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Abstract 

The spontaneous emission spectrum from a driven three-level atom placed 
inside a double-band photonic crystal has been investigated. We use the model 
which assumes the upper levels of the atomic transition are coupled via a classical 
driving field. The transition from one of the upper levels to lower level couples to 
the modes of the modified reservoir, and the transition from the other upper level 
to lower level interactwith the free vacuum modes. The effect of classical driving 
field on the spontaneous emission spectrum of this latter transition is investigated 
in detail. Most interestingly it is shown that only in the presence of the classical 
driving field; there is a black dark line in the spontaneous emission spectrum of 
free-space transition when the modified reservoir is of the photonic band gap type. 
This dark line is not seen in the case where the modified reservoir is of the free 
space type for relatively weak driving field. 
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1. Introduction 

It is well known that the spontaneous emission and 
probe absorption of an atom depends not only on the 
properties of the excited atomic system but also on the 
nature of the surrounding environment [1,2]. From the 
point of view of the surrounding environment of atoms, 
photonic band gap (PBG) structures have been shown to 
have different density of states (DOS) compared with a 
free-space vacuum field [3-5]. The study of quantum 
and nonlinear optical phenomena, in atoms (impurities) 
embedded in such structures, have led to the prediction 
of many interesting effects [6]. As examples, the 
localization of light and the formation of photon-atom 
bound states [7,8], suppression and even complete 

cancellation of spontaneous emission [9,10], population 
trapping in two-atom systems [11], the phase dependent 
behavior of the population dynamics [12,13] and other 
phenomena [14-16] can be mentioned. 

On the other hand, driving a multi-level atom with a 
sufficiently strong resonant field alters the radiative 
dynamics in a fundamental way, even in the ordinary 
vacuum. It leads to such interesting effects as the 
enhancement of the index of refraction with greatly 
reduced absorption, electromagnetically induced trans-
parency and optical amplification without population 
inversion. In view of these results, it would be 
interesting to investigate the combined effects of 
coherent control by an external driving field and photon 
localization facilitated by a PBG on spontaneous 
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emission from a three-level atom embedded in a PBG 
material. This is precisely what is done in this paper. 

While the spontaneous emission spectrum near the 
photonic band edge has been mentioned in a few papers 
[17,18], the discussions are limited to population 
involution and distribution of the upper levels based on 
a single-band PBG reservoir. In contrast, in this paper 
we focus on the spontaneous emission spectrum, rather 
than the population involution and distribution, and we 
consider a three-level atom embedded in a double-band 
photonic crystal described by both isotropic and 
anisotropic dispersion relations at the band edges. 

In the present work we consider the model which 
consists of two upper levels resonantly driven by a laser 
radiation where either of levels may decay to a lower 
level. One of the transitions interacts with the free 
vacuum modes, and the other transition couples to the 
modes of a) the isotropic photonic band gap (PBG), b) 
the anisotropic PBG and c) free vacuum respectively. 
Most interestingly we show that when one of the 
transitions couples to the modes of the photonic band 
gap, the spontaneous emission spectrum of the other 
transition can exhibit ”dark lines” (zeros in the spectrum 
at certain values of the emitted photon frequency). This 
effect is due to the combined effects of applied driving 
field and DOS of modified reservoir, and it is not seen 
for relatively weak driving field, if the first transition 
couples to the modes of free space vacuum. 

This paper is organized as follows. In Section 2 we 
investigate the coherent control of spontaneous emission 
for a three-level atom located within a perfect PBG 
structure. We apply the time-dependent Schrödinger 
equation to describe the interaction of our system with 
the modified vacuum and calculate the spontaneous 
emission spectrum in the free-space reservoir. The 
general calculated results and their analysis are 
presented in Section 3. The major conclusions are 
summarized in Section 4. 

 

 

Figure 1.  Schematic diagram of a three-level driven atomic 
system. The solid two arrow line denotes the coupling laser, 
the thin dashed arrow denotes the coupling to the modified 
reservoir (PBG) and the thick dashed arrow denotes the 
coupling to the free space reservoir. 

