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Abstract 

We propose a scheme for localizing an atom in a four-level configuration 
inside a classical standing wave field, conditioned upon the measurement of 
frequency of a weak probe field. In the classical standing wave field, the 
interaction between the atom and the field is position dependent due to the Rabi-
frequency of the driving field. Hence, as the absorption frequency of the probe 
field is measured the position of the atom inside the classical standing wave field 
will be determined. Localizing of the atom via the absorption spectrum occurs 
during its motion in the standing wave field. The investigation of the probe field 
absorption shows that the degree of localization depends on the interaction 
parameters such as detuning, and Rabi-frequency of the driving field. 
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I) Introduction 

The precision position measurement of an atom with 
the optical technique is of considerable interest, both 
from the theoretical and experimental point of views. 
The most important interest in determination of the 
atomic position is due to the application in laser cooling 
and trapping [1], Bose-Einstein condensation [2], atom 
lithography [3], and measurement of the center of mass 
wave function of moving atoms [4]. Several schemes 
have been established to determine the position of an 
atom via optical methods. In the optical virtual slits 
scheme, the atom interacts with a standing-wave field 
and imparts a phase shift to the field. The measurement 
of this phase shift then gives the position information of 
the atom [5]. It is shown that by using Ramsey-
interferometry, the use of coherent-state cavity field is 
better than the classical field to get higher resolution in 

position information of the atom [6]. Resonance 
imaging methods have also been used for precision 
position measurement of the moving atoms [7]. Atom 
localization based on the detection of the spontaneously 
emitted photon during the interaction of an atom with a 
classical standing-wave field has also been proposed [8-
12]. Qamar et al. [10] used a simple two level atomic 
system for localizing the atom during its motion in the 
classical standing wave field. This scheme utilizes the 
idea that the frequency of spontaneously emitted photon 
carries the information about the position of an atom 
due to its position dependent Rabi-frequency of the 
driving field. The effect of detuning between the atomic 
transition frequency and the frequency of driving fields 
on the precision information of a single atom inside the 
classical standing wave field has also been proposed 
[11]. It has been shown that a coherent control of 
spontaneous emission of a multi-level system gives line 
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narrowing and even spontaneous emission quenching 
[13-15]. It is shown that strong line narrowing and 
selective cancellation of the fluorescence decay can play 
an important role in enhancing the efficiency of the 
atom localization schemes. Ghafoor et al. [15] 
investigated the phase and amplitude control of driving 
fields on spontaneous emission spectrum in a four-level 
atomic system. This scheme was also utilized for the 
localization of the atom [12]. It is shown that phase and 
amplitude control of driving fields yield a better spatial 
resolution in position measurement of the single atom 
through the standing-wave field with respect to the other 
related studies. Although the measurement of 
spontaneously emitted photon gives a better resolution 
of the atomic wave function than the other methods [10, 
11], from the experimental point of view the detection 
of spontaneously emitted photon is difficult. In another 
study based on the measurement of population in the 
upper level, Paspalakis and Knight [16] have used a 
three-level Λ-type medium to sub-wavelength 
localization of the atom during its motion in the 
standing-wave field. 

Recently, we proposed another method for localizing 
the atom inside the classical standing wave field based 
on the electromagnetically induced transparency (EIT) 
[17]. The basic idea of this scheme is that of the probe 
field absorption measurement at appropriate frequencies 
which localizes the atom inside the classical standing-
wave field. 

In this article, we consider another scheme based on 
the four-level EIT to determine the position of an atom 
inside the classical standing-wave field. We show that 
the position of the atom along the standing wave is 
determined when the probe frequency absorption is 
measured. The effects of Rabi-frequencies of the driving 
field as well as the detuning parameters on the atom 
localization are then discussed. We find that an 
appropriate choice of these parameters leads to a very 
narrow localization structure at a particular frequency. 
The absorption of the weak probe field has been also 
investigated by the imaginary part of the susceptibility. 
The motivation for considering this scheme goes back to 
our recent study of the absorption and the dispersion 
properties of the weak probe field in this system [18]. In 
another related study, we employed this system to 
investigate switching from subluminal to superluminal 
light propagation [19]. We have also investigated the 
phase dependence of the group velocity via EIT with 
three driving fields and a weak probe field in this 
system [20]. The structure of the article continues as 
follows. In section II we introduce a model, giving the 
basic equations and their solution to determine the 
susceptibility. In section III, we present the results and 

discuss the behavior of the imaginary part of the 
susceptibility along with the normalized position 
coordinate of the standing wave for variety of system 
parameters. Finally, we present our conclusion in 
section IV. 

