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Abstract

In this paper, we generalize some results of Chandra and Goswami [4] for
pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore,
we give Baum and Katz’s [1] type results on estimate for the rate of convergence

in these laws.
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1. Introduction and Preliminaries

Let {X,,n>1} be a sequence of integrable r.v.’s

defined on the same probability space.
Chandra and Goswami [4] have proved the following
theorem from the arguments of Csorgo et al. [5].

Theorem CG1. Let {X,, n>1} be asequence of non-
negative r.v.’s with finite Var(X ) and f (n) be an
increasing sequence such that f (n) >0 for each n and
f(n)—>wasn—>ow.PutS, => X, .Assume that
i=1
1

sup—— > X. =A(sa ;
Dy & =AY ) <o

and there is a double sequence {p;} of nonnegative

(1.1)

reals such that

Var(s,)<> > p, foreach n>1; (1.2)

i=1j=1

and

’1 ’i oy I(f (i vi) <o, (iv]j)=max(i,j).(1.3)
Then (f (n))*[S,-E(S,)] >0 as.aan—w.

Nili and Bozorgnia [11] generalized (and corrected)
Theorem CG1 for an array of r.v.'s and obtained the
following result:

Theorem NB. Let {X,.,n>1i>1} be an array of

non-negative r.v.’s with finite Var(X,) and

[log,f (n)], e>1 be an increasing sequence. Put
1(n)

S,=>.a;X,, where I(x) stands for a
i=1

nondecreasing continuous function with inverse |

such that 1(n) is a natural sequence and I(n) »> .

Assume that there is a double sequence of nonnegative
reals {p;} such that
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1(n)1(n)
var(s,)<> > p; foreach n>1; (1.4)
i=1j=1
and
N 201 -1/3 g
D> ot AT VITH()) < o0, (1.5)
i=1j=1
Then (f (n))"'[S,—-E(S,)]>0 completely as

n — oo, in the sense of Hsu and Robbins [6] (see also
page 225 of Stout [12]), and hence, a.s.

The question underlying the present work is how one
may refine Theorem CG1 to give more information on
the law of {X }. We recall the classical answer, the

strong law of large numbers Baum and Katz [1] for
p =2 (see [2]). In Section 3 we generalize Theorem

CG1 and give Baum-Katz’s [1] type results on estimate
for the rate of convergence in these laws.

Chandra and Goswami [4], also proved Theorem
CG2, by Theorem CG1, and extended the results of
Landers and Rogge [8] for pairwise independent r.v.'s.

Theorem CG2. Let {X,6,n>1} be a sequence of
pairwise independent random variables such that there
is a sequence {B,} of Borel subsets of R* satisfying
the following conditions

@ SP(X,cBS)<wx;

(6) LEMX, (X, <BI)=of ()

© S0 2(Var(X, 1 (X, €B,) <;

and
() SupE (X ([1 (X, € B ()] <o

here BS is the complement of B, . Then (f (n))™
[S, —E(S,)] >0 almostsurlyas n —co.

In Section 3 we also extend Theorem CG2 to
negative dependence r.v.’s.

2. Negative Dependence

Definition 1. ([9]). Random variables X,,...,X ,(n > 2)

are said to be pairwise negatively dependent (henceforth
pairwise ND) if

P(X; >x,X; >X;)<P(X; >x)P(X; >x;), (2.1)

holds for all x;,x; e®R,i #j. It can be shown that
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(2.1) is equivalent to
P(X; <X, X[ <x)<P(X; <x)P(X; £x;), (22)

forall x;, x; eR,i#]j.
Events {E,} are said to be pairwise negatively

dependent if their indicator functions are pairwise
negatively dependent.

Example 1. Let X +Y =c, ceR. It is easy to see
that X andY are negatively dependent.
An infinite collection of {X, ,n>1} is said to be

pairwise ND if every finite subcollection is pairwise
ND. We will need the following results [3,7,10].