2. Equations for the Spontaneous Emission 
Spectrum 

Consider a single three-level atom placed inside a 
PBG material which is then driven by a laser field. We 
label the ground state of the atom by 0 , and the two 

excited states by 1  and 2 , as shown in Figure 1. The 

transition 1 0→  is taken to be near resonant with a 
modified reservoir (this will later be referred to as the 
non-Markovian reservoir), while the transition 
2 0→  is assumed to be occurring in free space (this 

will later be referred to as the Markovian reservoir). The 
spectrum of this latter transition is of central interest in 
this section. We assume that spontaneous emission on 
the transitions 2 1→  is inhibited by symmetry 
considerations. In the configuration shown in Figure 1, 
the upper levels 1  and 2  are of the same symmetry 
so that the external control laser field of frequency cω  
which couples levels 2  and 1  drives a two-photon 
transition 21(2 )cω ω= . The single-photon spontaneous 
emission 2 1→  is not dipole allowed, since the 
levels are of the same symmetry. Two-photon 
spontaneous emission is considered to be negligible 
compared to the two-photon stimulated emission on the 
transitions 2 1→ , induced by the classical control 
laser field. 

We assume the following initial configuration for the 
model system. At 0t = , the radiation-field reservoir is 
initially in the vacuum state (no photon in the system), 
and the atom is prepared in a coherent superposition of 
its two upper levels 2  and 1  in the form: 

( 0) sin 1,{0} cos 2,{0}pit e φ θ θΨ = = +  (1) 

The parameter θ  measures the degree of 
superposition of 2  and 1 . A value of 0θ =  means 
that the atom is initially prepared on the upper level 
2 , whereas / 4θ π=  means that the atom is initially 

prepared as an equal superposition of the upper levels 
2  and 1 . The factor pie φ  gives the relative phase 

between the expansion coefficients of 2  and 1 . The 
coherent superposition state (1) can be prepared by an 
ultrashort pumping laser pulse of appropriate pulse area. 
At time 0t =  this atom starts to interact with a laser 
field of frequency cω  and phase cφ  that couples the two 
upper levels. The dynamics of the system can be 
described using the Schrödinger equation. Then the 
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wave function of the system at time t  can be expressed 
in terms of the state vectors as: 

1 2( ) ( ) 1,{0} ( ) 2,{0

( ) 0,{ } ) 0,{ }ke q
ke qe

t a t a t

a t ke a qe

ψ = +

+ +∑ ∑
r r

}

(e t
 (2) 

where  and q  denote the momentum vectors of the 
emitted photons and e  denote the polarization of the 
emitted photons. The function  gives the 
probability amplitude to find the atom in the excited 
state 

k
r r

( )ja t

j  and the photon reservoir in the vacuum state. 
On the other hand,  gives the probability 
amplitude to find the atom on the ground state 

( )ea tλ

0  and a 
single photon of wave vector λ  and polarization e  in 
the photon reservoir. 

The Hamiltonian describing the dynamics of this 
system in the interaction picture and the rotating wave 
approximation can be written as: 

20
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ˆ1 0 . )

c k

q

i t i i t
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i t
qe qe

qe

H e g e
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+ +

∑
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Here 21cω ωΔ = − , 20k kδ ω ω= − , 10q qδ ω ω= −  and 
 is the Rabi frequency, which is considered real for 

convenience in our problem. 
Ω

The external control laser field of frequency cω  
which couples levels 2  and 1  drives a two-photon 
transition 21(2 )cω ω= . In this case, the Rabi frequency 

 is obtained from second order perturbation theory 
[19] 
Ω

2 0 1 0

1

( . )( . )
( )

i i

i c i

d E d E
ω ω

Ω =
−∑

r rr r

h
h

 (4) 

Here the summation is over all intermediate states 
i  of the atom. 212 cω ωΔ = −  represents the laser field 

detuning, and ijλ λδ ω ω= −  represents the detuning of 
the radiation mode frequency λω  from the atomic 
transition frequency ijω . ij

egλ  is the frequency-
dependent coupling constant between the atomic 
transition i → j  and the mode { }eλ  of the radiation 
field. More precisely: 

1/ 2

0

( )
2

ij ijij
e

d

Here ijd
r

 is the atomic dipole moment unit vector for 

the transition i j→ , eeλ
r  is the polarization unit 

vector of the radiation fields V  is the sample volume 
and 0ε  is the permittivity of free space. 

