will see in the next section, 
these experimental observations are agree with other 
results using the tools for detecting and analyzing the 
synchronization of the chaotic systems. 

1x 2x

3x

We have run the PHASER to solve the system (3-5) 
with different initial conditions and coupling strength c. 
The results are shown in Figure 2. For values 0 < c < 0.3 
there is no synchronization between ( , ) and ( , 

) (Fig. 2a,b), for various values 
nx ny ny

nz 662.042.0 ≤≤ c  
synchronization occurs between and  but the 
smooth identity manifold 

nx ny
xy = is unstable, i.e., we may 

have =  for some n (for while) but later on for 
some bigger n, this identity will break down. 

ny nx

Indeed, as we will see in the next section, this is the 
case of WS. Thus GS in the form of WS is observed for 
this identical system (Fig. 2c,d). With the increase of 
c > 0.662 subsystems (3) and (4) have an invariant 
manifold y = x and, hence admit IS. This case is 
interesting, since it provides a simple criterion for SS. 
Indeed, the variables of the response and deriving 
subsystems are related by the identity map y=x, which 
obviously is smooth. Hence, SS can be simply detected 
as IS between the deriving and response subsystems. 
Figures 2(a)-2(f) show the solutions , and  of 
the system versus n (t) at a = 3.5, b = 0.5 and for various 
values of parameter c. 

nx ny nz

4. Stability of the Synchronization Manifold 
Several methods have been discussed to study the 

stability of the synchronization manifold  [3,5,11,17, 
19]. Using the Lyapunov exponents of linearized 
chaotic system is the most common method to study the 
stability of the synchronization manifold. In general, 
consider ,  and  

 as derive, response and auxiliary response 
subsystems respectively. Then IS occurs if the 
dynamical system describes the evolution of the 
difference  

)f(xx n=+1n )x,g(yy nn1n =+ 1nz +

)x,g(z nn=

nnn xye −=

)x,g(y)f(xe nnn1n −=+  

Possesses a stable fixed point at the origin e = 0. In 
some cases this can be proved using stability analysis of 
the linearized system for small e, 

nx1n efe
n

D=+  (6) 

or using Lyapunov functions. In general, however, the 
stability has to be checked numerically by computing 
so-called transversal or conditional Lyapunov exponents 
(CLEs) using the linearized equation (6). IS occurs if all 
transversal Lyapunov exponents of the system 

are negative, otherwise the synchronization 
manifold of the system ( ) is unstable. In this 
case similar analogous can be use for WS; i.e. if the 
CLEs of linearized equation 

)f(xx n1n =+

nn xy =

ny1n ege
n
′=′ + D  (7) 
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Figure 2. Solutions of coupled Gaussian maps xn, yn and zn (x1, x2, and x3) vs n 
(time) for various values of the coupling strength c. In all these figures xn, yn and zn 
are started from 0, 0.6 and –0.6, respectively. (a) and (b) c=0.2 there is no 
synchronization. (c) and (d) c=0.42, WS. (e) and (f) c=0.7, SS. 
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Figure 2. Continued. 
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Figure 3. CLEs  and transverse Laypunov exponents . 
Unsynchronized state for , WS for 

λR λ I

∈)4.0,0(∈c c )662.0,42.0(  and SS for 
c > 0.662. 

 
 

are negative, then the synchronization manifold of the 
response and auxiliary response subsystems ( ) 
is stable. So SS occurs if all transversal and conditional 
Lyapunov exponents are negative. Note that here 

. 

nn yz =

nnn yze −=′
Now going back to the system (3-5) we can use both 

stability analyses of the linearized system and Lyapunov 
exponents to discuss the stability analysis of its 
synchronization manifold. To illustrate this stability 
analysis we consider the fixed point =),( nn yx  

 of the coupled subsystems (3-4) 
that is located on the synchronization manifold  

. The stability features of this fixed point are given 
by the 

)678082.0,678082.0(
=ny(

)nx
458479.2)(1 −=′= nxfλ  and =2λ )()1( nyfc ′−  

 of the Jacobian matrix of (3-4) at )958479.2)(1( −−= c
),( nn yx . As we can see 1λ >1, which describes the 

instability within the synchronization manifold and does 
not depend on the coupling. The second eigenvalue, 
however, reflects the (in)stability and depends on c. For 
example if c > 0.662 the stability criterion 2λ <1 holds; 
i.e. in this case the corresponding eigenvalue(s) of 
system (6) is less then one and we have stable 
synchronization manifold for . For more precise 
study of GS in the form of WS and SS, we have used 
two different Lyapunov exponents [3], namely, the CLE 

nn xy =

∑
=

∞→
′+−=

n

i
nn

R yf
n

c
1

)(ln1lim)1ln(λ  (8) 

defining the stability of the invariant manifold = , 
and the transverse Lyapunov exponent of the identity 
manifold =  

nz ny

ny nx

∑
=

∞→
′+−=

n

i
nn

I xf
n

c
1

)(ln1lim)1ln(λ  (9) 

As discussed in [8] if ),( nn yx  is a fixed point of the 
system then two limits in (8) and (9) are simply the 
logarithms of the moduli of eigenvalue and . In 
this case if we take 

1λ 2λ
),( nn yx =(0.678082, 0.678082), the 

 and can easily be computed for different values 
of  c. Indeed, the dependence of these exponents on c is 
shown in Figure 3.  and  become zero at two 
values  and , respectively. So WS 

occurs for values of < c <  on which > 0 and 

< 0. For c > 0.662 both  and  are negative, so 
we have SS. Note that for the smaller c like 

Iλ Rλ

Rλ Iλ
42.00 =c 662.01 =c

0c 1c Iλ
Rλ Iλ Rλ

1.0=c  
there is no stable synchronized manifold. 
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5. Conclusion 
In the last few years, chaos synchronization has 

become one of the most intensely studied topics in 
nonlinear dynamics. This phenomenon is typical for 
couple chaotic systems. It appears, when under the 
action of the deriving system, the response system 
forgets its initial conditions and becomes an 
asymptotically stable system. i.e., when any initial 
conditions in the response lead to the same asymptotic 
dynamics. Experimentally, this, as we have seen, means 
that an ensemble of identical response subsystems 
driven with the same chaotic signal should exhibit 
identical asymptotic behavior. We have also seen that, 
to detect GS, one requires an ensemble of identical 
response subsystems. This ensemble should consist of at 
least two identical subsystems, namely, the original and 
the auxiliary response subsystems.  

Conditional Laypunov exponents, is an alternative 
tool which can be used to detect and analyze the GS of 
chaos. We used these parameters to define the existence 
and the properties of GS in Gaussian maps. 
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