Proposition 1. Let {X,,n>1} be a sequence of
pairwise ND r.v's. Then the following are true:

(i) Cov(X;,X;)<0, i=]j,

(i) If {f,,n =1} is a sequence of Borel functions all

of which are monotone increasing (or all monotone
decreasing) then {f (X,),n>=1} is a sequence of

pairwise ND r.v's.
(iii) The Borel-Cantelli lemma holds for pairwise
ND events.

3. Main Results

In the following theorems « >1/2 and r is an
integer such that r = 2o —2 when 2 —2 is integer and
r =[2a—-2]+1 ([x] is integer part of x ) otherwise.
Also in this paper, C stands for a generic constant, not
necessarily the same at each appearance. Put

S, :Zn:xi .
i=1

Theorem 1. Let {X ,, n >1} be asequence of r.v.'s and
{f (n),n >1} be a sequence of positive reals such that
for some B >1[log,f (n)] is an increasing sequence.
Assume that there is a double sequence {p;} of non-
negative reals such that o, is upper bound for Var (X )
and

Var(S,) < anzn:pij :

i-1j-1

3.1

If for some ¢ < 2«



J. Sci. I. R. Iran Nili Sani et al. Vol. 17 No. 3 Summer 2006
Ry (B ) o Pi 2r p-2a(6-1
Yy <, 3.2) SCY > ——_[(0-D"B ]
i B isisAl V]

then for every ¢ >0

S 2P (s, ~E (S, )|> &f “(n)) <. 3.3)

n=1

Remark. If a=1 we can use theorem NB for
X=X, I(n)=n and a; =1, it is sufficient to
replace (3.2) by (1.5), then (3.3) holds.

Proof. We use sub-sequence method. Replacing X, by
X, —E(X;) wemay use E(X,)=0. Itis easy to show
that

Sz 2p (s, | > of “(n)

n=1

<3 0D (s | > of “(n7) +
n=1

>

n?<k <(n+1)?

>

n?<k <(n +l)z

kC2P(s .

k@ 2p(D, >e/2f “(k)),

where D, = max . It is sufficient to

n?<k <(n+1)? Sk _Snz

show that each of three above series is convergent.

2.n*EPP(s L[> of “(n?)
n=1

2(2a-2)

iz”

2a(n?
=5 nZivjﬂa(n)

|/\
&M8

0, 2(2a-2)

Zw:p,] X—dx ,

2aX
g (

<C

'MS

I
a

where 8 =[,/i v j]. Thus using the change of variable
e¥ =2 dy =4ax In(B)dx , we get RHS

o (2a-2)

y
ij —dy
i=5j=5 ]zamﬁj(e—l)z ey\/?

©

N P y'
<C . —-dy
zz V J 2aln J.

y
BO-1) €

|(/;
Ms
Ms
i)

s\r-1/2

Sciipﬂ- (i VJ_)

2
i ﬁZa(g 1)

=& o (i Vi)
SCZZ ﬂzfx(ﬁ—zf

o w H T\r-1/2
eyl T

== 'Bi(IVJ)

For the second series we have

k 2e2p (|sn2

n?<k <(n+1)?
2(2a-2) n? n®

c i L 2P

2an?
n?<k <(n+1)? ﬂ i=1j=1

IA

n22a-2)

n?zivj ,Bzan
And finally we must show that S, does not differ
enough from nearest S , to make any real difference.

IA

C

M
™M:

I
iR

< o0,

Pi

I
5N

J

S K=P(D, > £/2f “(K))

n?<k <(n+1)?

< ¥

2
n?<k <(n+1)2 f o (k )

© 2(za 2)+1 (n+1)%-1

Z Mn Z Pii

i=n?41

k 20-2

E(D;)

2(2a-2)+1

d n
<C Zl:pii Zn:n2<i<(n+l)2 ﬂZozn2 !
=

for a fix i the second sum include one statement and
we have

[\/—]2(211 2)+1-

<Czpu 2a[f]2

T12(2a-2)+1 s r-1/2
il <c ifi is sufficiently

Note that Y 5

large, thus

[\/‘]2(2(1 2)+1 © jr- -1/2
Zpu 2a[f]2 Z
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In the next theorems we relax the condition that for
some B>1, [log,f (n)] isan increasing sequence. The

Proofs follow the same lines as the proof of Theorem 1.