We substitute this Hamiltonian into the Schrödinger 
equation and obtain the following set of equations: 

10
1 2( ) ( ) ( )qc i ti t i

qe qe
qe

ia t e a t g e a tδφ −Δ += Ω +∑&  (6) 

20
2 1( ) ( ) ( )c ki t i i t

ke ke
ke

ia t e a t g e a tφ δ− Δ − −= Ω +∑&  (7) 

01
1( ) ( )qi t

qe qeia t g e a tδ=&  (8) 

02
2( ) ( )ki t

ke keia t g e a tδ=&  (9) 

By formal time integration of Equation (8) and 
Equation (9) and eliminating  from Equation (6) 
and  from Equation (7) we get: 

( )qa t
( )ka t

1 2 1 110
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ti t ia t i e a t a t K t t dtφΔ + ′ ′= − Ω − −∫& ′

′

 (10) 

2 1 2 220
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where 
2 ( )10

11( ) qi t t
qe

qe
K t t g e δ ′− −′− = ∑  (12) 

2 ( )20
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K t t g e δ ′− −′− = ∑  (13) 

are the retarded Green functions. The resulting Green 
function depends very strongly on the photon density of 
states of the relevant photon reservoir. Because the 
reservoir with modes  is assumed to be Markovian, 
we can apply the usual Weisskopf-Wigner result [4], 
and obtain: 

k

22 20
1( ) (
2

)K t t t tγ δ′ ′− = −  (14) 

For the summation in Equation (12), the one 
associated with the modified reservoir modes, we have 
[2]: 

e ijg e d
Vλ
λ
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11 10
1( ) (
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)K t t t tγ δ′− = − ′  (15.c) 

for isotropic PBG, anisotropic PBG and free space 
reservoirs respectively, with 10 10gi giδ ω ω= − ( 1, 2)i = . 
The definitions of the parameters are: 
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The spontaneous spectrum ( )S λω  for the λ  mode 
of spontaneous emission field is the Fourier transform 
of (see reference [20]) 
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By introducing Equation (2) into Equation (17), we 
have: 
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for the spontaneous emissions along the transitions from 
the level 2  to the level 0 , and from the level 1  to 

the level 0 , respectively. Here ( )kD ω , ( ( ))qD ω  is 
the DOS of the radiation field, which can be derived as 
[2] 
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for isotropic PBG, anisotropic PBG and free space 
reservoirs respectively, with θ  being the Heaviside step 
function. From Equations (8-11), and Equations (18, 
19), we have: 

*
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for the spontaneous emission spectra along the 
transitions from the level 2  to the level 0 , and from 

the level 1  to the level 0 , respectively. Here the 
definitions of ijP  are: 

3 / 2
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for isotropic PBG, anisotropic PBG and free space 
reservoirs respectively, and ,  is the 
Laplace transform of , . Taking the Laplace 
transform of Equations (10, 11), we obtain 
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here,  is the Laplace transform of the retarded 
Green function in Equation (12), which can be derived 
in the following forms: 
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(11 10 10 1 130 2
1( )
2 gK s i is isα δ δ= − + + +% )g  (26.b) 

 

Figure 2.  The spontaneous emission spectrum ( )kS ω  (in 

arbitrary units) for transition from the upper level 2  to the 

lower level 0  as a function of detuning kδ  for different 
reservoirs. a) Double-band isotropic PBG reservoir and 

, b) double-band anisotropic PBG reservoir and 
, c) free vacuum reservoir and . The other 

parameters used are 

10 1.0β =

1.0α = 1.0γ =

0.0
10 10

θ = 0.0, δφ =
1.0

 (the relative phase 
between the pump and coupling fields), Ω =

1.0
, 

10 1 10 2g gδ δ= − = . All parameters are in unit of 20γ . 

 
11 10

1( )
2

K s γ=%  (26.c) 

for isotropic PBG, anisotropic PBG and free space 
reservoirs respectively, with 10 10gi giδ ω ω= −  (i=1,2). 
We use the formulas obtained above, and calculate the 
spontaneous emission for several parameters of the 
system. 