II) Basic Equations 

We consider a four-level atom moving in z direction 
and passes through a classical standing-wave field. The 
standing-wave field is aligned along the x-axis (Fig. 1a). 
The energy level structure of the atom is shown in 
Figure 1b. The classical standing-wave field with the 

wave vector 2k π
λ

=  and wavelength λ  couples level 

b  to the levels 1a  and 2a . A weak tunable probe 

field with frequency pν  couples the ground state c  to 

the excited states 1a  and 2a , whose absorption we 
are interested in. The spontaneous decay rates from 
upper levels 1a  and 2a  to lower level c  are 
displayed by 1γ  and 2γ , respectively. Here we consider 
that the atom is moving with high enough velocity that 
its interaction with the driving fields does not effete its 
motion along the z direction and, therefore, we may 
treat its motion in the z direction classically. Moreover, 
we assume that interaction time of the atom with the 
standing-wave field and hence the Rabi-frequencies are 
sufficiently small so that the center-of-mass position of 
the atom along the standing wave does not change 
during the interaction time and thus we may neglect the 
kinetic-energy term of the atom in the interaction 
Hamiltonian under the Raman-Nath approximation [21]. 
In another words the center-of-mass displacement of the 
atom along the x direction is smaller than the 
wavelength of the standing field. Therefore the cavity 
dissipation can be neglected under this approximation. 
The resulting Hamiltonian from atom-field system can 
be written as 

0 1 2 3H V V V V= + + + , (1) 

where  is the free energy part, and  denotes the 
interaction between standing field with levels 

0V 1V

1a , 2a  

and b .  displays the interaction of the atom with 
the vacuum filed, corresponding to the decay processes 
from levels 

2V

1a , 2a  and b  to level c .  denotes 

the weak field absorption from level 
3V

c  to the level 

1a  and 2a . The detailed form of these terms can be 
written as 
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(a) 

 
 
(b) 

 

Figure 1.  a) A four-level atom is moving in the z direction, 
and passing through the classical-standing wave field that is 
aligned in x direction. b) Proposed level scheme: A coherent 
strong standing wave couples level c  to the excited levels 

1a  and 2a , and a weak probe field applies from the b  to 

the both excited levels 1a  and 2a . 
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Here iωh  are the energies of the levels i . Here 

( ) ( sin , 1, 2 )i ix kx iΩ = Ω =  are the position-

dependent Rabi-frequencies and ( ia b
i

E℘
Ω = , 

h
1, 2)i =  

are the Rabi-frequencies of standing coupling field to 
transition ia ↔ b . Note that the Rabi-frequencies 

1( )xΩ  and 2 ( )xΩ  are the sinusoidal function of the 
position x due to the interaction of the atom and the 

standing field. ( i

i

p a c
p

Ε ℘
Ω =

h
,  are the Rabi-

frequencies of the probe field to transition 

1, 2)i =

ic a→  
which are taken to be real. ℘  and ℘  are the 

induced atomic dipole moments, whereas 
ia b ia c

Ε  and pΕ  
denote the amplitude of the standing and probe fields 
respectively. The terms  are the coupling constant 
between the kth vacuum modes of frequency 

(1,2)
kg

kν  and the 
atomic transition between 1a c→ , 2 ca →  and 

b c→ , respectively. The terms ν  and pν  display 
the frequency of the coupling field and the weak probe 
field. The density matrix elements of the system in the 
rotating wave approximation and in the rotating frame 
are 
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Similarly, one can obtain the population elements of 
the density matrix equation. The detuning parameters 
are defined as 