Theorem 2. Let {X,,,
Theorem 1 such that

Var(ixi)szn:ipij vi,n.

i= i

n>1} and {p;} be as in

Let f(n) be an increasing sequence such that
{n/f (n)} be a bounded sequence. If

>y v i) < (3.4

i1

Ms

I
AN

then for every ¢ >0

S n22p (s, ~E(S,)|> &f “(n)) <.

=1

>

Proof. The Chebyshev’s inequality, condition (3.4) and
a change of order of summation imply that

inZ(Z(x—Z)P (|Sn2 2))
n=1

) 2(2a 2) n? n?

<CY

2a n CZ p'J/n
1 ( ) n=li=lj=

<szlpu > 1n* <C22pu I(ivj)<om.
]

i=1 nZs(ivj) i=l j=1

For the second series we have

i k Za—ZP(|Sn2

n?<k <(n+1)?

0 k 2a-2 )
C ——E(S,.)
n? <kZ:n+l)zf 2 (k) "

iy >, 1n?

IA

|/\
Ms
Ms

I:1J:3L n>(|vj)
sz,o (v j)y?<
i=1j=1

And finally we show that the third series is
convergent

3 k¥ ?P(D, >&/2f “(k))

n?<k <(n+1)%
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0 k 2a0-2 )
<CY ———E(D))

nzzlf (k)

o 2n (n+1)2-1 o (i-1)"? 1

<C Z F z Pii :Czpii Z F

n?<k <(n+1)? i=n?41 i=1 n=(i +1)2-1
<C 3 pi ———— Wi —1-+i +1+1)

.Zf (\/| 1-1)°

» N 3
<C <00,

z [\/I +1-1 (\/_)

Theorem 3. Let {X,, n>1} be a sequence of r.v.’s
and {p;} be a double sequence of nonnegative reals
such that

Var(s,) <> > p; foreach n>1; (3.5)

i=1j=1

Assume that {f (n)} is an increasing sequence such
that n” <f (n)<(n+1)” for some 0< g <1 and for

each n >1.If

SV )py <.

i=1j=1

3
where y =B+4af-4a)/2f and a <——, then
4(1-p)

forevery >0

S n22p (s, ~E(S,)|> &f “(n)) <.

n=1

Proof. Again we are going to use subsequence method.
Replacing X, by X,-E(X;), we may assume
E(X;)=0.

Z n 2(2a-2) ) (|S .
n=1

w0  2(2a-2)

_CZWE(SHZ)

n=1

© 2(20(—2) nZ n?

Z 2P

n=1 Za(n );j =1

)

i=1j

n22a-2)

plj ZZ f2a(n2)

n2>(ivj)

Ms

Il
LN
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o @ 1 where
SCZ;Z‘IPU(X Zﬂ;/)x+l:(ivj)“2
i=1j=
. C, _1v(ﬁ5n n"");
SC;JZ'OU ((x +1)2ﬁ7)f ((x+?)=F (v ) os

2 & 1
SCZZAJ (m)f (4=t (v )

by Chebyshev’s inequality and (3.5). For the second
sum we have

S k(s

n?<k <(n +1)2

8

PR 1
<CY2p 2 yamw

i=1lj=1 Z(ivj)

I/\

= 1
Z 2(2af-2a+2) <
n2sGivj) N

Thus it remains to verify that the third sum is
convergent

0

2

n?<k <(n+1)%

k2 ?P(D, > &/2f “(k))

® 2nk 20-2 (n+1)>-1

n%<k <(n+1)% f za(k) iz

=n?41

E(X?)