3. Results and discussion 

We study first the case where an atom is initially 

pumped to the upper level 2 . In Figures 2 (a-c), the 
spontaneous emission spectra ( ( ))kS ω  are shown for  

 

Figure 3.  The spontaneous emission spectrum ( )kS ω  (in 

arbitrary units) for transition from the upper level 2  to the 

lower level 0

2.5

 as a function of detuning for different 
reservoirs. a) Double-band isotropic PBG reservoir, b) double-
band anisotropic PBG reservoir. 10 1g = 0.5, 10 2g = , δ δ

1.5= 1.0 (solid lines), = 0.5 (dashed lines) and Ω Ω Ω =  
(dotted lines). The other parameters used are the same as those 
in Figure 2. 

 
the cases of isotropic PBG reservoir, anisotropic PBG 
reservoir, and free-space vacuum reservoir, respectively. 
Here, symmetric values of parameters for the transition 
are employed (i.e., 10 1 10 2 1.0g gδ δ= − = , 10 1.0β = , 

10 1.0α = , 10 1.0γ = ). 
Figure 2 shows that there is a black dark line, 

( ) 0kS ω =  in the spontaneous emission spectrum in the 
case of PBG reservoir. On the other hand, no dark line 
exists in the case of free space reservoir, and no 

( ) 0kS ω = , can be found. We can show from Equation 
22 that in the case of PBG reservoir as the atom is 
initially in state 2  (cos 1)θ =  and 10 2 10 1g gδ δ= − , 

( )kS ω  will be equal to zero at the frequency kδ = Δ . 
Here we would like to emphasize that the center of dark 
line is absolutely black, and that the existence of a dark 
line in the spectrum is independent of the Rabi 
frequency and detuning. This dark line is the 
consequence of DOS of modified reservoir and applying 
driving field, which can be seen from Equations (22, 25, 
26). In fact level 2  is split into two dressed states. 
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This dressed-state splitting is the effect of the Autler-
Townes splitting [21] by the external field. So that the  

 

Figure 4.  The spontaneous emission spectrum ( )kS ω  (in 

arbitrary units) for transition from the upper level 2  to the 

lower level 0  as a function of detuning kδ  for different 
reservoirs. a) Double-band isotropic PBG reservoir and 

, b) double-band anisotropic PBG reservoir and 
, c) free vacuum reservoir and . Here 

10 1.0β =

1.0α = 1.0γ =

/ 2
10 10

θ π=  and the other parameters used are the same as those 
in Figure 2. 

 
spontaneous emission spectrum ( )kS ω  consists of two 
components, the quantum interference of which in the 
case of PBG reservoir leads to a dark line at kδ = Δ . On 
the other hand, in the case of free space reservoir this 
quantum interference is not completely destructive, so 
that no dark line exists in the case of free space 
reservoir. 

Since this dark line is the consequence of combined 
effects of classical driving field and DOS of modified 
reservoir, so the existence of the dark line in the 
spontaneous emission spectrum is independent of the 
position of 10ω  (the frequency of transition in modified 
reservoir) within the PBG. For showing this, the 
spontaneous emission spectrum is plotted in Figure 3, in 

the case where 10ω  is on the upper band of PBG (not 
within the PBG). The used parameter are 10 1 2.5gδ = ,  

 

Figure 5.  The spontaneous emission spectrum ( )kS ω  (in 

arbitrary units) for transition from the upper level 2  to the 

lower level 0  as a function of detuning kδ  for different 
reservoirs. a) Double-band isotropic PBG reservoir, b) double-
band anisotropic PBG reservoir, c) free vacuum reservoir. 

1.5= 1.0 (solid lines), ΩΩ = 0.5Ω = (dashed lines),  (dotted 
lines). The other parameters used are the same as those in 
Figure 2. 

 
10 2 0.5gδ = , 10 1.0β = , 10 1.0α = ,  (solid lines), 1.5Ω =

1.0Ω =  (dashed lines) and  (dotted lines). It is 
seen that, this dark line present even for relatively weak 
driving field, but in the absence of the driving field 
there is no dark line in the spontaneous emission 
spectrum. 