11 a bω νΔ = − , 
22 a bω νΔ = − , and 

1a c pδ ω ν= − . We define the decay rate iγ =  

 where ( ) 22 ( ) iD gωπ ν ⎡ ⎤⎣ ⎦
2

2 3( ) k
k

V
D

c
ν

ν
π

=  represents the 

density of state and V  is the volume.  (k̂b k̂b ι ) are the 
annihilation (creation) operators for the kth vacuum 
modes. Here the Weisskopf-Wigner approximation has 
also been used for the spontaneous emission [22]. Note 
that the probe field is weak compared to the coupling 
standing field and we keep the terms of all orders in the 
strong standing driving field, but keeping only the linear 
term in the probe field. Therefore we use 

1 1 2 2

2 1 1 2

(0) (0) (0) (0)
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0, 0, 0, .
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= = =

= = =

% % % %

% % %
 (7) 

The absorption of the weak probe field is 
proportional to . The necessary equations 

from the set of density matrix elements (Eqs. 6) under 
the linearization (7) are given by 
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This set of equations can be solved by the matrix 
form, and the result for the steady state is 

1R M C−= , (9) 

where  and C  are column matrixes and R M  is the 
 matrix which are given by 3 3×

1

2c

a c

a

bc

R

ρ

ρ

ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

%

%

%

, 

1 2

1 1

2 2

1 2

1( ) 0 (
2

10 ( )
2

( ) ( ) ( )

a a

i i

C i

i x i x i

γ δ

γ δ ω

δ

⎛ ⎞+ −⎜ ⎟
⎜ ⎟
⎜ ⎟

1

)

( )

x

i x

Ω

= ⎜ + − −
⎜ ⎟
⎜ ⎟
− Ω − Ω −Δ⎜ ⎟

⎜ ⎟
⎝ ⎠

Ω ⎟

⎟

, 

1

2

0

p

p

i

M i

Ω⎛ ⎞
⎜ ⎟
⎜= Ω
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (10) 

We investigate the response of the system to applied 
field by the susceptibility, which is defined as [23] 
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0

2 ( pi t
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where  is the atomic density, , and N
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corresponding to the absorption of the weak probe field 
is given by 
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276 



J. Sci. I. R. Iran Sahrai and Tajalli Vol. 17  No. 3  Summer 2006 

 

Figure 2.  Imaginary parts of susceptibility as a function of 
normalized position  in the unit wavelength for the 
parameters 

kx
1 2γ γ γ= = , 

1 2a aω γ= 0.25, δ γ= 0.5, 1 γΔ =

0.05

, and 

a) 1 2 γΩ = Ω = , b) 1 2 0.1γΩ = Ω 1= , c) 1 2 γΩ = Ω =

5
, 

and d) 1 2 γΩ = Ω =

)

. 

 

III) Results and Discussion 

Expression (12) is our basic results for determining 
the position of a moving atom inside the classical 
standing-wave field. An atom is localized as soon as the 

particular frequency of the probe field is determined. 
This scheme exploits the fact that by measuring the 
particular frequency of the probe field we can localize 
the atom during its motion through the standing wave 
field. Expression (12) shows that the atom localization 
strongly depends on the Rabi-frequencies of standing 
wave field ( 1, 2i iΩ = , and detuning parameters δ , 

1Δ . It is our interest to have the maxima for the 
imaginary part of susceptibility at probe field absorption 
inside the standing-wave field. The position of the probe 
field absorption maxima are strongly depends on the 
probe field frequency through its detuning 