u 1
S )Y e

nZ<i<(n+1

i 1
<C zpii Z Ty
i nf (n2)<t (et sy (N +1) &

<CY p If7() <o

i=1

Theorem 4. Let a, B, &, r and f (n) be as in
Theorem 1. Also Let {X,,n>1} be a sequence of

pairwise ND r.v’s such that there is a sequence
{B,,n=1} of semi intervals (—oo,x, ]1((-,x,),

[x,,©) or (x,,©)), x,eR, satisfying in the
following conditions:

@ Y.C,P(X,eBi)<x»
n=1

263

(b) i”

n=1

E(X2I(X, eB,))<o;

© {X,-x,[1(X, €B:)} is uniformly integrable;

here B; is the complement of B
>0

.- Then for every

S n22p (s, ~E (S, )|> &f “(n)) <.

n=1

Proof. Put Y, = X,I(X,€B,) + x,1(X,¢B,),
Z, = X,-Y,, S, =>X;, S, =>Y, and S, =

i=1 i=1

>1}

and {Z,,n>1} are two sequences of pairwise ND
r.v.’s. Itis sufficient to show that

S,-S,=>.Z,, nx1.Itis obvious that {Y ,n

i=1

M

N2 2P (s, —E(S)|> &f “(n)) <0,

Il
5N

n

h:?s

> ef “(n)) <.

>
Il
5N

By Theorem 1, conditions (a) and (b) and Proposition
1 applied to {Y ,, n >1} yields

S > &f “(n))
=
L )
gCﬂZ:;WVar(Sn)
e oplr g
SC;WE‘Em )
a2

ey

27, )[ZE(X (X, €B,))
SYXP(X, B <o

Hence, it is sufficient to prove the first sentence.
Since



Vol. 17 No.3 Summer 2006 Nili Sani et al. J.Sci. . R. Iran

@ @ Sankhya: The Indian Journal of Statistics, VVol. 54, Series

DP(X, =Y, )=DP(X,eBs)<x, A, Pt. 2, 215-231 (1992).

n=1 n=1 5. Csorgo S., Tandori K., and Totik V. On the strong law of
large numbers for pairwise independent random variables.

{X .} and {Y  } are equivalent and Acta Math. Hungarica, 42: 319-330 (1983).
6. Hsu P.L. and Robbins H. Complete convergence and the
inza_zpqsn, _E (Sr:)| > &f “(n)) I(i\g/4;>§ large numbers. Proc. Nat. Acad. Soc., 33: 25-31
i 7. Joag-Dev K. and Proschan F. Negative association of
o 202 random vaiables with applications. Ann. Statist., 11: 286-
<CY ——E(S,-ES,)) <, 295 (1983).

mafe(n) 8. Landers D. and Rogge L. Laws of large numbers for
pairwise independent uniformly integrable random

by (c) and the first Borel Canteli lemma, the desired variables. Math. Nachr., 130: 189-192 (1986).
result follows. 9. Lehmann E.L. Some concept of dependence. Ann. Math.

Statist., 37: 1137-1153 (1966).
10. Matula P.A. A note on the almost sure convergence of
References sums of negatively dependent random variables. Stat.
Probab. Letters, 15: 209-213 (1992).

1. Baum L.E. and Katz M. Convergence rates in the law of 11. Nili Sani H.R. and Bozorgnia A. On limit theorems for
large numbers. Trans. Amer. Math. Soc., 120: 108-123 arrays of rowwise PND random variables. J. Instit. Math.
(1965). . & Comp. Sci. (Mathematice series), 16: 5-12 (2003).

2. Bingham N.H. Moving average. In: G.A. Edgar and L. 12. Stout W.F. Almost Sure Convergence. Academic Press
Sucheston (Eds.), Almost Everywhere Convergence |, (1974).

Academic Press, 129-139 (1989).

3. Bozorgnia A., Patterson R.F., and Taylor R.L. Limit
Theorems for dependent random variables. World
Congress Nonlinear Analysts, 92: 1639-1650 (1996).

4. Chandra T.K. and Goswami A. Cesaro uniform
integrability and the strong law of large numbers.

264



	1. Introduction and Preliminaries
	2. Negative Dependence
	3. Main Results
	References