0.5Ω =

In the case where an atom is pumped to the upper 
level 1  (sin 1)θ =  only for the double-band isotropic 
PBG reservoir two black dark lines exist in the 
spontaneous emission spectrum (Fig. 4). The origin for 
this feature can be traced back to Equations (22, 25, 26). 
From these equations, the forms of Laplace transform of 
the delayed Green function (in isotropic PBG reservoir) 
involved in the spontaneous emission spectrum include 
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the following items: 

 

Figure 6.  The spontaneous emission spectrum ( )kS ω  (in 

arbitrary units) for transition from the upper level 2  to the 

lower level 0

0.25

 as a function of detuning for different 
reservoirs. a) Double-band isotropic PBG reservoir, b) double-
band anisotropic PBG reservoir. 10 1 10 2g gδ δ= − =

1.0

 (solid 

lines), 10 1 10 2g gδ δ=− = 5.0 (dashed lines) and 10 1 10 2g gδ δ=− =  
(dotted lines). The other parameters used are the same as those 
in Figure 2. 

 

10 1 10 2

1

k g k

i
δ δ δ δ

⎛
⎜ +
⎜ + Δ + + Δ +⎝ g

⎞
⎟
⎟
⎠

 (27) 

The above items show clearly that the singularities of 
the Laplace transform of the delayed Green function for 
isotropic PBG modes are the origin of dark lines. 

In order to investigate the effects of driving field on 
the spontaneous emission spectra in the PBG and free 
vacuum reservoirs, we plot the spontaneous emission 
spectra as functions of detuning kδ  in three cases, as 
shown in Figure 5. From Figure 5 (a) we see that there 
are two pronounced peaks at 10 1k gδ δ=  and 10 2k gδ δ= , 
and two lower peaks in the sides, in the case of double 
band isotropic PBG reservoir. The increasing of the 
Rabi frequency of driving field reduces the width of the 
pronounced peaks and increases the intensity of side 
peaks. On the other hand, we see that in the cases of 
double-band anisotropic PBG reservoir and free space 
reservoir, (Figures 5 (b),(c)) the increasing of the Rabi 
frequency of driving field reduces the intensity of two 
side peaks. 

The effect of the width of PBG on the spontaneous 

emission spectrum for transition from the upper level 
2  to the lower level 0  (for 0.0θ = ) is displayed in 

Figure 6. From Figure 6(a) we see that in the case of 
double-band isotropic PBG reservoir, the increasing of 
the width of PBG reduces the intensity of two side 
peaks. 

Also Figure 6(b) shows that in the case of double-
band anisotropic PBG reservoir the increasing of the 
width of PBG increases the intensity of the peaks. In 
both cases by increasing the width of PBG, the 
spontaneous emission spectrum goes to the Autler–
Townes spectrum. This is because the transition from 
the upper level 1  to the lower level 0  is forbidden 
for frequency within PBG. This situation is similar to 
free space case with 10 0γ = . 

4. Conclusion 

The spontaneous emission spectra of a driven three-
level atom embedded in a double-band photonic crystal 
have been investigated. A transition from one of the 
upper levels to one of the lower levels was assumed to 
interact with free vacuum modes, and the transitions 
from the other upper level to the other lower level were 
assumed to interact separately with isotropic PBG 
modes, anisotropic PBG modes and free vacuum modes. 
The spontaneous emission spectra for the transition 
coupled to the free vacuum modes are studied. Most 
interestingly it is shown that only in the presence of the 
classical driving field; there is a black dark line in the 
spontaneous emission spectrum of free space transition, 
when the modified reservoir is of the PBG type. On the 
other hand, this dark line is not seen in the case where 
the modified reservoir is of the free space type for 
relatively weak driving field. It is shown that in the case 
of double-band isotropic PBG reservoir there are two 
kinds of dark lines. These dark lines are the results of 
the quantum interference between two Autler-Townes 
components of the spontaneous emission spectra, and 
the singularities of the Laplace transform of the delayed 
Green function for isotropic PBG modes.  
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