1a c pδ ω ν= − . To clarify this point we consider that the 
relation (12) is depends on the parameter δ . From this 
expression we observe that the imaginary part of 
susceptibility, i.e. χ′′ , has a direct relationship with the 
detuning parameters δ  which is proportional to the 
measured frequency pν  of the probe field. Here, it is 
noticed that the imaginary part of susceptibility depends 
not only on the frequency of probe field but also on the 
amplitudes of classical standing wave-field  and 1Ω 2Ω  
as well as detuning of standing wave with atomic 
transitions. It should also be noted that the initial 
position distribution of the atom is a broad wave packet 
and the imaginary part of susceptibility, therefore, 
directly gives the position probability distribution. The 
results are displayed in Figures (2-4). In the figures we 

choose 1

2

0

2 | |
1caN

ε
℘

=
h

, and . We assume 

that 

1ca ca℘ =℘
2

1 2γ γ γ= = , and all figures are plotted in the unit of 
γ . In our scheme the Rabi-frequencies are position 
dependent, and the atom undergoes different Rabi-
frequencies at a different position in the standing wave 
and we get maxima in the position distribution 
corresponding to these Rabi-frequencies. In Figure 2 the 
imaginary part of susceptibility, χ′′ , are displayed as a 
function of normalized position, kx , for the parameters 

11 2 2 1, , 0.25 , 0.5a aγ γ γ ω γ δ γ= = = = γ Δ = , and for 

different values of 1Ω  and  in the unit wavelength. 
An investigation of the figure shows that the position of 
maxima of the imaginary part of susceptibility strongly 
depends on the Rabi-frequencies of standing-wave field. 
For the small values of Rabi-frequencies, i.e. 

2Ω

1 2 0.05γΩ = Ω = , we get peak maxima only at the 
antinodes of the standing-wave field. When the Rabi-
frequencies of driving field increase, the initial two 
peaks start to split into four peaks and then move away 
from antinodes towards the nodes of the standing wave 
(see Figs. 2b and 2c). For the large values of Ω1 and 
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Figure 3.  Imaginary parts of susceptibility as a function of 
normalized position kx in the unit wavelength for the 
parameters 1 2γ γ γ= = , 

1 2a aω γ= 0.05, 1 2 γΩ = Ω =

0.02

, and a) 

1 γΔ = 0.01, δ γ= 0.002, b) 1 γΔ = 0.001, δ γ=

0.0002
, c) 

1 γΔ = , 0.0001δ γ= . 

 
2Ω  ( 1 2 5γΩ = Ω = ), the localization peaks lies in the 

nodes of standing wave field, and the width of peaks 
decrease. The results indicate a strong correlation 
between the detuning of probe and coupling fields and 
the position of the atom. The measurement of a 
particular frequency is corresponding to the localization 
of the atom in a sub-wavelength domain of the standing 
wave. The width of localization peaks depends not only 
on the Rabi-frequencies but also on the detuning 
parameters. The effects of detuning parameters on the 
atom localization are shown in Figure 3 and Figure 4. In 
Figure 2a, we observe that for 10.25 , 0.5δ γ γ= Δ = , 
and 1 2 0.05γΩ = Ω =  we get peak maxima only at the 
antinodes of standing wave. When the probe and  

 

Figure 4.  Imaginary parts of susceptibility as a function of 
normalized position kx in the unit wavelength for the 
parameters 1 2γ γ γ= , 

1 2a a γ= 1, 1 2ω= γΩ = Ω =

0.02

, and a) 

1 γΔ = 0.01, γ= 0.002, b) 1δ γΔ = 0.001, δ γ=

0.0002
, c) 

1 γΔ = , 0.0001δ γ= . 

 
coupling laser field detuning decrease, the initial two 
peaks start to split into four peaks and move away from 
antinodes towards the nodes of the standing wave (see 
Figs. 3a-c). An increasing of the Rabi-frequencies and 
decreasing the detuning parameters give a very narrow 
structure in the atomic position at the unit wavelength 
(Fig. 4). Note that the heights of the peaks for all values 
of position are the same, but the width of peaks strongly 
depends on the Rabi-frequencies and the detuning 
parameters. 

IV) Conclusion 

The localization of the moving four-level atom inside 
the classical standing-wave field is investigated. In the 
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proposed scheme, interaction between atom and field is 
position dependent, so as soon as the particular 
frequency of the probe field is measured, the position of 
the atom inside the classical standing-wave field will be 
determined. The results show that atomic position 
strongly depends on the interaction parameters such as 
detuning, and Rabi-frequencies of driving field. 
Increasing the intensity of coupling field leads to a 
strong localization of the atom inside the classical 
standing wave-field. 
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